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Abstract: This article aims to study the dynamical behavior of an eco-epidemiological model. A mathematical eco-

epidemiological model consisting of a prey-predator model with disease in predator involving fear that induced due 

to the intensity of hunting cooperation, and anti-predator property is formulated and studied. The existence, uniqueness, 

and boundedness of the solution of the model are investigated. The persistence condition of the system has been 

established. The dynamic behavior of the system is analyzed, including the stability analysis of all possible equilibrium 

points is discussed. The local bifurcation analysis is carried out. Finally, numerical simulations are provided to check 

the validity of the theoretical results. 
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1. INTRODUCTION 

   Eco-epidemiology merges two important fields in biomathematics, namely demographic 
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systems, in which two populations interact either by competition or associate for mutual benefit, 

and models in which the spread of diseases is studied [1]. 

Eco-epidemiological systems, which describe the interactions between diseases and prey and 

predator in one population or both, have to be essential tools in the research of infectious disease 

management and transmission due to the high probability of the infection's disease transmission 

between the interacting species. Thus, in eco-epidemiology systems, several studies looked at 

ecological systems where the disease affects populations of prey, predators, or both [2-7]. In cases 

where the infectious disease is present within the prey population, the predators may consume 

vulnerable and sick creatures. Further studies on the role of illness and infection on the dynamics 

of prey and predators, including different ecological and biological factors, have been published 

recently; see [8–15] and the references therein. 

Also, numerous data and field experiments on terrestrial vertebrates have shown that fear of 

predators causes significant variation in prey demographics. Fear of predator population also 

enhances the survival probability of the prey population, and reduces significantly reproduction 

[16-18].  

The fear effect is a behavioral and stress-related physiological change in the prey population in the 

presence of a predator, as prey species are always wary of possible attack. Recent experimental 

findings have explored that fear of predators alone can change prey’s behavior. In the mathematical 

modeling approach, many authors investigated the impacts of hunting cooperation and fear effect 

in the predator-prey system [15, 19]. However, additional research concentrated on the eco-

epidemiological systems related to Hunting cooperation and fear [15, 20-21]. Predators' 

cooperative hunting behavior is a significant biological occurrence in an ecosystem, which is 

commonly seen in carnivores [22]. There are numerous benefits to cooperative hunting for the 

evolution of predator populations. Cooperation, for instance, raises the likelihood of many kills, 

prey mass, and hunting success [23]. Additionally, it makes it easier for the population to obtain 

food more quickly, shortens the distance to pursue prey, raises the likelihood of catching large 
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prey, and gives individuals in large packs hunting advantages by preventing other predators from 

stealing the carcass [22-23]. 

On the other hand, when the prey feels threatened, it naturally engages in anti-predator behavior, 

which can involve risking various bodily parts. Biological protections known as "anti-predator 

adaptations" are developed by evolution to help prey animals fight off predators in their constant 

struggle. Throughout the animal kingdom, adaptations have evolved for every phase of this fight. 

Prey-predator models with anti-predator characteristics have recently been presented and 

investigated by certain academics [24–25].  

The current study aims to investigate the effect of hunting cooperation, anti-predator, and fear 

effects in a predator-prey model simultaneously. We consider that hunting cooperation among 

predators induces fear in the prey population and as a result birth rate of the prey population 

reduces. The formulation of the model with their basic properties such as boundedness and survival 

of the model is discussed in Section 2. The equilibrium analysis and stability of the model is 

discussed in Section 3. The model's persistence criteria is provided in section 4. Section 5, is 

concerned with global stability. Section 6, is investigates the local bifurcation (LB). Numerical 

simulations are performed in 7. Finally, the paper ends with a conclusion. 

 

2. THE MODEL FORMULATION 

A mathematical model that simulates the dynamics of the prey 𝑥(𝑡), susceptible predator 𝑦(𝑡), 

and infected predator 𝑧(𝑡); it is assumed that there is hunting cooperation between susceptible 

predator individuals that induces a fear behavior between the individuals of the prey. The prey 

species have an anti-predator capability to defend themselves. Accordingly, such a prey-predator 

model with disease in predator can be formulated mathematically using the following set of 

nonlinear first-order differential equations: 

      

𝑑𝑥

𝑑𝑡
=

𝑟𝑥

1+𝑝𝑦
− 𝑑1𝑥 − 𝑏𝑥2 −

(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥

 
𝑑𝑦

𝑑𝑡
= ℎ

(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥
− 𝑑2𝑦 − 𝛿𝑦𝑧 − 𝜂𝑥𝑦

𝑑𝑧

𝑑𝑡
= 𝛿𝑦𝑧 − (𝑑2 + 𝑑3)𝑧          

                                      (1) 
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where 𝑥(0) = 𝑥0 ≥ 0, 𝑦(0) = 𝑦0 ≥ 0, and 𝑧(0) = 𝑧0 ≥ 0  represent IC of the model (1). The 

variables and other parameters are revealed in Table 1 and all the parameter values are regarded as 

nonnegative. 

Table (1) Biological description of the system (1) parameter 

Now, rewritten system (1) as a Kolmogorov system in the form:   

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑟

1+𝑝𝑦
− 𝑑1 − 𝑏𝑥 −

(𝑐+𝑚𝑦)𝑦

𝑎+𝑥
) = 𝑥𝑓1

𝑑𝑦

𝑑𝑡
= 𝑦 (ℎ

(𝑐+𝑚𝑦)𝑥

𝑎+𝑥
− 𝑑2 − 𝛿𝑧 − 𝜂𝑥) = 𝑦𝑓2

𝑑𝑧

𝑑𝑡
= 𝑧(𝛿𝑦 − (𝑑2 + 𝑑3)) = 𝑧𝑓3         

                                     (2) 

System (2) with the given initial values satisfies the requirement of the fundamental theorem of 

the existence and uniqueness of the solution as the right-hand side functions are continuous and 

Parameters Description 

𝑥(𝑡) The density of the prey individuals at time  𝑡. 

𝑦(𝑡) The density of the susceptible predator individuals at time  𝑡. 

𝑧(𝑡) The density of the infected predator individuals at time  𝑡. 

𝑟 The prey’s birth rate 

𝑝 The level of fear that reduces the growth of the prey 

𝑑1 Natural death rate of the prey 

𝑏 The intraspecific competition 

𝑐 The attack rate of the susceptible predator on the prey 

𝑚 The  level of predator’s cooperation in hunting 

𝑎 The half-saturation constant 

ℎ The conversion factor of prey biomass to the susceptible predator biomass 

𝑑2 The predator natural death rate  

𝛿 The infection rate 

𝜂 The anti-predator rate 

𝑑3 Additional mortality rate of predators due to infection. 
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have continuous partial derivatives. Moreover, the solutions of system (2) is bounded, as shown in 

the next theorem 1. It is easy to confirm that the requirement for the survival of all species in the 

system (2) is given by: 

𝑑1 < 𝑟                                                   (3) 

Theorem 1: All solutions of the system (2) with the initial condition x(0) > 0, y(0) > 0, and 

z(0) > 0 are positive for all the 𝑡 > 0. 

Proof: Let ℵ = {(x, y, z): x > 0, y > 0, z > 0}. Integrate the equations of system (1) using the 

initial conditions  𝑥(0) > 0, 𝑦(0) > 0, 𝑧(0) > 0, gives that:  

𝑥(𝑡) = 𝑥(0) exp {∫ (
𝑟

1+𝑝𝑦(𝑠)
− 𝑑1 − 𝑏𝑥(𝑠) −

(𝑐+𝑚𝑦(𝑠))𝑦(𝑠)

𝑎+𝑥(𝑠)
)

𝑡

0
𝑑𝑠}. 

𝑦(𝑡) = 𝑦(0) exp {∫ (ℎ
(𝑐+𝑚𝑦(𝑠))𝑋(𝑠)

𝑎+𝑥(𝑠)
− 𝑑2 − 𝛿𝑧(𝑠) − 𝜂𝑥(𝑠))

𝑡

0
𝑑𝑠}. 

𝑧(𝑡) = 𝑧(0) 𝑒𝑥𝑝 {∫ (𝛿𝑦 − (𝑑2 + 𝑑3))
𝑡

0
𝑑𝑠}. 

Then, from the definition of the exponential function, any solution in ℵ that begins with positive 

conditions remains in ℵ for all 𝑡 > 0.   

Theorem 2: All system (2) solutions initiating in ℝ+
3  are bounded.  

Proof. From the prey equation in system (2) we get 𝑥 ≤
(𝑟−𝑑1)

𝑏
= 𝜇1. That is biologically for 𝑥 

to be survival we should have 𝑑1 < 𝑟. Now to show that each population size is bounded if and 

only if the total population size is bounded. It is sufficient to prove the total population size 𝑀 =

𝑥 + 𝑦 + 𝑧 is bounded for all 𝑡. 

 Now, differentiating 𝑀 for 𝑡 along the solutions of system (1), we have 

𝑑𝑀

𝑑𝑡
=

𝑟𝑥

1+𝑝𝑦
− 𝑑1𝑥 − 𝑏𝑥2 −

(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥
+ ℎ

(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥
− 𝑑2𝑦 − 𝛿𝑦𝑧

−𝜂𝑥𝑦 + 𝛿𝑦𝑧 − (𝑑2 + 𝑑3)𝑧
  

≤ 𝑟𝑥 − 𝑏𝑥2 − 𝑑1𝑥 − 𝑑2𝑦 − (𝑑2 + 𝑑3)𝑧. 

≤
𝑟2

4𝑏
− 𝑑1𝑥 − 𝑑2𝑦 − (𝑑2 + 𝑑3)𝑧. 

Thus, we obtain that 
𝑑𝑀

𝑑𝑡
≤ 𝐿 − 𝜇1𝑀. where 𝜇2 = 𝑚𝑖𝑛{𝑑1, 𝑑2}, and 𝐿 =

𝑟2

4𝑏
.Therefore, solving the 

differential inequality gives, 𝑀(𝑡) ≤
𝐿

𝜇2
= 𝜇3 𝑎𝑠 𝑡 → ∞.  Thus, every solution of system (1) is 
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bounded in the region Λ = {(𝑥, 𝑦, 𝑧) ∈ ℝ +
3 : 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) ≤ 𝜇2}. 

 

3. MODELS ANALYSIS 

The equilibrium points (EPs) of the system (2) are found in this section. Then, their LS is 

examined using the linearization technique. System (2) has the following biologically feasible EPs.                             

• The extinction equilibrium point (EEP), 𝑝0 = (0,0,0) always exists. 

• The axial equilibrium point (AEP), 𝑝1 = (
𝑟−𝑑1

𝑏
, 0,0) which exists under condition (3). 

• The disease-free equilibrium point DFEP, 𝑝2 = (�̅�, �̅�, 0), where  

�̅� =
(𝑎𝜂−ℎ𝑐1+𝑑2)�̅�+𝜂�̅�2+𝑎𝑑2

ℎ𝑚�̅�
                                         (4) 

while �̅� represents a positive root for the equation: 

𝑁1𝑥
5 + 𝑁2𝑥

4 + 𝑁3𝑥
3 + 𝑁4𝑥

2 + 𝑁5𝑥 + 𝑁6 = 0,                               (5) 

with 

𝑁1 = 𝜂𝑝(𝑏ℎ2𝑚 + 𝜂2),    

𝑁2 = 𝑏ℎ3𝑚2 + ℎ𝑚𝜂2 + 𝑎𝑏ℎ2𝑚𝜂𝑝 + 2𝑎𝜂3𝑝 − 𝑏ℎ3𝑚𝑐𝑝 − 2ℎ𝜂2𝑐𝑝

+ℎ2𝑚𝜂𝑑1𝑝 + 𝑏ℎ2𝑚𝑑2𝑝 + 3𝜂2𝑑2𝑝
, 

𝑁3 = −ℎ3𝑚2𝑟 + 𝑎ℎ𝑚𝜂2 − ℎ2𝑚𝜂𝑐 + ℎ3𝑚2𝑑1 + 2ℎ𝑚𝜂𝑑2 + 𝑎2𝜂3𝑝

−2𝑎ℎ𝜂2𝑐𝑝 +  ℎ2𝜂𝑐2𝑝 + 𝑎ℎ2𝑚𝜂𝑑1𝑝 − ℎ3𝑚𝑐𝑑1𝑝 + 𝑎𝑏ℎ2𝑚𝑑2𝑝

+6𝑎𝜂2𝑑2𝑝 − 4ℎ𝜂𝑐𝑑2𝑝 + ℎ2𝑚𝑑1𝑑2𝑝 + 3𝜂𝑑2
2𝑝

, 

 
𝑁4 = 2𝑎ℎ𝑚𝜂𝑑2 − ℎ2𝑚𝑐𝑑2 + ℎ𝑚𝑑2

2 + 3𝑎2𝜂2𝑑2𝑝 − 4𝑎ℎ𝜂𝑐𝑑2𝑝 + ℎ2𝑐2𝑑2𝑝

+𝑎ℎ2𝑚𝑑1𝑑2𝑝 + 6𝑎𝜂𝑑2
2𝑝 − 2ℎ𝑐𝑑2

2𝑝 + 𝑑2
3𝑝

, 

 𝑁5 = 𝑎𝑑2
2(ℎ𝑚 + 𝑝(3𝑎𝜂 − 2ℎ𝑐 + 2𝑑2

2)), 

 𝑁6 = 𝑎2𝑑2
3𝑝. 

Since the signs of 𝑁1 and 𝑁6 coincide then the 5𝑡ℎorder polynomial either has no positive roots 

where all the other coefficients have the same signs as 𝑁1 and 𝑁6 or there are multiple positive 

roots.  Also, for the positivity of �̅� , the resulting positive roots should satisfy the following 

condition: 

(𝑎𝜂 − ℎ𝑐 + 𝑑2)�̅� + 𝜂�̅�2 + 𝑎𝑑2 > 0.                                      (6) 

• The interior equilibrium point, (IEP) that is represented by 𝑝3 = (�̿�, �̿�, 𝑧̿), 

where 
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�̿� =
𝑑2+𝑑3

𝛿
                         

𝑧̿ =
(−𝜂�̿�2−(𝑎𝜂+𝑑2−ℎ𝑐)�̿�)𝛿+ℎ𝑚(𝑑2+𝑑3)𝑥 ̿−𝑎𝑑2

(𝑎+�̿�)𝛿2

.                                (7) 

while �̿� represents the positive root of the following equation 

𝐾1𝑥
2 + 𝐾2𝑥 + 𝐾3 = 0                                        (8)                  

where 

𝐾1 = 𝑏𝛿2(𝛿 + 𝑝(𝑑2 + 𝑑3)),   

𝐾2 = 𝛿2((𝑎𝑏 + 𝑑1)𝛿 − 𝑟𝛿 + 𝑝(𝑑2 + 𝑑3)(𝑎𝑏 + 𝑑1)), 

𝐾3 = −𝑎𝑟𝛿3 + 𝑎𝛿3𝑑1 + 𝛿2𝑐(𝑑2 + 𝑑3) + 𝑚𝛿(𝑑2
2 + 𝑑3

2) + 2𝑚𝛿𝑑2𝑑3          

+𝑝((𝑑2 + 𝑑3)(𝑎𝛿2𝑑1 + 3𝑚𝑑2𝑑3) + (𝑑2
2 + 𝑑3

2)(𝑚 + 𝛿c) + 2𝛿𝑐𝑑2𝑑3).
 

            

So by “Descartes’ rule of sign”, equation (8) has a unique positive root, and hence, system (2) has 

a unique IEP in ℝ +
3  if  

𝐾3 < 0 .                                                (9a)                                       

[𝜂�̿�2 + (𝑎𝜂 + 𝑑2)�̿�]𝛿 + 𝑎𝑑2 < ℎ𝑚(𝑑2 + 𝑑3)�̿� + ℎ𝛿c�̿�.           (9b) 

LS of the EPs of the system (2) is determined by determining the eigenvalues of the Jacobian 

matrix (JM). Now, the JM of system (2) 

𝐽 = [𝐽𝑖𝑗]3×3
,                                                           (10) 

where 

  𝐽11 = 𝑥 (−𝑏 +
𝑦(𝑚𝑦+c)

(𝑎+𝑥)2
) +

𝑟

1+𝑦𝑝1
− 𝑑1 − 𝑏𝑥 −

𝑦(𝑚𝑦+c)

𝑎+𝑥
, 

 𝐽12 = 𝑥 (−
𝑚𝑦

𝑎+𝑥
−

𝑚𝑦+𝑐

𝑎+𝑥
−

𝑟𝑝1

(1+𝑦𝑝1)2
),  𝐽13 = 0, 

 𝐽21 = 𝑦 (−𝜂 −
ℎ𝑥(𝑚𝑦+c)

(𝑎+𝑥)2
+

ℎ(𝑚𝑦+𝑐)

𝑎+𝑥
), 

 𝐽22 =
ℎ𝑚𝑥𝑦

𝑎+𝑥
+

ℎ𝑥(𝑚𝑦+c)

𝑎+𝑥
− 𝛿𝑧 − 𝑥𝜌 − 𝑑2, 

 𝐽23 = −𝛿𝑦, 𝐽31 = 0, 𝐽32 = 𝛿𝑧, 𝐽33 = 𝛿𝑦 − 𝑑2 − 𝑑3. 

The JM at 𝑝0 becomes: 

𝐽(𝑝0) = (

𝑟 − 𝑑1 0 0
0 −𝑑2 0
0 0 −(𝑑2 + 𝑑3)

)                                   (11a) 
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So, the eigenvalues of 𝐽(𝑝0)  are 𝜆01 = 𝑟 − 𝑑1, 𝜆02 = −𝑑2 and 𝜆03 = −(𝑑2 + 𝑑3) . Hence, the 

EEP is locally asymptotically stable (LAS) and unstable if the following conditions hold 

respectively. 

𝑟 <  𝑑1.                                                            (11b)  

𝑟 >  𝑑1.                                                        (11c) 

The JM of the system (2) at the 𝑝1 = (�̂�, 0,0) becomes 

𝐽(𝑝1) =

(

 

−𝑟 + 𝑑1 −𝑟𝑝�̂� −
𝑐�̂�

𝑎+�̂�
0

0
ℎ𝑐�̂�

𝑎+�̂�
− 𝑑2 − 𝜂�̂� 0

0 0 −(𝑑2 + 𝑑3))

                            (12) 

Hence, the eigenvalues are determined by 𝜆11 = −𝑟 + 𝑑1, 𝜆12 =
ℎ𝑐�̂�

𝑎+�̂�
− 𝑑2 − 𝜂�̂�,  and 𝜆13 =

−(𝑑2 + 𝑑3), then AEP is LAS provided that 

ℎ𝑐�̂�

𝑎+�̂�
< 𝑑2 + 𝜂�̂�

𝑑1 < 𝑟
                                                   (13) 

The JM of the system (2) at 𝑝2 = (�̅�, �̅�, 0) becomes: 

     𝐽(𝑝2) =

(

 
 

�̅� (−𝑏 +
�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
) �̅� (−

𝑚�̅�

𝑎+�̅�
−

𝑚�̅�+𝑐

𝑎+�̅�
−

𝑟𝑝1

(1+�̅�𝑝)2
) 0

�̅� (−𝜂 −
ℎ�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
+

ℎ(𝑚�̅�+𝑐)

𝑎+�̅�
)

ℎ𝑚�̅��̅�

𝑎+�̅�
−𝜂�̅�

0 0 𝛿�̅� − (𝑑2 + 𝑑3))

 
 

 .  (14a) 

One of the eigenvalues is 𝜆23 = 𝛿�̅� − (𝑑2 + 𝑑3) and the other two eigenvalues are given by: 

  𝜆21 =
𝑇

2
+

1

2
√𝑇2 − 4𝐷; 𝜆22 =

𝑇

2
−

1

2
√𝑇2 − 4𝐷,                            (14b) 

where 

𝑇 = �̅� (−𝑏 +
�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
) +

ℎ𝑚�̅��̅�

𝑎+�̅�
, 

𝐷 = (−𝑏 +
�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
)

ℎ𝑚�̅�2�̅�

𝑎+�̅�
+ �̅��̅� (

𝑚�̅�

𝑎+�̅�
+

𝑚�̅�+𝑐

𝑎+�̅�
+

𝑟𝑝

(1+�̅�𝑝)2
) (−𝜂 −

ℎ�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
+

ℎ(𝑚�̅�+𝑐)

𝑎+�̅�
).                                             

Therefore, the other eigenvalues have negative real parts, and then DFEP is LAS if and only if the 

following condition holds: 

(−𝑏 +
�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
)

ℎ𝑚�̅�2�̅�

𝑎+�̅�
+ �̅��̅� (

𝑚�̅�

𝑎+�̅�
+

𝑚�̅�+𝑐

𝑎+�̅�
+

𝑟𝑝

(1+�̅�𝑝)2
) (−𝜌 −

ℎ�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
+

ℎ(𝑚�̅�+𝑐)

𝑎+�̅�
) > 0

�̅� (−𝑏 +
�̅�(𝑚�̅�+𝑐)

(𝑎+�̅�)2
) +

ℎ𝑚�̅��̅�

𝑎+�̅�
< 0

𝛿�̅� < (𝑑2 + 𝑑3)

   (15) 
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Finally, the LS conditions for IEP, which are represented by 𝑝3 = (�̿�, �̿�, 𝑧̿), are showed in the next 

theorem. 

Theorem 3. The IEP of the model (2) is LAS if 

    

�̿� (−𝑏 +
�̿�(c+𝑚�̿�)

(𝑎+�̿�)2
) +

ℎ𝑚�̿��̿�

𝑎+�̿�
< 0                     

𝑚11𝑚22 − 𝑚12𝑚21 > 0                          

−(𝑚11 + 𝑚22)(𝑚11𝑚22 − 𝑚12𝑚21) + 𝑚22𝑚23𝑚32 > 0

                        (16) 

Proof. The JM of the system (2) at 𝑝3 = (�̿�, �̿�, 𝑧̿), is given by 

𝐽(𝑝3) = (𝑚𝑖𝑗)3×3
,                                                   (17) 

where 

𝑚11 = �̿� (−𝑏 +
�̿�(𝑐 + 𝑚�̿�)

(𝑎 + �̿�)2
) ,𝑚12 = −�̿� (

𝑚�̿�

𝑎 + �̿�
+

𝑐 + 𝑚�̿�

𝑎 + �̿�
+

𝑟𝑝1

(1 + 𝑝�̿�)2
) ,𝑚13 = 0

𝑚21 = �̿� (−𝜂 −
ℎ�̿�(𝑐 + 𝑚�̿�)

(𝑎 + �̿�)2
+

ℎ(𝑐 + 𝑚�̿�)

𝑎 + �̿�
) ,𝑚22 =

ℎ𝑚�̿��̿�

𝑎 + �̿�
,𝑚23 = −𝛿�̿�

𝑚31 = 0,𝑚32 = 𝜆𝑧̿,  𝑚33 = 0

 

Then the characteristic equation of 𝐽(𝑝3) can be written as: 

𝜆3
3 + 𝐵1𝜆3

2 + 𝐵2𝜆3 + 𝐵3 = 0,                                      (18) 

where      

𝐵1 = −(𝑚11 + 𝑚22),       

      𝐵2 = (𝑚11𝑚22 − 𝑚12𝑚21) − 𝑚23𝑚32     

      𝐵3 = 𝑚11𝑚23𝑚32      

with  

∆= 𝐵1𝐵2 − 𝐵3 = −(𝑚11 + 𝑚22)(𝑚11𝑚22 − 𝑚12𝑚21) + 𝑚22𝑚23𝑚32. 

The LS of the 𝑝3 depends on values of 𝐵1,𝐵2, and 𝐵3 using the “Routh–Hurwitz criterion” [26], 

the sign of the real part of the equations can be easily determined. The equation (18) has all 

negative real roots if 𝐵1,𝐵3, and ∆ are positive, under sufficient conditions (16). 

 

4. PERMANENCE 

An ecological system is said to be ‘permanent’ when all the species in the system survive in 
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the long run irrespective of any initial population size. This means the solution has no omega limit 

set in the boundary planes of the state space Λ mathematically. Now according to the system (2) 

if the predator individuals disappear then the following subsystem is obtained 

𝑑𝑥

𝑑𝑡
= 𝑥[

𝑟

1+𝑝𝑦
− 𝑑1 − 𝑏𝑥 −

(𝑐+𝑚𝑦)𝑦

𝑎+𝑥
] = 𝑥𝑓11             

𝑑𝑦

𝑑𝑡
= [ℎ

(𝑐+𝑚𝑦)𝑥

𝑎+𝑥
− 𝑑2 − 𝜂𝑥] = 𝑦𝑓22                   

                            (19) 

Define the Dulac functions as Φ1 =
1

𝑥𝑦
, it is obtained that:  

∇=
𝜕

𝜕𝑥
(Φ1𝑥𝑓11) +

𝜕

𝜕𝑦
(Φ1𝑦𝑓22) = −

𝑏

𝑦
+

(𝑐+𝑚𝑦)+ℎ𝑚(𝑎+𝑥)

(𝑎+𝑥)2
. 

Therefore, according to the “Dulac-Bendixon criterion” [27], the subsystem (19) has no closed 

curve in the ℝ +
2  of the 𝑥𝑦 −plane if one of the following conditions is met. 

(𝑐+𝑚𝑦)+ℎ𝑚(𝑎+𝑥)

(𝑎+𝑥)2
<

𝑏

𝑦

𝑂𝑅
𝑏

𝑦
<

(𝑐+𝑚𝑦)+ℎ𝑚(𝑎+𝑥)

(𝑎+𝑥)2

                                             (20) 

Since ∇≠ 0 that does not change the sign in the 𝐼𝑛𝑡. ℝ+
2 of the 𝑥𝑦 − plane under condition (20). 

So the “Dulac-Bendixon criterion” system (19) has no periodic solution lying entirely in the 

interior of the 𝑥𝑦 − plane. Hence, using the “Poincare Bendixon theorem” [28], the unique EP in 

ℝ +
2  of the 𝑥𝑦 − plane, is globally asymptotically stable (GAS) whenever it exists provided that 

(20) holds. Then the system (1) has no periodic dynamics in the boundary 𝑥𝑦 −plane. 

Theorem 4. System (2) is permanent if and only if the following condition is met   

ℎ𝑐�̂�

𝑎+�̂�
> 𝑑2 + 𝜂�̂�.                                             (21a)                                                                                                                                                                    

𝛿�̅� > (𝑑2 + 𝑑3).                                                (21b) 

Proof. Consider the function 𝐿(𝑥, 𝑦, 𝑧) = 𝑥𝜏1𝑦𝜏2𝑧𝜏3 where 𝜏1, 𝜏1 and 𝜏1are positive constants.  

Clearly, 𝐿(𝑥, 𝑦, 𝑧) is a 𝐶1 nonnegative function in the interior of Λ. Hence, 

𝜋(𝑥, 𝑦, 𝑧) =
𝐿′(𝑥,𝑦,𝑧)

𝐿(𝑥,𝑦,𝑧)
= 𝜏1𝑓1 + 𝜏2𝑓2 + 𝜏3𝑓3, 

where the functions 𝑓𝑖 , 𝑖 = 1,2,3, are given in system (2). Accordingly, we have  

𝜋(𝑥, 𝑦, 𝑧) = 𝜏1 [
𝑟

1+𝑝𝑦
− 𝑑1 − 𝑏𝑥 −

(𝑐+𝑚𝑦)𝑦

𝑎+𝑥
] + 𝜏2[ℎ1

(𝑐+𝑚𝑦)𝑥

𝑎+𝑥
− 𝑑2 − 𝛿𝑧 − 𝜂𝑥]

+𝜏3[𝛿𝑦 − (𝑑2 + 𝑑3)]
      (22) 
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Now, since there are no periodic attractors in the boundary planes, then the only possible 𝜔 − 

limit sets of system (2) are the EPs denoted by  𝑝0, 𝑝1, 𝑝2 and 𝑝3. Moreover, the direct calculation 

gives that  

𝜋(𝑝0) = 𝜏1(𝑟 − 𝑑1) − 𝜏2𝑑2 − 𝜏3(𝑑2 + 𝑑3)   

𝜋(𝑝1) = 𝜏2 (
ℎ𝑐�̂�

𝑎 + �̂�
− 𝑑2 − 𝜂�̂�) − 𝜏3(𝑑2 + 𝑑3)

𝜋(𝑝2) = 𝜏3(𝛿�̅� − (𝑑2 + 𝑑3))              

 

Clearly, by choosing the constant 𝜏1 > 0 sufficiently large for positive constants 𝜏2 and 𝜏3, it is 

obtained that 𝜋(𝑝0) > 0, However, 𝜋(𝑝1) and 𝜋(𝑝2) are positive under the conditions (21a) and 

(21b) with a suitable choice of positive constants 𝜏2 and 𝜏3, respectively. Therefore, due to the 

average Lyapunov method [29], model (2) is uniformly persistent. 

 

5. GLOBAL STABILITY  

 Concerned with the GS property of the equilibria of model (2), we have the following results, 

which proved depending on using a suitable Lyapunov function (LF). 

Theorem 5. The EP given by 𝑝0 is GAS whenever it’s LAS.  

Proof.  The GAS of the EEP is shown with the help of the LF. Let us consider  

𝜐𝑜 = 𝛾1𝑥 + 𝛾2𝑦 + 𝛾3𝑧. 

Direct computation shows that 𝜐𝑜: ℝ +
3 → ℝ is a continuously differentiable function such that 

𝜐𝑜(0,0,0) = 0, and 𝜐𝑜(𝑥, 𝑦, 𝑧) > 0, ∀(𝑥, 𝑦, 𝑧) ≠ (0,0,0). Further, 

𝑑𝑣0

𝑑𝑡
= 𝛾1 [

𝑟𝑥

1 + 𝑝𝑦
− 𝑑1𝑥 − 𝑏𝑥2 −

(𝑐 + 𝑚𝑦)𝑥𝑦

𝑎 + 𝑥
] + 𝛾2 [ℎ

(𝑐 + 𝑚𝑦)𝑥𝑦

𝑎 + 𝑥
− 𝑑2𝑦 − 𝛿𝑦𝑧 − 𝜂𝑥𝑦]

+𝛾3[𝛿𝑦𝑧 − (𝑑2 + 𝑑3)𝑧 ].

 

Choosing the positive constants as 𝛾1 = ℎ, 𝛾2 = 1 and 𝛾3 = 1 , it is obtained that: 

𝑑𝑣0

𝑑𝑡
≤ ℎ(𝑟 − 𝑑1)𝑥 − 𝑑2𝑦 − (𝑑2 + 𝑑3)𝑧. 

Therefore, the function 
𝑑𝑣0

𝑑𝑡
 is negative definite under the condition (11b). Thus 𝑝0  is GAS.   

Theorem 6. The EP represented by 𝑝1(�̂�, 0,0) is GAS provided that the following condition holds: 

ℎ𝑟𝑝�̂� +
ℎ(𝑐+𝑚𝜇2)�̂�

𝑎
< 𝑑2.                                      (23) 
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Proof. The GAS of the AEP is shown with the help of the following LF. Let us consider  

𝜐1 = 𝛾4 [𝑥 − �̂� − �̂�ln (
𝑥

�̂�
)] + 𝛾5𝑦 + 𝛾6𝑧. 

It is obvious that 𝜐1: ℝ +
3 → ℝ is a continuously differentiable function such that 𝜐1(�̂�, 0,0) = 0 

and 𝜐1(𝑥, 𝑦, 𝑧) > 0, ∀(𝑥, 𝑦, 𝑧) ≠ (�̂�, 0,0). Further, 

𝑑𝑣1

𝑑𝑡
= −

𝛾4𝑟𝑝𝑥𝑦

1+𝑝𝑦
+

𝛾4𝑟𝑝�̂�𝑦

1+𝑝𝑦
− 𝛾4𝑏(𝑥 − �̂�)2 −

𝛾4(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥
+

𝛾4(𝑐+𝑚𝑦)�̂�𝑦

𝑎+𝑥
 

+𝛾5ℎ
(𝑐+𝑚𝑦)𝑥𝑦

𝑎+𝑥
− 𝛾5𝑑2𝑦 − 𝛾5𝛿𝑦𝑧 − 𝛾5𝜂𝑥𝑦 

+𝛾6𝛿𝑦𝑧 − 𝛾6(𝑑2 + 𝑑3)𝑧 ].

. 

Choosing the arbitrary positive value 𝛾4 = ℎ, 𝛾5 = 1 and 𝛾6 = 1 , it is obtained that: 

𝑑𝑣1

𝑑𝑡
≤ −ℎ𝑏(𝑥 − �̂�)2 − (𝑑2 − ℎ𝑟𝑝�̂� −

ℎ(𝑐+𝑚𝜇2)�̂�

𝑎
) 𝑦 − (𝑑2 + 𝑑3)𝑧, 

where 𝜇3 is given by Theorem 1. 

Therefore, the function 
𝑑𝑣1

𝑑𝑡
 is negative definite under the condition (23). Thus 𝑝1  is GAS.   

Remark: Since system (2) has either multiple planar EPs or zero EPs, then the EP 𝑝2(�̅�, �̅�, 0) 

cannot be GS in the ℝ +
3 .  

Theorem 7. Suppose the (IEP), 𝑝3 = (�̿�, �̿�, 𝑧̿) is (LAS) in the ℝ +
3 . Then 𝑝3 is GAS provided 

that the following conditions hold: 

ℎ𝑚𝜇1

𝐵
<

𝑆1

2
(𝑐+𝑚�̿�)�̿�

𝑎𝐵∗ < 𝑏
,                                                   (24) 

where 𝜇1and 𝜇3 is given in Theorem (1). 

Proof. The GAS of the IEP is shown with the help of the following LF. Let us consider  

𝜐2 = 𝛾7 [𝑥 − �̿� − �̿�ln (
𝑥

�̿�
)] + 𝛾8 [𝑦 − �̿� − �̿�ln (

𝑦

�̿�
)] + 𝛾9 [𝑧 − 𝑧̿ − 𝑧̿ln (

𝑧

�̿�
)].   

Clearly, 𝜐2: ℝ +
3 → ℝ is a continuously differentiable function such that 𝜐2(�̿�, �̿�, 𝑧̿) =

0 and 𝜐2(𝑥, 𝑦, 𝑧) > 0, ∀(𝑥, 𝑦, 𝑧) ≠ (�̿�, �̿�, 𝑧̿), Further, 

𝑑𝜐2

𝑑𝑡
= −[

𝛾7𝑟𝑝1

𝐴𝐴∗ +
𝛾7(𝑐+𝑚(𝑦+�̿�))

𝐵
−

𝛾8𝑎ℎ(𝑐+𝑚�̿�)

𝐵𝐵∗ + 𝛾8𝜂] (𝑥 − �̿�)(𝑦 − �̿�) 

−𝛾7 [𝑏 −
(𝑐+𝑚�̿�)�̿�

𝐵𝐵∗  ] (𝑥 − �̿�)2 +
𝛾8ℎ𝑚𝑥

𝐵
(𝑦 − �̿�)2 − 𝛾8𝛿(𝑦 − �̿�)(𝑧 − 𝑧̿)

+𝛾9𝛿(𝑦 − �̿�)(𝑧 − 𝑧̿).

. 

Choosing the positive constants as 𝛾7 =
𝑎ℎ

𝐵∗
, 𝛾8 = 1 and 𝛾9 = 1 , it is obtained that: 
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𝑑𝑣2

𝑑𝑡
≤ − [

𝑎ℎ𝑟𝑝

𝐵∗𝐴𝐴∗
+

𝑎ℎ𝑚𝑦

𝐵𝐵∗
+ 𝜂] [

(𝑥−�̿�)2

2
+

(𝑦−�̿�)2

2
] −

𝑎ℎ

𝐵∗
[𝑏 −

(𝑐+𝑚�̿�)�̿�

𝐵𝐵∗
 ] (𝑥 − �̿�)2 +

ℎ𝑚𝑥

𝐵
(𝑦 − �̿�)2. 

𝑑𝑣2

𝑑𝑡
≤ − [

𝑎ℎ

𝐵∗ (𝑏 −
(𝑐+𝑚�̿�)�̿�

𝐵𝐵∗ ) +
𝑆1

2
] (𝑥 − �̿�)2 − [

𝑆1

2
−

ℎ𝑚𝑥

𝐵
] (𝑦 − �̿�)2, 

where  

𝑆1 =
𝑎ℎ𝑟𝑝

𝐵∗𝐴𝐴∗ +
𝑎ℎ𝑚𝑦

𝐵𝐵∗ + 𝜂 , 𝐴 = 1 + 𝑝𝑦, 𝐴∗ = 1 + 𝑝�̿�, 𝐵 = 𝑎 + 𝑥 and 𝐵∗ = 𝑎 + �̿�.   

Therefore, the function 
𝑑𝑣2

𝑑𝑡
 is negative semi-definite under the condition (24). Therefore, the IEP  

is a stable point. By using “LaSalle’s invariance principle” [27], it’s attracting. Hence, 𝑃3 is a 

GAS. 

 

6. LOCAL BIFURCATION 

The influence of varying the parameter values on the dynamic of the system (2) is investigated 

in this section. Now, to compute the second derivative of the JM system (2) is rewritten in the 

vector form as follows: 

    
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋),with 𝑋 = (𝑥, 𝑦, 𝑧)𝑇and 𝐹 =  (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)

𝑇 

Let 𝑊 = (𝜔1, 𝜔2, 𝜔3)  be any nonzero vector and 𝜗  is any parameter, Hence the second 

directional derivatives for system (2) can be written as:  

𝐷2𝐹(𝑊,𝑊) = [𝜌𝑖𝑗]3×1
,                                      (25)                                                                                        

where 

𝜌11 =  2 (−𝑏 +
𝑎(𝑚𝑦+𝑐)𝑦

(𝑎+𝑥)3
)𝜔1

2 + (
−𝑎(2𝑚𝑦+𝑐)

(𝑎+𝑥)2
 −

𝑟𝑝

(1+𝑝𝑦)2
)𝜔1𝜔2

+𝑥 (
−𝑚

𝑎+𝑥
 +

𝑟𝑝2

(1+𝑝𝑦)3
)𝜔2

2
, 

𝜌21 = −
2𝑎ℎ𝑦(𝑚𝑦+𝑐)

(𝑎+𝑥)3
𝜔1

2−2(
𝑎ℎ(𝑐+2𝑚𝑦)

(𝑎+𝑥)2
− 𝜂)𝜔1𝜔2 −

2ℎ𝑚𝑥

𝑎+𝑥
𝜔2

2 − 2𝛿𝜔2𝜔3, 

𝜌31 = 2δ𝜔2𝜔3.      

So, the third directional derivative for (1) is   

𝐷3𝐹(𝑊,𝑊,𝑊) = [𝑏𝑖𝑗]3×1
,                                      (26) 

where 
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𝑏11 = 6[−
𝑎(𝑚𝑦+𝑐)𝑦

(𝑎+𝑥)4
𝜔1

3 +
𝑎(2𝑚𝑦+𝑐)

(𝑎+𝑥)3
𝜔1

2𝜔2 + (−
𝑎𝑚

(𝑎+𝑥)2
+

𝑟𝑝2

(1+𝑝𝑦)3
) 𝜔1𝜔2

2

−
𝑟𝑝3𝑥

(1+𝑝𝑦)4
𝜔2

3]
,  

𝑏21 = 6𝑎ℎ [−
(𝑚𝑦+𝑐)𝑦

(𝑎+𝑥)4
𝜔1

3 − (
(2𝑚𝑦+𝑐)

(𝑎+𝑥)3
)𝜔1

2𝜔2 +
𝑚

(𝑎+𝑥)2
𝜔1𝜔2

2],    

𝑏31 = 0.               

Now, the following theorems investigate the possibility of occurrence of  (LB) in the system (2). 

Theorem 8. The system (2) at the EEP undergoes a transcritical bifurcation (TB) when the 

parameter 𝑟 passes through the value 𝑟∗ = 𝑑1  

Proof. The JM of the system (2) at (𝑝0, 𝑟
∗)  is 

𝐽0 = 𝐽(𝑝0,𝑟∗) = [

0 0 0
0 −𝑑2 0
0 0 −(𝑑2 + 𝑑3)

]. 

Therefore, the eigenvalues of 𝐽0 are given by 𝜆01
∗ = 0, 𝜆02

∗ = −𝑑2, 𝜆03
∗ = −(𝑑2 + 𝑑3). So, the 

EEP is a non-hyperbolic point. 

Let 𝑉0 = (ν01, ν02, ν03)
𝑇 be the eigenvectors corresponding to 𝜆01

∗ = 0.Thus  𝐽1𝑉0 = 0, gives 

that 𝑉0 = (𝜈01, 0, 0)𝑇 , with ( ν01 ≠ 0 ).  

Now, let  𝑈0 = (𝜅01, 𝜅02, 𝜅03)
𝑇 represents the eigenvector of 𝐽0

𝑇with the eigenvalue 𝜆01
∗ = 0, 

then   𝐽0
𝑇𝑈0 = 0  gives 𝑈0 = (𝜅01, 0, 0)T, with ( 𝜅01 ≠ 0 ).  Since 

𝜕𝐹

𝜕𝑟
= 𝐹𝑟 = (

𝑥

1+𝑝𝑦
, 0, 0)𝑇 . 

Hence we obtain that 𝐹𝑟(𝑝0, 𝑟
∗) = (0, 0, 0)𝑇 . 

Therefore,𝑈0
𝑇𝐹𝑟(𝑝0, 𝑟

∗) = 0. Hence system (2) has no saddle-node bifurcation (SNB). 

Now, we have  𝑈0
𝑇[𝐷𝐹𝑟(𝑝0, 𝑟

∗)𝑉0] = 𝜅01𝜈01 ≠  0. 

Moreover, 

𝑈0
𝑇 [𝐷2𝐹(𝑝0, 𝑟

∗)(𝑉0, 𝑉0)] = −2𝑏 𝜈01
2𝜅01 ≠ 0. 

Clearly 𝑈0
𝑇 [𝐷2𝐹(𝑝0, 𝑟

∗)(𝑉0, 𝑉0)] ≠ 0, by Sotomayor theorem [27], system (2) undergoes a TB 

at the  𝑝0. 

Theorem 9. The system (2) undergoes a TB at the AEP when the parameter 𝑑2 passes through the 

value 𝑑2
∗ =

ℎ𝑐 �̂�

𝑎+�̂�
− 𝜂 �̂� if the next condition is met: 

[(𝜂 −
𝑎ℎ𝑐

(𝑎+ �̂�)2
) 𝛼1 −

ℎ𝑚�̂�

𝑎+ �̂�
] ≠ 0,                                      (27) 
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where 𝛼1 will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes place.   

Proof. The JM of the system (2) at (𝑝1, 𝑑2
∗) can be represented by:   

 𝐽1 = 𝐽(𝑝1,𝑑2
∗) = [

−𝑟 + 𝑑1 −𝑟𝑝�̂� −
𝑐�̂�

𝑎+ �̂�
0

0 0 0
0 0 −(𝑑2 + 𝑑3)

] = [𝑎𝑖𝑗].  

Therefore, the eigenvalues of 𝐽1 are given by 𝜆11
∗ = −𝑟 + 𝑑1, 𝜆12

∗ = 0,  and  𝜆13
∗ = −(𝑑2 +

𝑑3). So, the AEP is a non-hyperbolic point. 

Let 𝑉1 = (ν11, ν12, ν13)
𝑇  be the eigenvectors corresponding to 𝜆12

∗ = 0 . Thus 𝐽1𝑉1 = 0  gives 

that 𝑉1 = (𝛼1ν12, ν12, 0)𝑇 , (ν12 ≠ 0) where 𝛼1 =
−𝑎12

𝑎11
. 

 Now, let 𝑈1 = (𝜅11, 𝜅12, 𝜅13)
𝑇 represents the eigenvector of 𝐽1

𝑇with the eigenvalue 𝜆12
∗ = 0, 

then 𝐽1
𝑇  𝑈1 = 0 gives 𝑈1 = (0, 𝜅12, 0)𝑇 , ( 𝜅12 ≠ 0). 

Since  𝐹𝑑2
= (0,−𝑦,−𝑧)𝑇 . Hence we obtain that  𝐹𝑑2

(𝑝1, 𝑑2
∗) = (0, 0, 0)𝑇 

Therefore, 𝑈1
𝑇𝐹𝑑2

(𝑝1, 𝑑2
∗) = 0. Hence system (2) has no SNB. 

Now, we have  𝑈1
𝑇[𝐷𝐹𝑑2

(𝑝1, 𝑑2
∗)𝑉1] = −𝜅12 𝜈12 ≠  0. Moreover, using condition (27) leads to: 

 𝑈1
𝑇 [𝐷2𝐹(𝑝1, 𝑑2

∗)(𝑉1, 𝑉1)] = 2 [(𝜂 −
𝑎ℎ𝑐

(𝑎+ �̂�)2
)𝛼1 −

ℎ𝑚�̂�

𝑎+ �̂�
] 𝜅12𝜈12

2 ≠ 0.   

Hence, the system (2) near 𝑝1 with 𝑑2 = 𝑑2
∗
 possesses a TB. However, violating condition (27) 

leads to   

𝑈1
𝑇𝐷3𝐹(𝑝1, 𝑑2

∗)(𝑉1, 𝑉1, 𝑉1) = 6𝑎ℎ𝛼1 [− (
𝑐

(𝑎+ �̂�)3
)𝛼1 +

𝑚

(𝑎+ �̂�)2
] 𝜈12

3𝜅12 ≠ 0.  

Hence, system (2) undergoes a PB.          

Theorem 10. Assume that conditions (15a)-(15b) hold, then the system (2) undergoes a TB at the 

DFEP when the parameter 𝛿 passes through the value 𝛿∗ =
𝑑2+𝑑3

𝑦
. 

Proof: The JM of the system (2) at (𝑝2, 𝛿
∗)    

 𝐽2 = 𝐽(𝑝2,𝛿∗) =

[
 
 
 𝑥 (−𝑏 +

(𝑐+𝑚𝑦)𝑦

(𝑎+𝑥)2
)

−𝑟𝑝𝑥

(1+𝑝𝑦)2
−

(𝑐+2𝑚𝑦)𝑥

𝑎+𝑥
0

𝑎ℎ1 𝑦(𝑐+𝑚𝑦)

𝑎+𝑥
− 𝜂𝑦

ℎ1𝑚𝑥 𝑦

𝑎+𝑥
−(𝑑2 + 𝑑3)

0 0  0 ]
 
 
 

= [𝑏𝑖𝑗]  

Therefore, 𝐽2has two eigenvalues having negative real part under conditions (15a)-(15b). While 
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the third is zero. Thus it is a non-hyperbolic point.  

Let 𝑉2 = (ν21, ν22, ν23)
𝑇  be the eigenvectors corresponding to 𝜆23

∗ = 0 . Thus 𝐽2𝑉2 = 0  gives 

that 𝑉2 = (𝛼2ν23, 𝛼3ν23, ν23)
𝑇, where 𝛼2 =

𝑏11𝑏23

𝑏11𝑏22−𝑏12𝑏21
 and 𝛼3 =

−𝑏12𝑏23

𝑏11𝑏22−𝑏12𝑏21
 and, (ν33 ≠ 0). 

Now, let 𝑈2 = (𝜅21, 𝜅22, 𝜅23)
𝑇  represents the eigenvector of 𝐽2

𝑇 with the eigenvalue 𝜆23
∗ = 0 , 

then 𝐽2
𝑇  𝑈2 = 0 gives  𝑈2 = (0, 0, 𝜅23)

𝑇 , ( 𝜅23 ≠ 0). 

Since  𝐹𝛿(𝑋, 𝛿) = (0, −𝑦𝑧, 𝑦𝑧)𝑇. Hence we obtain that 𝐹𝛿(𝑝2, 𝛿∗) = (0, 0, 0)𝑇 

Therefore, 𝑈2
𝑇𝐹𝛿(𝑝2, 𝛿∗) = 0. Hence system (2) has no SNB. 

Now, we have  𝑈2
𝑇[𝐷𝐹𝛿(𝑝2, 𝛿∗)𝑉2] = 𝑦𝜅23𝜈23 ≠  0. 

Moreover, 𝑈2
𝑇[𝐷2𝐹(𝑝2, 𝛿∗)(𝑉2, 𝑉2)] = 2 𝛼3𝛿

∗𝜅23𝜈23
2 ≠ 0, Hence, system (2) at the DFEP, 𝑝2 

with 𝛿 = 𝛿∗ possesses a TB. 

Theorem 11. As the parameter 𝑏∗ passes through the value 𝑏 = 𝑏∗ =
(𝑐+𝑚�̿�)�̿�

(𝑎+�̿�)2
, the system (2) 

undergoes a SNB near the IEP. 

Proof. The free coefficient of the characteristic equation given by Eq. (18) is 𝐵3 = 0  when 

𝑏 = 𝑏∗. Hence the characteristic equation has zero root (eigenvalue). 

Hence, the JM of the system (2) around the point 𝑝3 and 𝑏 = 𝑏∗, can be written as  

 𝐽3 = 𝐽( 𝑝3, 𝑏
∗) = [

0 𝑚12 0
𝑚21 𝑚22 𝑚23

0 𝑚32 0
]. 

Now, let 𝑉3 = (ν31, ν32, ν33)
𝑇  be the eigenvectors corresponding to 𝜆∗ = 0 . Then 𝐽3𝑉3 = 0 

gives 𝑉3 = (ν31, 0, 𝛼4ν31)
𝑇 ,where 𝛼4 =

−𝑚21

𝑚23
 and (ν31 ≠ 0).  

Now, let 𝑈3 = (𝜅31, 𝜅32, 𝜅33)
𝑇  represents the eigenvector 𝐽𝑇 with the eigenvalue 𝜆∗ = 0   of 

𝐽3
𝑇then  𝐽3

𝑇  𝑈3 = 0 gives 𝑈3 = (𝜅31, 0, α5𝜅31)
𝑇 , where    α5 =

−𝑚12

𝑚32
  and (𝜅31 ≠ 0).    

Since  𝐹𝑏(𝑋, 𝑏) = (−𝑥2, 0, 0)𝑇 , Hence we obtain that 𝐹𝑏(𝑝3, 𝑏∗) = (−�̿�2, 0, 0)𝑇 . 

Clearly, 𝑈3
𝑇𝐹𝑏(𝑝3, 𝑏∗) = −�̿�

2
𝜅31 ≠ 0, and hence the system (2) satisfies the first condition of an SNB 

in the sense of Sotomayor theorem. 

Now, since  𝑈3
𝑇[𝐷

2
𝐹(𝑝3, 𝑏

∗
)(𝑈3, 𝑈3)] = (−𝑏∗ +

𝑎(𝑚�̿�+𝑐)�̿�

(𝑎+�̿�)3
)𝜅31ν31

2 ,  

                                =
(𝑐+𝑚�̿�)�̿�

(𝑎+�̿�)2
(−1 +

𝑎

(𝑎+�̿�)
) 𝜅31ν31

2 ≠ 0 
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Hence the system (2) undergoes an SNB near the IEP. 

 

7. NUMERICAL SIMULATIONS 

  In this section, the effect of parameters on the model dynamics and the validation of the 

obtained results are numerically verified. For this purpose, the simulations were performed to 

investigate the behaviors of the system (2) using the Runge–Kutta fourth-order method with 

MATLAB software. The numerical observations of systems (2) will reinforce the analytical 

findings and provide some more insights into the dynamical properties of these systems. The 

sensitivity analysis of the system (2) is also included using the following estimated set of parameter 

values. 

       𝑟 = 2, 𝑝 = 1, 𝑏 = 0.3, 𝑑1 = 0.001, 𝑐 = 1.5, 𝑎 = 2 , ℎ = 0.75,𝑚 = 0.2,                  

             𝛿 =  0.25, 𝑑2 = 0.01, 𝜂 = 0.01, 𝑑3 = 0.15;                          (28) 

The numerical solution of the system (2) is determined and represented in the form of a phase 

portrait and their time series as shown in Fig. 1 using the data set (28) and starting from different 

initial points.  

 

Figure 1. The trajectory of the model (2) utilizing data set (28). (a)Approach asymptotically to 

IEP, 𝑝3 = (3.42,0.64,2.90) for the given in (28) and different initial points.(b) Trajectories of 

populations versus time. 

Clearly, Fig. 1 shows the asymptotic approach of the solutions, which started from different initial 

points to an IEP, (3.42, 0.64, 2.90), for the data given by (28). This confirms our obtained result 

regarding the existence of GAS in the system (2) provided that certain conditions hold. 



18 

AMEER M. SAHI, HUDA ABDUL SATAR 

Now, the effect of varying the value of 𝑟 on the dynamic of the system (2) is discussed, and the 

obtained results are presented at selected values in Figure 2. It is obtained that, for 𝑟 belongs to 

[0.01,0.54],[0.55,0.86], and  𝑟 ≥ 3.44 the system’s (2) approaches to 𝑝2, 2𝐷 period attractor, 

and 3𝐷  periodic attractor, respectively, see Fig. 2 for the selected values. Otherwise when 𝑟 ∈ 

[0.87, 3.44] the solution approaches 𝑝3 as in Fig. 1. 

Moreover, it is observed that for 𝑟 < 𝑑1the solution of system (2) approaches 𝑝0 as in Fig. 2g 

and 2h, however for 𝑑1 ≤ 𝑟 the solution approaches 𝑝3 as in Fig. 1.  
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Figure 2. The trajectory of system (2) utilizing data set (28) with different values of 𝑟.  (a) 

Approach to 𝑝2 = (0.01,0.63,0)  when 𝑟 = 0.4  (b) Time series when 𝑟 = 0.4.   (c) Periodic 

dynamics in  𝑥𝑦 − plane when 𝑟 = 0.8 (d) Time series when  𝑟 = 0.8. (e) Asymptotic stable 

limit cycle when 𝑟 = 3.5. (f)Time series when  𝑟 = 3.5. (g) Approach to 𝑝0 when 𝑟 = 0.0009. 

(h) Time series when 𝑟 = 0.0009. 

 

The effect of varying 𝑝 is studied numerically on the dynamic of the system (2), and it is observed 

that for 𝑝 belongs to[4.30,4.43] and 𝑝 ≤ 0.38 the system’s solution converges asymptotically 

to 3𝐷  period attractor, while if 𝑝 ≥ 4.44  then, and 2𝐷  period attractor. See Fig.3 for the 

selected values. However for 𝑝 ∈ [0.39,4.30] the solution approaches 𝑝3 as in Fig. 1. 
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Figure 3. The trajectory of system (2) utilizing data set (28) with different values of 𝑝.  (a) 

Asymptotic stable limit cycle when 𝑝 = 0.35  (b) Time series when 𝑝 = 0.35 . (c) Periodic 

dynamics in  𝑥𝑦 − plane when  𝑝 = 4.44 (d) Time series when 𝑝 = 4.44. 

For the parameter 𝑏 in the range 𝑏 ≤ 0.16 (similarly when 𝛿 ≤ 0.15) with the parameters sets 

as in (28), it’s observed that the system’s solution converges to 3𝐷 period attractor, as in Fig.(4), 

otherwise it’s still persistent at 𝑝3, as in Fig. (1).  

 

Figure 4. The trajectory of the system (2) utilizing data set (28) with different values of 𝑏.(a) 

Periodic dynamics in  ℛ+
3  when 𝑏 = 0.15. (b) Time series when 𝑏 = 0.15.  

Now, for the parameter 𝑐  in the ranges 𝑐 ≤ 0.13 , 𝑐 ∈ [0.13,0.78] , and 𝑐 ≥ 4.9  the system’s 

solution converges asymptotically 𝑝1, 3𝐷 period attractor, and a bi-stable behavior between IEP 

and 3𝐷  periodic attractor respectively, see Fig. 5. However for 𝑐 ∈ [0.79,4.08]  the solution 

approaches 𝑝3 as in Fig. 1. 
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Figure 5. The trajectories of the system (2) utilizing data set (28) with different values of 𝑐 (a) 

Approach to 𝑝1 = (6.66,0,0)  when 𝑐 = 0.10.  (b) Time series when 𝑐 = 0.10 . (c) Periodic 

dynamics in  ℛ+
3   when 𝑐 = 0.5  (d) Time series when 𝑐 = 0.5 . (e) bi- stable between 𝑝3 =

(1.44,0.64,5.20) and 3𝐷periodic when 𝑐 = 4.1. (f) Time series when 𝑐 = 4.1.  
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Now, as ℎ varies in the ranges ℎ ≤ 0.06 and 0.06 < ℎ < 0.1, with the parameters set as in (28), 

it is noted that the system’s solution converges asymptotically to 𝑝1, and 3𝐷 period attractor, 

respectively, as in Fig. (6). However for ℎ ≥ 0.1 the solution approaches 𝑝3 as in Fig. 1. 

  

      

Figure 6. The trajectories of the system (2) utilizing data set (28) with different values of ℎ (a) 

Approach to 𝑝1 = (6.66,0,0)  when ℎ = 0.05.  (b) Time series when ℎ = 0.05. (c) Periodic 

dynamics in  ℛ+
3  when ℎ = 0.07. (d) Time series when ℎ = 0.07. 

Now for the ranges 𝑎 < 0.78  and 𝑎 ∈ [0.79,0.84] , the system’s solution approaches 

asymptotically to 3𝐷 period attractor, and a bi-stable behavior between IEP and 3𝐷 periodic, 

respectively, see for the selected values Fig. 7. However for 𝑎 ≥ 0.85 the solution approaches 

𝑝3 as in Fig. 1. 
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Figure 7. The trajectories of the system (2) utilizing data set (28) with different values of 𝑎 (a) 

Periodic dynamics in  ℛ+
3  when 𝑎 = 0.5. (b)Time series when 𝑎 = 0.5. (c) bi- stable between 

𝑝3 = (3.19,0.64,3.73)  and 3𝐷  periodic when 𝑎 = 0.8 . (d) Time series when 𝑎 = 0.8 . (e) 

Projection of the trajectory on the 𝑦𝑧 − plane for 𝑎 = 0.8. 
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Moreover, the system’s solution approaches asymptotically to 3𝐷  period attractor and 𝑝1, 

respectively, when 𝜂 ∈ [0.06,0.12], and 𝜂 ≥ 0.13, while the rest of parameters as given by (28), 

see for the selected values Fig. 8. However for 𝜂 ≤ 0.06 the solution approaches 𝑝3as in Fig. 1. 

 

 

 

Figure 8. The trajectories of the system (2) utilizing data set (28) with different values of 𝜂 (a) 

Periodic dynamics in  ℛ+
3  when 𝜂 = 0.1. (b) Time series when 𝜂 = 0.1. (c) Approach to 𝑝1 =

(6.66,0,0) when 𝜂 = 0.15. (d) Time series when 𝜂 = 0.15. 

It is observed that for 𝑚 ≤ 0.59  (similarly when 𝑑3 ≤ 0.27 ), system (2) approaches 

asymptotically to 3𝐷 period attractor, see for the selected values Fig.9. Otherwise, it approaches 

to 𝑝3, as in Fig. (1) 
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Figure 9. The trajectories of the system (2) utilizing data set (28) with different values of 𝑚. (a) 

Periodic dynamics in  ℛ+
3  when 𝑚 = 0.95. (b) Time series when 𝑚 = 0.95. (c) Projection of 

the trajectory on the 𝑥𝑦 − plane when 𝑚 = 0.95. 

 

 Finally, Fig. (10) demonstrates the influence of the parameter 𝑑2 on the dynamics of the system 

(2), which is studied numerically. It is noted that the system (2) approaches asymptotically to  2𝐷 

period attractor,𝑝2  and 𝑝1  when the parameter 𝑑2  belongs to the ranges, 𝑑2 ∈ [0.13,0.45] , 

𝑑2 ∈ [0.46,0.79], and 𝑑2 ≥ 0.80 while the rest of parameters as in (28). However for 𝑑2 ≤ 0.12 

the solution approaches 𝑝3 as in Fig. 1. 
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Figure 10. The trajectories of the system (2) utilizing data set (28) with different values of 𝑑2. (a) 

Periodic dynamics in  𝑥𝑦 − plane when 𝑑2 = 0.25. (b) Time series when 𝑑2.. (c) Approach to 

𝑝2 = (1.31,1.08,0)  when 𝑑2 = 0.5.  (d) Time series when 𝑑2 = 0.5 . (e) Approach to 𝑝1 =

(0.66,0,0) when 𝑑2 = 0.8. (f)Time series when 𝑑2 = 0.8. 
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8. CONCLUSION 

Based on substantial and reliable biological assumptions, the eco-epidemiological model that 

consists of prey consumed by predators having infectious diseases is constructed. All the properties 

of the solutions are discussed. All potential EPs are calculated. Local stability analysis of EPs is 

performed. The persistence requirements of the proposed model are established. The GS analysis 

using the LF technique is performed whenever possible. The LB around the EPs is investigated 

using the Sotomayor theorem. After doing numerical simulations to confirm the theoretical finding 

and verify the control set of parameters, the following results are categorized using the parameters 

set of data given in (28). 

The system has various types of attractors including the stable point, stable periodic, and bi-stable 

between stable point and periodic attractors. The parameters of intraspecific competition, infection 

rate, conversion factor, and half-saturation constant have a stabilizing role in the dynamic behavior 

of the system. However, the parameters of the prey’s birth rate, the natural death rate of the prey, 

the level of predator’s cooperation in hunting, and the additional mortality rate of predators due to 

infection play destabilizing role in the system’s dynamics. Finally, all other parameters have 

extinction effects on the system. 
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