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Abstract. This study extends the SEIR model to 16 compartments (SH ,SV ,SHW ,EH ,EHT , IH , IHT , IHi,RH ,SP,SPV ,

IP, IPT ,RP,SB, IB) to analyze Nipah virus (NiV) transmission dynamics. We computed the basic reproductive num-

ber (R0) and investigated local stability of the disease-free equilibrium using the Jacobian Matrix, and disease-

endemic stability with the center manifold theorem. Global stability was assessed using LaSalle’s Invariant Prin-

ciple, and sensitivity analysis was performed. Our results indicated that disease-free and endemic equilibria are

locally and globally stable, with the system showing a forward bifurcation. Simulations enhanced understanding

of NiV’s long-term behavior. We established a critical threshold of 12.2374 for the rate of consumption of NiV-

contaminated food items (ΛHW ), beyond which the disease could escalate uncontrollably. Graphical simulations

suggested that, in a food community of 1,558,025 individuals, the number consuming contaminated food should
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not exceed 12 to prevent virus spread. These insights can guide policymakers in developing targeted NiV control

strategies. Sensitivity analysis identified key parameters affecting R0: the exposed rate (β1) and the modification

parameter for decreased human infectiousness (n0), both with significant economic implications. By focusing on

these parameters, developing countries can implement initiatives to mitigate NiV spread and its economic impact.

Our model offers a foundation for targeted intervention strategies.

Keywords: virus; epidemiology; stability; equilibrium-point; transmission.

2020 AMS Subject Classification: 92D30, 34D20, 34C60.

1. INTRODUCTION

Nipah virus (NiV) is a member of the Paramyxoviridae family, specifically the Henipavirus

genus. The virus was first discovered in 1999 during a Malaysian outbreak (Weingartl, Berhane

and Czub [21], Kaku [9]). This virus is a single-stranded RNA virus called NiV, which can

cause serious sickness both in human and animals. Its two distinct strains are the NiV Malaysia

(NiVM) and the NiV Bangladesh (NiVB). NiV disease has an incubation period that typically

ranges between 14 to 28 days after a fully susceptible individual has been exposed to the virus

(Escaffre et. al [6]). Today, there is no particular strategy or method for treating NiV disease.

Due to NiV potential for attacking multiple organs (like brain, liver, and lungs), which in most

cases leads to severe and often fatal diseases, its ability to be transmitted from human to hu-

man, and its high potential for nosocomial (hospital-based or laboratory) outbreaks, it has been

listed as a bio-safety level-4 (BSL-4) pathogen by WHO and other international health bodies

(Delamater et. al, [5]). From existing literature, there are numerous works on mathematical

models for NiV transmission dynamics, but not one captured the spread of NiV as a single vari-

ant food-borne infectious disease while at the same time synchronizing the humans, bats, and

pigs compartments to establish an in-depth knowledge of the NiV transmission dynamics and

control (Sharma et. al, [18]). This research aimed to develop a mathematical epidemiological

model for the study of the transmission and control of Niv single variant food-borne disease

in humans, pigs, and bat populations. The specific objectives of the study were given as: (i)

develop a mathematical model NiV single variant food-borne transmission and control; (ii) es-

tablish the equilibrium points of the NiV developed model to gain a better understanding of the

long-term implications of the virus; (iii) envisage the future course of NiV epidemic through the
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basic reproductive number (R0) of NiV from the general model; (iv) perform sensitivity analy-

sis of the model to help us pinpoint which parameter(s) has greatest effect on the transmission

of the disease; (v) Simulations were done to give us more insight on the system of equations

behavior.

2. PRELIMINARIES

2.1. Model Formulation and Development.

We now develop a mathematical model representing this information that can enable us to

carry out some analyses and provide vital information for medical health officials about the

virus-caused disease after deliberating in detail the process and mode of transmission of this

virus in the community and noting the peculiar features in these areas in question that aided

the spread of the virus ( Sheeley [31]). To do so successfully, we have the following model

assumptions:

2.2. Model Assumptions.

1. Those recruited into the system are not infected or contacted the disease.

2. We focus on a single strain Nipah virus, like the Nipah virus Malaysia (NiVM) strain.

3. There is a susceptible class for human, susceptible human drinking palm wine, and also

susceptible humans vaccinated.

4. There is an Intensive supportive care for those infected with the virus that goes for

treatment.

5. The treatment given to those infected is the combinational therapy method, because as

the time of this study there is no single specific approach or method for treating Nipah

virus disease.

6. We anticipate the development of vaccine for treatment of the disease, which we inte-

grated in our study.

7. We hope to use mass media campaign as well as geographical control (on areas with

high alert on Nipah virus during an outbreak), as our control for this study.

8. Nipah virus is seen to be a highly emerging disease and no single drug is available yet

for its treatment.
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9. Humans can contact the disease by contact with infected bats, infected pigs or infected

humans.

10. The infected individual can only recover by care giving/combinational therapy.

11. An infectious human that is critically ill could be isolated.

Considering the above assumptions, the total human, animal, and bird populations were

grouped based on the disease or non-disease status of those involved, which led us to the fol-

lowing:

The human population is divided into four pairwise disjoint compartments, which are: sus-

ceptible humans (SH), susceptible humans vaccinated (SV ), susceptible humans consuming

palm wine (SHW ), infected humans (IH), infected humans that go for treatment (IHT ), and re-

covered humans (RH).

The susceptible human compartment is increased by ΛH , it is reduced by natural death (µH), it

also has a susceptible human vaccinated compartment which is increased by ΛV , and susceptible

human drinking palm wine compartment is increased by ΛHW .

The human healthy population is also reduced by contact with the infected class by n0, n1,

β1, and n2, where β1 is the rate of infection in the pig population, while n0 is the modification

parameter resulting from various factors such as social gatherings, economy, status, and so

on. Similarly, n1 is the modification parameter resulting from various factors, and n2 is the

modification parameter resulting from our social activities in the bush or farm.

2.3. Model Flow-Diagram.

In this section, we present the flow diagram ( see Figure 1), which would help us formulate

our proposed Nipah virus model:
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FIGURE 1. Flow Diagram for Nipah virus transmission.

We then obtained the following mathematical system of equations from the model assump-

tions and flow-diagram in Figure 1:

2.4. General Nipah Virus Dynamic Model.

(1)
dSH

dt
= ΛH + γ5EHT −

(
v+

β1 [n0IH +n1IP +n2IB]

NH
+ k+µH

)
SH

(2) dSV

dt
= ΛV + vSH−µHSV

(3)
dSHW

dt
= ΛHW + kSH−

(
β1 [n0IH +n1IP +n2IB]

NH
+µH

)
SHW

(4)

dEH

dt
=

(
β1 [n0IH +n1IP +n2IB]

NH
+µH

)
SH +

(
β1 [n0IH +n1IP +n2IB]

NH
+µH

)
SHW

− [τ4 + τ3 +µH ]EH

(5) dEHT

dt
= τ4EH− (τ5 + γ5 +µH)EHT

(6) dIH

dt
= τ3EH + τ5EHT − (δ1 + τ1 +µH) IH
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(7) dIHT

dt
= τ1IH− (γ2 +δ2 + τ6 +µH) IHT

(8) dIHi

dt
= τ6IHT − (γ6 +δ6 +µH) IHi

(9) dRH

dt
= γ2IHT + γ6IHi−µHRH

(10)
dSP

dt
= ΛP−

(
β2 [n1IP +n2IB]

NP
+µP

)
SP− (v1 +µP)SP

(11) dSV P

dt
= ΛV P + v1SP−µPSV P

(12)
dIP

dt
=

(
β2 [n1IP +n2IB]

NP
+µP

)
SP− [γ3 +δ3 + τ2 +µP] IP

(13) dIPT

dt
= τ2IP− (γ4 +δ4 +µP) IPT

(14) dRP

dt
= γ3IP + γ4IPT −µPRP

(15) dSB

dt
= ΛB−λBSB−µBSB

(16) dIB

dt
= λBSB− (δ5 +µB) IB

Where the forces of infection for the NiV sub-model are: λH ,λP,λB:

(17) λH =
β1(n0IH +n1IP +n2IB)

NH

(18) λP =
β2(n1IP +n2IB)

NP

(19) λB =
β3n2IB

NB

Note: β1, β2, and β3 are known as contact rates, which are for humans, pigs, and bats respec-

tively.
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3. MAIN RESULTS

3.1. Model Analysis.

After developing the model equations, we inspect the model’s well-posedness by demonstrat-

ing that the model satisfied the constraints on the positivity of the model’s variables as well as

the constant remaining of the variables in the region of existence of the variables ( Escaffre et.

al [7], Mbah et. al [10], Zheng, Wang and Fu [29]). As a result, we get the following:

3.2. Invariant Region of Solution.

Since equations 1 to 16 reflect the general population, it is necessary to emphasize that the

associated population sizes can never be negative. Thus, we establish the invariance of Ω as

follows:

(20) Ω =


(SH ,SV ,SHW ,EH ,EHT , IH , IHT , IHi,RH ,

SP,SPV , IP, IPT ,RP,SB, IB) ∈ R16
+


then

(21)


(SH ,SV ,SHW ,EH ,EHT , IH , IHT , IHi,RH ,

SP,SPV , IP, IPT ,RP,SB, IB) and N(t)

≥ 0,∀t ≥ 0

In our proposed model, we deploy the triple helix approach of the human, pig, and bat popu-

lations, ensuring that all state variables remain non-negative at all times t.

Theorem 1. Suppose we have a positive region, Ω, which is defined as:

(22) Ω =


(SH ,SV ,SHW ,EH ,EHQ, IH , IHT , IHi,RH ,

SP,SPV , IP, IPT ,RP,SB, IB) ∈ R16
+

≥ 0

Proof. We show that Ω is positively invariant so that it is sufficient to consider the dynamics of

the model system.

From (1):
dSH

dt
= ΛH + γ5EHT −λHSH− kSH− (v+µH)SH

Without loss of generality, we have the following inequality:

(23) ⇒ dSH

dt
≥−[λH + k+ v+µH ]SH
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Next, we integrate both sides:

(24)
∫ dSH

SH
≥−

∫
[λH + k+ v+µH ]dt

(25) ln(SH)≥−(λH + k+ v+µH)t +S(t)

(26) eln(SH) ≥ e−(λH+k+v+µH)t+S(t)

At t = 0,

SH ≥ S(0)

This implies that

(27) SH ≥ 0

The solution is bounded by zero below and is positive for all t > 0. We therefore continue

using this same approach to prove for the remaining variables.

Continuing with our analytical exploration, we shift our focus to another aspect—the on-

going presence or absence of this infection within the population. This involves scrutinizing

the equilibrium points of the disease in both the disease-free and endemic states. During this

analysis, we assume a consistent virulence level, avoiding the study of various viral strains.

Consequently, we examine the equilibrium state in the following manner: �

3.3. Disease-Free Equilibrium (DFE). In this section, we attempted to determine the values

for parameters in which equations 1 to 16 of our Nipah virus epidemiological model accurately

represent a situation where the NiVD has been eliminated, and no individuals in the popula-

tion are infected (Goswami and Hategekimana [8], Boonpatcharanon, Heffernan and Jankowski

[30]). This analysis is crucial for gaining insights into the long-term behavior of Nipah virus

disease within a population and for making meaningful predictions about its dynamics.

Let

A0(S0
H ,S

0
V ,S

0
HW ,E0

H ,E
0
HT , I

0
H , I

0
HT , I

0
Hi,R

0
H ,S

0
P,S

0
PV , I

0
P, I

0
PT ,R

0
P,S

0
B, I

0
B)

be the equilibrium points of the displayed system (equations 1– 16). Then, at the equilibrium

state, we obtain the disease-free equilibrium (DFE) point:
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(28)
A0 =

(
ΛH

k+ v+µH
,
ΛV (k+ v+µH)+ vΛH

µH(k+ v+µH)
,
ΛHW (k+ v+µH)+ kΛH

µH(k+ v+µH)
,0,0,0,0,0,0,

ΛP

µP
,

µPΛPV + v1ΛP

µP
,0,0,0,

ΛB

µB
,0
)

3.4. Endemic Disease Equilibrium (EE).

In this section, we examine the endemic equilibrium state of the disease. This state occurs

when the disease remains present within the population compartments, rather than being com-

pletely eradicated. At this equilibrium, the disease persists in the population, meaning that the

numbers in the susceptible, infectious, treated infectious, recovered, and other classes are not

all zero ( Mbah et. al [10], Scott et. al [16]). To obtain the endemic equilibrium points of the

model, we solve equations 1 to 16 simultaneously.

3.5. Basic Reproductive Number (R0) for the Study.

In this section, we aim to discover a key epidemiological metric that may be used to assess the

likelihood of a disease spreading within a population [26, 25]. This is the expected number of

secondary infections produced when one infectious individual is introduced into a susceptible

population [5]. Arguably, it is the most important threshold parameter that determines whether

an infectious disease can invade a population [13].

Theorem 2. Examine a set of ordinary differential equations elucidating the transmission dy-

namics of an infectious disease. In this context, let F denote the matrix depicting the rate of

new infections, and V represents the matrix illustrating the rate at which individuals transition

from the infected state to the recovered (or other removed) state. The fundamental reproductive

number, denoted as R0, is defined as the spectral radius of the matrix product FV−1 Boon-

patcharanon, Heffernan, and Jankowski [30], Obasi and Mbah [12].

Proof. From the model of our study, equations (1) to (16), we have: Where fi’s are new infec-

tions, while v′is are transferred infections to other classes:
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(29) fi =



f1 = β1[n0IH+n1IP+n2IB]SH
NH

+ β1[n0IH+n1IP+n2IB]SHW
NH

f2 = 0

f3 = 0

f4 = 0

f5 = 0

f6 = β2[n1IP+n2IB]SP
NP

f7 = 0

f8 = β3n2IBSB
NB



(30) vi =



v1 = [τ4 + τ3 +µH ]EH

v2 =−τ4EH +[τ5 + γ5 +µH ]EHT

v3 =−τ3EH− τ5EHT +[γ1 +δ1 + τ1 +µH ]IH

v4 =−τ1IH +[γ2 +δ2 + τ6 +µH ]IHT

v5 =−τ6IHT +[γ5 +δ6 +µH ]IHi

v6 =−[γ3 +δ3 + τ2 +µP]IP

v7 =−τ2IP +[γ4 +δ4 +µP]IPT

v8 = [µB +δ5]IB


Therefore, we have F to be:

(31)

β1n0SH

NH
+

β1n0SHW

NH
= a1,

β1n1SH

NH
+

β1n1SHW

NH
= a2,

β1n2SH

NH
+

β1n2SHW

NH
= a3,

β2n1SP

NP
= a4,

β2n2SP

NP
= a5,

β3n2SB

NB
= a6.
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(32) F =



0 0 a1 0 0 a2 0 a3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a1 0 0 a4 0 a5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a1 0 0 0 0 a6


We have V to be:

(33)

[τ4 + τ3 +µH ] = b1,

[τ5 + γ1 +µH ] = b2,

[γ1 +δ1 + τ1 +µH ] = b3,

[γ2 +δ2 + τ6 +µH ] = b4,

[γ5 +δ6 +µH ] = b5,

[γ3 +δ3 + τ2 +µP] = b6,

[γ4 +δ4 +µP] = b7,

[δ5 +µB] = b8 (33)

(34) F =



b1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a1 0 0 a4 0 a5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a1 0 0 0 0 a6


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Having evaluated equations 31 and 33 at DFE, we now have V−1 and F , we can then compute

the Next Generation Matrix (NGM) for the Nipah virus disease model:

(35) FV−1 =



d1 d2 d3 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a1 0 0 d5 0 d7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 d7


we then have:

(36)
R0 =

β1n0 ([ΛH µH ]+ΛHW [k+ v+µH ]+ kΛH)

[τ4 + τ3 +µH ][τ5 + γ5 +µH ][γ1 +δ1 + τ1 +µH ]

µH [k+ v+µH ].

�

From equation 29 of the basic reproduction number subsection, we found out that f1

which represents the proportional rate of susceptible humans likely to consume Nipah virus-

contaminated food items (such as palm wine) and get infected. This behavior significantly

impacts the transmission dynamics of the virus. As f1 increases due to higher contact rates

or transmission coefficients, the basic reproduction number R0 will also increase, indicating a

higher potential for the virus to spread within the population.

3.6. Local asymptotical stability Disease free equilibrium (DFE).

Here, we try to visualize the need for local stability analysis as it provides valuable informa-

tion about the potential effectiveness of various control strategies based on the basic dynamics

of our Nipah virus disease model of equations 1 to 16.

Local stability analysis of the disease-free equilibrium point A0 is obtained by the variational

matrix of the model (1) to (16) corresponding to the point A0 Escaffre et. al [7], Mbah et. al

[10], Goswami, and Hategekimana [8].
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Theorem 3. Given a matrix J(A0) and that all of the eigenvalues have negative real compo-

nents, then we say that the virus-free equilibrium at the point A0 is locally asymptotically stable;

otherwise, it is unstable.

Proof. We linearize the system of equations 1 to 16 around the equilibrium point (DFE) to form

the Jacobian Matrix.

(37)
D1 0 0 0 D2 0 0 0 0 0 D3 0 0 0 0 D4

v −µH 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k 0 −µH 0 0 D5 0 0 0 0 0 D6 0 0 0 D7

0 0 0 D8 0 D9 0 0 0 0 0 D10 0 0 0 D11

0 0 0 τ4 D12 0 0 0 d1 d2 d3 0 0 0 0 0

0 0 0 τ3 τ5 D13 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 τ1 D14 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 τ6 D15 0 0 0 0 0 0 0 0

0 0 0 θ1 θ2 γ1 γ2 γ5 µH 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 D16 0 D17 0 0 0 D18

0 0 0 0 0 0 0 0 0 −v1 −µP 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 D19 0 0 0 D20

0 0 0 0 0 0 0 0 0 0 0 τ2 D21 0 0 0

0 0 0 0 0 0 0 0 0 0 0 γ3 γ4 µP 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 µB D22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D23

Where:

(38)

D1 =−(k+ v+µH);

D2 =−
β1n0ΛH

NH(k+ v+µH)
;

D3 =−
β1n1ΛH

NH(k+ v+µH)
;

D4 =−
β1n2ΛH

NH(k+ v+µH)
;
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D5 =−
β1n0ΛHW (k+ v+µH)+ kΛH

NH(µH(k+ v+µH))
;

D6 =−
β1n1ΛHW (k+ v+µH)+ kΛH

NH(µH(k+ v+µH))
;

D7 =−
β1n2ΛHW (k+ v+µH)+ kΛH

NH(µH(k+ v+µH))
;

D8 =−(τ4 +µH + τ3);

D9 =
β1n0ΛH

NH

(
ΛH

(k+ v+µH)
+

ΛHW (k+ v+µH)+ kΛH

(µH(k+ v+µH))

)
;

D10 =
β1n1ΛH

NH(k+ v+µH)
;

D11 =
β1n2ΛH

NH(k+ v+µH)
;

D12 =−(τ5 +µH);

D13 =−[γ1 + τ1 +µH +δ1];

D14 =−[γ2 + τ6 +µH +δ2];

D15 =−[γ5 +µH +δ6];

D16 =−[v1 +µP];

D17 =−
β2n1ΛP

NPµP
;

D18 =−
β2n2ΛP

NPµP
;

D19 =
β2n1ΛP

NPµP
− [γ3 + τ2 +µP +δ3];

D20 =
β2n2ΛP

NPµP
;

D21 =−[γ4 +µP +δ4];

D22 =−
β3n2ΛB

NBµB
;

D23 =
β3n2ΛB

NBµB
− [µB +δ5].

The characteristic equation for the system is given by

|J−θiI|= 0, where θi = θ1,θ2, . . . ,θ23 are the eigenvalues and (I) is the identity matrix for our
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NiV model. Below is the

computed eigenvalue results from the Jacobian of our NiV model using Maple-2021:

θ1 =−(k+ v+µH),

θ2 =−µH ,

θ3 =−[θ1 + τ4 +µH + τ3],

θ4 =−[γ5 + τ5 +µH ],

θ5 =−[γ1 + τ1 +µH +δ1],

θ6 =−[γ2 + τ6 +µH +δ2],

θ7 =−[γ6 +µH +δ6],

θ8 =−[v1 +µP],

θ9 =−µP,

θ10 =

(
β2n1ΛP

NPµP

)
− [γ3 + τ2 +µP +δ3],

and θ10 is negative as long as
(

β2n1ΛP

NPµP

)
< [γ3 + τ2 +µP +δ3],

θ11 =−[γ4 +µP +δ4],

θ12 =−µB,

θ13 =

(
β3n2ΛB

NBµB

)
− [µB +δ5] and θ13 is negative, if and only if

(
β3n2ΛB

NBµB

)
< [µB +δ5].

Since all our parameters ([β1,γ1,γ2,τ1,τ3,τ4,τ5,µH ,δ1,δ2,θ1,θ2,δ6,β2,γ3,γ4,γ5,γ6,τ2,µP,

δ3,δ4,β3,δ5,µB]> 0), therefore, we say that the disease-free equilibrium (DFE) of the general

system is locally asymptotically stable. This result mathematically implies that the disease can

be wiped out of the population with respect to the initial condition (population). �

3.7. Local Stability for Nipah Endemic State.

In the disease-endemic state, we investigated the existence of forward or backward bifurca-

tion by using the center manifold theorem postulated by Castillo-Chavez, Song [32].

Then we redefine the equations 1- 16 as:
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f1 = ΛH + γ5x6− vx1− kx1−
x1β1(n0x6 +n1x12 +n2x16)

NH
−µHx1

f2 = ΛV + vx1−µHx2

f3 = ΛHW + kx1−
x3β1(n0x6 +n1x12 +n2x16)

NH
−µHx3

f4 =
x1β1(n0x6 +n1x12 +n2x16)

NH
+

x3β1(n0x6 +n1x12 +n2x16)

NH
−P1x4

f5 = x4τ4−P2x5

f6 = x4τ3 + x5τ5−P3x6

f7 = x6τ1−P4x7

f8 = x7τ6−P5x8

f9 = x7γ2 + x8γ6−µHx9

f10 = ΛP−
x10β2(n1x12 +n2x16)

NP
−µPx10

f11 = ΛV P + v1x10−µPx11

f12 =
x10β2(n1x12 +n2x16)

NP
−P6x12

f13 = x12τ2−P7x13

f14 = x12γ3 + x13γ4−µPx14

f15 = ΛB−
x15β3n2x16

NB
−µBx15

f16 =
x15β3n2x16

NB
− x16P8

Thus, we applied the central manifold theorem to get the bifurcation coefficients a <

0 and b < 0. Mbah et. al [10] This indicates that the endemic equilibrium state is locally asymp-

totically stable while also exhibiting forward bifurcation. We can now proceed to study the

global stability.
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3.8. Global stability of the NiV transmission dynamics model equilibrium states.

In this section, we try to investigate how the system as a whole behaves, rather than just near

the equilibrium points, which was the case when we analyzed the local stability of the system.

As in the local stability, in the analysis of the global stability of the system, we studied the

equations 1- 16 for the disease-free equilibrium and also the endemic equilibrium cases.

3.8.1. Global stability of the disease-free equilibrium state. To carry out this study, we use

the LaSalle’s invariant principle to define a Lyapunov’s function:

V (S0
H ,S

0
V ,S

0
HW ,E0

H ,E
0
HT , I

0
H , I

0
HT , I

0
Hi,R

0
H ,S

0
P,S

0
PV ,I

0
P, I

0
PT ,R

0
P,S

0
B, I

0
B) =

(SH−S0
H−S0

H ln
S0

H
SH

)+(SV −S0
V −S0

V ln
S0

V
SV

)+

(SHW −S0
HW −S0

HW ln
S0

HW
SHW

)+(EH−E0
H−E0

H ln
E0

H
EH

)+

(EHT −E0
HT −E0

HT ln
E0

HT
EHT

)+(IH− I0
H− I0

H ln
I0
H

IH
)+

(IHT − I0
HT − I0

HT ln
I0
HT

IHT
)+(IHi− I0

Hi− I0
Hi ln

I0
Hi

IHi
)+

(RH−R0
H−R0

H ln
R0

H
RH

)+(SP−S0
P−S0

P ln
S0

P
SP

)+

(SPV −S0
PV −S0

PV ln
S0

PV
SPV

)+(IP− I0
P− I0

P ln
I0
P

IP
)+

(IPT − I0
PT − I0

PT ln
I0
PT

IPT
)+(RP−R0

P−R0
P ln

R0
P

RP
)+

(SB−S0
B−S0

B ln
S0

B
SB

)+(IB− I0
B− I0

B ln
I0
B

IB
)

But at Nipah virus disease-free equilibrium (NDFE):

A0 = E0
H = E0

HT = I0
H = I0

HT = I0
Hi = R0

H = I0
P = I0

PT = R0
P = I0

B = 0

Then, evaluate the derivative to get:

(39)

dV
dt

=

(
SH +S0

H
SH

)
dSH

dt
+

(
SV +S0

V
SV

)
dSV

dt
+

(
SHW +S0

HW
SHW

)
dSHW

dt

+

(
EH +E0

H
EH

)
dEH

dt
+

(
EHT +E0

HT
EHT

)
dEHT

dt
+

(
IH + I0

H
IH

)
dIH

dt



18 ABANG, IYKE-OFOEDU, OZIOKO, NWOSU, OMEH, AMASIATU, MBAH

+

(
IHT + I0

HT
IHT

)
dIHT

dt
+

(
IHi + I0

Hi
IHi

)
dIHi

dt
+

(
RH +R0

H
RH

)
dRH

dt

+

(
SP +S0

P
SP

)
dSP

dt
+

(
SPV +S0

PV
SPV

)
dSPV

dt
+

(
IP + I0

P
IP

)
dIP

dt

+

(
IPT + I0

PT
IPT

)
dIPT

dt
+

(
RP +R0

P
RP

)
dRP

dt
+

(
SB +S0

B
SB

)
dSB

dt

+

(
IB + I0

B
IB

)
dIB

dt

Substituting for the derivatives in equation 39, using equations 1- 16 and simplifying, we

then obtain:

(40)

dV
dt

=

(
SH +S0

H
SH

)
ΛH + γ5(EHT +E0

HT )−
(

SH +S0
H

SH

)2

(λH + k+(v+µH))+(
SV +S0

V
SV

)
(ΛV + v(SH +S0

H))−
(

SV +S0
V

SV

)2

µH+(
SHW +S0

HW
SHW

)
(ΛHW + k(SH +S0

H))−
(

SHW +S0
HW

SHW

)2

(λH +µH)+(
EH +E0

H
EH

)
λH((SH +S0

H)+(SHW +S0
HW ))−

(
EH +E0

H
EH

)2

(τ4 + τ3 +µH)+(
EHT +E0

HT
EHT

)
τ4(EH +E0

H)−
(

EHT +E0
HT

EHT

)2

(τ5 + γ5 +µH)+(
IH + I0

H
IH

)
(τ3(EH +E0

H)+ τ5(EHT +E0
HT ))−

(
IH + I0

H
IH

)2

[γ1 +δ1 + τ1 +µH ]+(
IHT + I0

HT
IHT

)
τ1(IH + I0

H)−
(

IHT + I0
HT

IHT

)2

[γ2 +δ2 + τ6 +µH ]+(
IHi + I0

Hi
IHi

)
τ6(IHT + I0

HT )−
(

IHi + I0
Hi

IHi

)2

[γ6 +δ6 +µH ]+(
RH +R0

H
RH

)
[γ2(IHT + I0

HT )+ γ6(IHi + I0
Hi)]−

(
RH +R0

H
RH

)2

µH+(
SP +S0

P
SP

)
ΛP−

(
SP +S0

P
SP

)2

(λP +(v1 +µP))+(
SPV +S0

PV
SPV

)
(ΛPV + v1(SP +S0

P))−
(

SPV +S0
PV

SPV

)2

µP+(
IP + I0

P
IP

)
λP(SP +S0

P)−
(

IP + I0
P

IP

)2

[γ3 +δ3 + τ2 +µP]+
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IPT + I0

PT
IPT

)
τ2(IP + I0

P)−
(

IPT + I0
PT

IPT

)2

[γ4 +δ4 +µP]+(
RP +R0

P
RP

)
(γ3(IP + I0

P)+ γ4(IPT + I0
PT ))−

(
RP +R0

P
RP

)2

µP+(
SB +S0

B
SB

)
ΛB−

(
SB +S0

B
SB

)2

(λB +µB)+(
IB + I0

B
IB

)
λB(SB +S0

B)−
(

IB + I0
B

IB

)2

[δ5 +µB]

Next, collect all the positive and negative terms from equation 40 to give:

dV
dt

= T −Z

Where:

T =

(
1+

S0
H

SH

)
(ΛH +θ1EH +θ2EHT )+

(
1+

S0
V

SV

)
(ΛV + v(SH +S0

H))+(
1+

S0
HW

SHW

)
(ΛHW + k(SH +S0

H))+

(
1+

E0
H

EH

)
λH((SH +S0

H)+(SHW +S0
HW ))+(

1+
E0

HT
EHT

)
τ4(EH +E0

H)+

(
1+

I0
H

IH

)
(τ3(EH +E0

H)+ τ5(EHT +E0
HT ))+(

1+
I0
HT

IHT

)
τ1(IH + I0

H)+

(
1+

I0
Hi

IHi

)
τ6(IHT + I0

HT )+(
1+

R0
H

RH

)
[θ1(EH +E0

H)+θ2(EHT +E0
HT )+ γ1(IH + I0

H)+ γ2(IHT + I0
HT )+ γ5(IHi + I0

Hi)]+(
1+

S0
P

SP

)
ΛP +

(
1+

S0
PV

SPV

)
(ΛPV + v1(SP +S0

P))+(
1+

I0
P

IP

)
λP(SP +S0

P)+

(
1+

I0
PT

IPT

)
τ2(IP + I0

P)+

(
1+

R0
P

RP

)
(γ3(IP + I0

P)+ γ4(IPT + I0
PT ))+(

1+
S0

B
SB

)
ΛB +

(
1+

I0
B

IB

)
λB(SB +S0

B)

Z =−

((
SH +S0

H
SH

)2

(λH + k+(v+µH))+

(
SV +S0

V
SV

)2

µH +

(
SHW +S0

HW
SHW

)2

(λH +µH)

+

(
EH +E0

H
EH

)2

(θ1 + τ4 + τ3 +µH)+

(
EHT +E0

HT
EHT

)2

(τ5 +θ2 +µH)+

(
IH + I0

H
IH

)2

[δ1 + τ1 +µH ]

+

(
IHT + I0

HT
IHT

)2

[γ2 +δ2 + τ6 +µH ]+

(
IHi + I0

Hi
IHi

)2

[γ5 +δ6 +µH ]+

(
RH +R0

H
RH

)2

µH

+

(
SP +S0

P
SP

)2

(λP +(v1 +µP))+

(
SPV +S0

PV
SPV

)2

µP +

(
IP + I0

P
IP

)2

[γ3 +δ3 + τ2 +µP]
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+

(
IPT + I0

PT
IPT

)2

[γ4 +δ4 +µP]+

(
RP +R0

P
RP

)2

µP +

(
SB +S0

B
SB

)2

(λB +µB)+

(
IB + I0

B
IB

)2

[δ5 +µB]

)

If T < Z, then dV
dt will be negative definite along the sub-system’s solution route.

This indicates that the NiV disease-free equilibrium will be globally asymptotically stable in

ΩI1.

3.8.2. Global stability of the endemic equilibrium state. To establish the global stability of

the endemic equilibrium state of the disease within the population, we use the same method

as before, but now with the values of the variables at the equilibrium state. We consider the

following Lyapunov function defined as:

Λ(S∗H ,S
∗
V ,S
∗
HW ,E∗H ,E

∗
HT , I

∗
H , I
∗
HT , I

∗
Hi,R

∗
H ,S

∗
P,S
∗
PV , I

∗
P, I
∗
PT ,R

∗
P,S
∗
B, I
∗
B) =

(SH−S∗H−S∗H ln
(

S∗H
SH

)
)+(SV −S∗V −S∗V ln

(
S∗V
SV

)
)+(SHW −S∗HW −S∗HW ln

(
S∗HW
SHW

)
)

+(EH−E∗H−E∗H ln
(

E∗H
EH

)
)+(EHT −E∗HT −E∗HT ln

(
E∗HT
EHT

)
)+(IH− I∗H− I∗H ln

(
I∗H
IH

)
)

+(IHT − I∗HT − I∗HT ln
(

I∗HT
IHT

)
)+(IHi− I∗Hi− I∗Hi ln

(
I∗Hi
IHi

)
)+(RH−R∗H−R∗H ln

(
R∗H
RH

)
)

+(SP−S∗P−S∗P ln
(

S∗P
SP

)
)+(SPV −S∗PV −S∗PV ln

(
S∗PV
SPV

)
)+(IP− I∗P− I∗P ln

(
I∗P
IP

)
)

+(IPT − I∗PT − I∗PT ln
(

I∗PT
IPT

)
)+(RP−R∗P−R∗P ln

(
R∗P
RP

)
)+(SB−S∗B−S∗B ln

(
S∗B
SB

)
)

+(IB− I∗B− I∗B ln
(

I∗B
IB

)
)

Then, evaluate the derivative to get:

dΛ

dt
=

(
SH +S∗H

SH

)
dSH

dt
+

(
SV +S∗V

SV

)
dSV

dt
+

(
SHW +SHW ∗

SHW

)
dSHW

dt

+

(
EH +E∗H

EH

)
dEH

dt
+

(
EHT +EHT ∗

EHT

)
dEHT

dt
+

(
IH + I∗H

IH

)
dIH

dt

+

(
IHT + IHT ∗

IHT

)
dIHT

dt
+

(
IH i+ IH i∗

IH i

)
dIH i
dt

+

(
RH +R∗H

RH

)
dRH

dt
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+

(
SP +S∗P

SP

)
dSP

dt
+

(
SPV +SPV ∗

SPV

)
dSPV

dt
+

(
IP + I∗P

IP

)
dIP

dt

+

(
IPT + IPT ∗

IPT

)
dIPT

dt
+

(
RP +R∗P

RP

)
dRP

dt
+

(
SB +S∗B

SB

)
dSB

dt

+

(
IB + I∗B

IB

)
dIB

dt

Substituting these derivatives into equations 1- 16

dΛ

dt
=

(
SH +S∗H

SH

)
ΛH −

(
SH +S∗H

SH

)2

(λH + k+ v+µH)+

(
SV +S∗V

SV

)
(ΛV + v(SH +S∗H))−

(
SV +S∗V

SV

)2

µH

+

(
SHW +SHW ∗

SHW

)
(ΛHW + k(SH +S∗H))−

(
SHW +SHW ∗

SHW

)2

(λH +µH)

+

(
EH +E∗H

EH

)
λH(SH +S∗H +SHW +SHW ∗)−

(
EH +E∗H

EH

)2

(τ4 + τ3 +µH)

+

(
EHT +EHT ∗

EHT

)
τ4(EH +E∗H)−

(
EHT +EHT ∗

EHT

)2

(τ5 + γ5 +µH)

+

(
IH + I∗H

IH

)
(τ3(EH +E∗H)+ τ5(EHT +EHT ∗))−

(
IH + I∗H

IH

)2

(γ1 +δ1 + τ1 +µH)

+

(
IHT + IHT ∗

IHT

)
τ1(IH + I∗H)−

(
IHT + IHT ∗

IHT

)2

(γ2 +δ2 + τ6 +µH)

+

(
IH i+ IH i∗

IH i

)
τ6(IHT + IHT ∗)−

(
IH i+ IH i∗

IH i

)2

(γ6 +δ6 +µH)

+

(
RH +R∗H

RH

)
(γ5(EHT +EHT ∗)+ γ2(IHT + IHT ∗)+ γ6(IH i+ IH i∗))−

(
RH +R∗H

RH

)2

µH

+

(
SP +S∗P

SP

)
ΛP−

(
SP +S∗P

SP

)2

(λP + v1 +µP)

+

(
SPV +SPV ∗

SPV

)
(ΛPV + v1(SP +S∗P))−

(
SPV +SPV ∗

SPV

)2

µP

+

(
IP + I∗P

IP

)
λP(SP +S∗P)−

(
IP + I∗P

IP

)2

(γ3 +δ3 + τ2 +µP)

+

(
IPT + IPT ∗

IPT

)
τ2(IP + I∗P)−

(
IPT + IPT ∗

IPT

)2

(γ4 +δ4 +µP)

+

(
RP +R∗P

RP

)
(γ3(IP + I∗P)+ γ4(IPT + IPT ∗))−

(
RP +R∗P

RP

)2

µP

+

(
SB +S∗B

SB

)
ΛB−

(
SB +S∗B

SB

)2

(λB +µB)

+

(
IB + I∗B

IB

)
λB(SB +S∗B)−

(
IB + I∗B

IB

)2

(δ5 +µB)
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Next, collect all the positive and negative terms, we have the following: dΛ

dt = M−N

M =

(
1+

S∗H
SH

)
(ΛH +θ1EH +θ2EHT )+

(
1+

S∗V
SV

)
(ΛV + v(SH +S∗H))

+

(
1+

SHW ∗

SHW

)
(ΛHW + k(SH +S∗H))+

(
1+

E∗H
EH

)
λH(SH +S∗H +SHW +SHW ∗)

+

(
1+

EHT ∗

EHT

)
τ4(EH +E∗H)+

(
1+

I∗H
IH

)
(τ3(EH +E∗H)+ τ5(EHT +EHT ∗))

+

(
1+

IHT ∗

IHT

)
τ1(IH + I∗H)+

(
1+

IH i∗

IH i

)
τ6(IHT + IHT ∗)

+

(
1+

R∗H
RH

)
[θ1(EH +E∗H)+θ2(EHT +EHT ∗)+ γ1(IH + I∗H)+ γ2(IHT + IHT ∗)+ γ5(IH i+ IH i∗)]

+

(
1+

S∗P
SP

)
ΛP +

(
1+

SPV ∗

SPV

)
(ΛPV + v1(SP +S∗P))

+

(
1+

I∗P
IP

)
λP(SP +S∗P)+

(
1+

IPT ∗

IPT

)
τ2(IP + I∗P)

+

(
1+

R∗P
RP

)
[γ3(IP + I∗P)+ γ4(IPT + IPT ∗)]+

(
1+

S∗B
SB

)
ΛB

+

(
1+

I∗B
IB

)
λB(SB +S∗B)

N =−
(
(SH +S∗H)

2

S2
H

(λH + k+(v+µH))+
(SV +S∗V )

2

S2
V

µH +
(SHW +SHW ∗)2

SHW 2 (λH +µH)

+
(EH +E∗H)

2

E2
H

(θ1 + τ4 + τ3 +µH)+
(EHT +EHT ∗)2

EHT 2 (τ5 +θ2 +µH)

+
(IH + I∗H)

2

I2
H

(δ1 + τ1 +µH)+
(IHT + IHT ∗)2

IHT 2 (γ2 +δ2 + τ6 +µH)

+
(IH i+ IH i∗)2

IH i2
(γ5 +δ6 +µH)+

(RH +R∗H)
2

R2
H

µH

+
(SP +S∗P)

2

S2
P

(λP +(v1 +µP))+
(SPV +SPV ∗)2

SPV 2 µP

+
(IP + I∗P)

2

I2
P

(γ3 +δ3 + τ2 +µP)+
(IPT + IPT ∗)2

IPT 2 (γ4 +δ4 +µP)

+
(RP +R∗P)

2

R2
P

µP +
(SB +S∗B)

2

S2
B

(λB +µB)+
(IB + I∗B)

2

I2
B

(δ5 +µB)

)

If M < N, then dΛ

dt will be negative definite along the solution path of the sub-system.

This implies that the endemic equilibrium is globally asymptotically stable in ΩI2.
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3.9. Sensitivity Analysis of the General NiV Model.

In this section, we determined how changes in each of the parameters affect the transmission

and spread of the disease. In order to achieve this, a sensitivity analysis of the non-inhibitor

model is carried out. This is also done in order for us to see the response of the model output

(in this case R0) to parameter(s) variation Yang, Liu [27], Abang et. al [1].

This enables us to ascertain the effect of parameters in our model on the dependent variable.

For example, we might want to know if increasing a particular parameter will lead to an increase

in the dependent variable or not.

TABLE 1. Numerical values for Variables used in implementation of our analy-

sis

Variables Numerical Values Source

SH(0) 1000 Zewdie, Gakkhar [28]

SV (0) 350 (Estimated)

SHW (0) 440 (Assumed)

EH(0) 20 Shah et. al [17]

EHT (0) 0 (Assumed)

IH(0) 20 Shah et. al [17]

IHT (0) 0 (Assumed)

IHi(0) 0 (Assumed)

RH(0) 0 (Assumed)

SP(0) 90 Shah et. al [17]

IP(0) 5 Zewdie, Gakkhar [28]

IPT (0) 3 Tyagi et. al [20]

RP(0) 0 (Assumed)

SB(0) 50 Shah et. al [17]

IB(0) 37 Shah et. al [17]
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TABLE 2. Numerical values of Parameters adopted for our implementation

Parameters Numerical Values Source

ΛH 20 (Assumed)

ΛP 4 (Assumed)

ΛB 2 Shah et. al [17]

NH 1020 (Assumed)

NP 95 (Assumed)

NB 50 Shah et. al [17]

µH 0.0000421 Zewdie, Gakkhar [28]

µP 0.16 Tyagi et. al [20]

µB 0.45 (Estimated)

β1 0.0002 Tyagi et. al [20]

β2 0.01 (Assumed)

β3 0.1 Reynolds, Torremorell, Craft [15]

τ1 0.0001 or 0.52 Shah et. al [17], Omede et. al [14]

τ2 0.0002 Shah et. al [17], Wit et. al [23]

τ3 0.17 (Assumed)

τ4 0.48 Reynolds, Torremorell, Craft [15]

τ5 0.81 (Assumed)

τ6 0.0001 (Estimated)

δ1 0.002 Shah et. al [17]

δ2 0.001 (Assumed)

δ3 0.0015 (Assumed)

δ4 0.0018 (Assumed)

δ5 0.75 Zewdie, Gakkhar [28]

δ6 0.001 Shah et. al [17]

γ1 0.58 Shah et. al [17], Wigand, Kumel [22]

γ2 0.72 Shah et. al [17]

γ3 0.4 Reynolds, Torremorell, Craft [15]

γ4 0.45 Sultana, Podder [19]

γ5 0.76 (Assumed)

γ6 0.46 Shah et. al [17]

n0 0.000001 Scott et. al [16]

n1 0.02 (Assumed)

n2 0.2 (Assumed)

λH 0.75 Sultana, Podder [19]

λP 0.075 Shah et. al [17]

λB 0.07 Mondal, Hanif, Biswas [11]
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Our main focus in this section is to perform a sensitivity index on R0, using the values for

variables and parameters in Tables 1 and 2 respectively.

We use the normalized forward-sensitivity index of a variable, v, depends on a parameter, p,

which is expressed as:

rv
p =

∂v
∂ p
× p

v

In particular, the sensitivity indices of the basic reproduction number, R0, with respect to the

model parameters of interest to be examined Yadav et. al [24], Aja, Omale, Mbah [2], Chinebu

et. al [4]. The positive sign of sensitivity indices of R0 to the model parameters illustrates

that an increase (or decrease) in the value of each of the parameters in the model may lead

to an increase (or decrease) in R0 and asymptotically result in the persistence (or elimination)

of the disease in the community Obasi, Mbah [12], Barua, Dénes [3], Zheng, Wang, Fu [29].

On the contrary, the negative sign of sensitivity indices of R0 to the model parameter indicates

that an increase (or decrease) in the value of each of the parameters in each case leads to a

corresponding decrease (or increase) in R0 of the model. Hence, with sensitivity analysis, one

can gain insight into appropriate intervention strategies to prevent and control the spread of the

disease described in the model.

Recall that:

R0 =
β1n0(ΛH µH +ΛHW (k+ v+µH)+ kΛH)

(γ5 + τ4 + τ3 +µH)(τ5 +µH)(γ1 +δ1 + τ1 +µH)µH(k+ v+µH)

and that n0 > 0.

Using Maple 2021, we computed the sensitivity index of a parameter, say β1, with respect to

R0 as:

(41) rR0
β1

=
∂R0

∂β1
× β1

R0

(42)
=

∂

(
β1n0(ΛH µH+ΛHW (k+v+µH )+kΛH )

(γ5+τ4+τ3+µH )(τ5+µH )(γ1+δ1+τ1+µH )µH (k+v+µH )

)
∂β1

× β1(
β1n0(ΛH µH+ΛHW (k+v+µH )+kΛH )

(γ5+τ4+τ3+µH )(τ5+µH )(γ1+δ1+τ1+µH )µH (k+v+µH )

)(
β1n0(ΛH µH+ΛHW (k+v+µH)+kΛH)

(γ5+τ4+τ3+µH)(τ5+µH)(γ1+δ1+τ1+µH)µH(k+v+µH)

)

=

(
n0(ΛH µH +ΛHW (k+ v+µH)+ kΛH)

(γ5 + τ4 + τ3 +µH)(τ5 +µH)(γ1 +δ1 + τ1 +µH)µH(k+ v+µH)

)
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×
(
(γ5 + τ4 + τ3 +µH)(τ5 +µH)(γ1 +δ1 + τ1 +µH)µH(k+ v+µH)

n0(ΛH µH +ΛHW (k+ v+µH)+ kΛH)

)

=1 (positive)

The sensitivity index of the remaining parameters can be computed in the same way as that

of β1. The sensitivity index for other parameters was computed in the same manner, and the

results are displayed in Table 3 below:

TABLE 3. Sensitivity index of R0 with respect to parameters of the model

Parameters Numerical Value Sensitivity Index

µH 0.0000421 -0.998201

τ1 0.0001 -0.0007234

β1 0.0002 1.0000000

γ1 0.58 -0.3365

n0 0.000001 1.0000000

ΛH 20 0.5274

δ1 0.0001 -0.0007234

γ5 0.76 -0.072

τ4 0.48 -0.6768

τ3 0.17 -0.1206

τ5 0.81 -0.99995

k 0.2 0.4736

v 0.52 -0.3744

4. MODEL SIMULATIONS AND DISCUSSIONS

In this section, we deemed it fit to estimate and adopt some model parameters that were not

readily available just for illustrative purposes. We also used some theoretical data in which

the sources were strictly acknowledged. The model simulation helped us to have a better un-

derstanding of the impact of some important parameters and assumptions on the dynamics and



FOOD-BORNE NIPAH VIRUS INFECTIOUS DISEASE TRANSMISSION DYNAMICS 27

control of Nipah virus disease. Numerical simulations were performed to support and also

illustrate our analytical results.

4.1. Showing parameter impact on our Nipah virus epidemiological model. Here, we

checked the mathematical representation of our Nipah virus disease (NiVD) transmission dy-

namics, by varying parameters to get deeper understanding on how different factors influenced

the spread of the NiVD. Also, by evaluating how these changes in parameters like disease

transmission rates, morbidity, and mortality affect key variables, policymakers can make more

informed decisions about interventions such as vaccination campaigns, social distancing mea-

sures, or quarantine strategies.

FIGURE 2. Graph of reproduction number (R0) as a function of k.

FIGURE 3. Plot of reproduction number (R0) as a function of ΛHW .
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FIGURE 4. Simulation of Relationship between β1, τ4 and basic reproduction

number (R0).

FIGURE 5. Relationship between λHW , γ5 and reproduction number (R0).

FIGURE 6. Graph of Relationship between δ1, v and reproduction number (R0).
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FIGURE 7. Graph of Relationship between β1, γ5 and reproduction number

(R0).

FIGURE 8. Graph of Relationship between n0, v and reproduction number (R0).

FIGURE 9. Graph of Relationship between δ1, k and reproduction number (R0).
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FIGURE 10. Graph of Relationship between ΛHW , β1 and reproduction number

(R0).

FIGURE 11. Graph of Nipah virus disease sensitivity index analysis.

In Figure 2, we observed that at k = 0.9232, R0 crosses the critical threshold of 1, indicating

that the disease’s transmission potential (R0) reaches this critical point. Beyond this, the disease

could become a public health concern. In other words, when R0 < 1, the disease is not likely

to spread widely and may eventually die out. However, when R0 > 1, the disease is expected

to spread and may become an epidemic, requiring significant intervention. Based on the graph

and the crossing point at k = 0.9232, we conclude:

(1) When the consumption rate of Nipah virus-tainted food items (k) is below 0.9232, the

disease is not likely to cause an epidemic (R0 < 1).

(2) If the consumption rate (k) exceeds 0.9232, the disease may become an epidemic (R0 >

1).
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At k = 1, this implies that the population is consuming Nipah virus-tainted food items at

the same rate as the disease’s transmission rate, significantly increasing the epidemic potential,

necessitating strong preventive measures.

In Figure 3, our simulated graph suggests that when the recruitment proportion of susceptible

individuals likely to consume tainted food items (ΛHW ) reaches approximately 12.2374, the

disease’s transmission potential (R0) reaches the critical threshold of 1. Beyond this point, the

disease could become a public health concern. As with R0 < 1, the disease may eventually

die out, while R0 > 1 indicates the potential for an epidemic. This analysis highlights the role

of (ΛHW ) in disease spread, aiding public health officials in making informed decisions about

intervention strategies.

Figure 4 shows a simulation of the relationship between the parameters β1 and τ4 with respect

to R0. We observed that as the contact rate (β1) increases, so does the rate at which humans

become infectious (τ4), leading to an increase in R0 of the Nipah virus.

In Figure 5, we visualize the relationship between the parameters ΛHW and γ5 with respect

to R0. The simulation indicates that during an outbreak, a higher immigration rate of individ-

uals likely to consume Nipah virus-contaminated food items such as unpasteurized palm wine

(ΛHW ) could lead to a faster spread of the disease compared to when the immigration rate is

low.

In Figure 6, we depict the relationship between the parameters δ1 and v with respect to R0.

The simulation suggests that a higher vaccination rate (v) could paradoxically lead to a faster

spread of the Nipah virus, unlike when the vaccination rate is low.

Figure 7 shows a simulation of the relationship between the parameters β1 and γ5 with respect

to R0. We observed an ”L” shape in the visualization, indicating a transition between states: the

darker region represents a lower R0 (a disease-free state), while the lighter region indicates a

higher R0, suggesting an endemic equilibrium where the disease spreads faster.

In Figure 8, the simulation illustrates the relationship between the parameters n0 and v for a

given R0. The plot shows that as n0 and v increase, the combination’s shade becomes darker,

indicating a lower R0. Conversely, a lighter shade indicates a higher R0, signifying a faster

spread of the disease.
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Figure 9 presents the relationship between the parameters δ1 and k for a given R0. The plot

indicates that as both parameters increase, the shade becomes lighter, representing a higher R0

or an endemic equilibrium. A darker shade would indicate a lower R0, meaning the disease

would eventually die out.

In Figure 10, we visualize the relationship between the parameters ΛHW and β1 with respect

to R0. Our simulation suggests that a higher immigration rate of individuals likely to consume

contaminated food items (ΛHW ) and a higher contact rate (β1) increase the likelihood of a rapid

spread of the Nipah virus in the community.

Figure 11 simulates our findings, showing the parameters that contribute positively or neg-

atively to the growth of R0. This approach helps us assess the sensitivity of the Nipah virus

disease model to changes in different parameters.

5. CONCLUSION

By studying the Nipah virus, we were able to create an accurate mathematical model that

encompassed the majority of the disease traits observed in an epidemic of the virus, which re-

sults in the rapid and widespread spread of the disease within an endemic population. Two key

factors in lowering the number of people who can contract and spread the Nipah virus in the

advent of an outbreak in a population, are that the rate of likelihood of consuming contaminated

NiV food item (k) and the recruitment proportion of susceptible individuals likely to consume

tainted food items (ΛHW ). In the analysis of equations 1 to 16, we obtained some threshold val-

ues in which k and ΛHW should not exceed in order for us to be able to control the transmission

of the NiV disease. In our further publications, we are going to solve this model using various

numerical methods, as this could help us also validate our proposed model.
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