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Abstract. In this article, we propose a tuberculosis model with drug-sensitive (DS-TB) and multidrug-resistant

(MDR-TB). The population is divided into 6 sub-population, namely susceptible (S), vaccinated (V ), latent (E),

active DS-TB (Is), active MDR-TB (Ir), and recovered (R). There are two equilibrium points, i.e. disease-free

equilibrium (DFE) point and endemic equilibrium (EE) point. The basic reproduction number (R0) is determined

by using the next generation matrix method. It can be shown that the DFE point is locally and globally asymptot-

ically stable when R0 < 1. Meanwhile, the EE point is exist if R0 > 1 and locally asymptotically stable when it

holds Routh-Hurwitz criterion. The numerical simulation is conducted to illustrate the analysis results.

Keywords: tuberculosis; multidrug-resistant; basic reproduction number; stability analysis; Routh-Hurwitz crite-

rion.

2020 AMS Subject Classification: 37N25, 92D30.

1. INTRODUCTION

Tuberculosis is an infectious disease caused by the Mycobacterium tuberculosis and can af-

fect the lungs or other parts of the body. This disease is transmitted through the droplets of

infected individuals [1]. Tuberculosis has become a major global health issue and is currently
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one of the top 10 causes of death. Despite significant advancements in the treatment and control

of TB, it has been revealed by WHO statistical reports that globally, one-third of the human

population is exposed to TB [2].

Tuberculosis has two stages of infection. The first stage of TB infection is called the latent

stage. During this period, an individual does not show any symptoms of infection and cannot

transmit the disease to others. Whereas, in the second stage called active TB infection, indi-

viduals with active TB may show symptoms and can infect susceptible individuals. The WHO

global strategy for the prevention, treatment and control of tuberculosis in 2015–2035, known

as the End TB Strategy, calls for an early diagnosis of TB targeting an 80% incidence reduction

and death from tuberculosis by 90% by 2030. TB prevention may involve BCG vaccination,

screening of high-risk individuals, early detection, and case treatment. In most tuberculosis-

endemic countries, BCG vaccination is recommended for tuberculosis prevention efforts and is

usually given soon after birth [3].

Based on the drug responses, tuberculosis can be categorized by sensitive and resistant. Drug-

sensitive TB (DS-TB) means that infectious people can be treated with the usual medicine.

Meanwhile drug-resistant is infectious people who become resistant to the drugs used to treat

TB. This means that the drug is no more effective to kill the tuberculosis bacteria. The patient

becomes resistant also when TB drugs are used inappropriately, such as the patient stops treat-

ment prematurely. Multidrug-resistant TB (MDR-TB) is resistant to at least 2 most effective

first-line TB drugs, isoniazid and rifampin. Thus, MDR-TB patients need more complicated

treatment than the DS-TB patient and take longer to recover [1].

The mathematical model approach is one of the useful tools and can be used to study the

dynamic behavior of a disease. There are several epidemic model that study about tuberculosis

transmission. One of simple epidemic model is the SIR model consisting of the susceptible,

infected, and recovered class considered by Ali et al. [4]. It is well known that TB disease

also has a latent phase. Here are some TB studies with exposed classes, which is when a

disease in the body is still unable to transmit and does not show symptoms [5, 6, 7, 8]. Baba

et al. [5] presented the susceptible, exposed, and infected (SEI) model with slow and fast

progression of infection. The models in [8] assumes that individual who have recovered have
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chances to be re-infected again by contact of TB patients while in [6] assumes that individual

who have recovered have immunity so they can not to be re-infected. Furthermore, some of

these models were developed into more complex model in order to be more inline with their

reality. For example, in [9, 10, 11] the vaccinated class is considered because the vaccine given

to reduce the risk of getting tuberculosis. Based on these studied, it was found that the vaccine

plays important roles in disease prevention and disease spread control. Mathematical model by

including vaccinated class is also carried out on the spread of influenza and COVID-19 disease

that has the similarities in the mode of transmission [12, 13]. Their numerical simulation results

verify that increase vaccination rate effectively can reduce the spread of disease. Several studies

that involved the drugs response have also been conducted [14, 15, 16]. Xu et al. [14] developed

SEIR model with focused on prevention and control of drug resistant (DR-TB). The researchers

found that decreasing the probability of transmission and the progression rate in patients with

DR-TB, and also increasing treatment and the recovery rate of DR-TB patients, can help achieve

the objective of the End TB Strategy. Bhadauria et al. [15] using SIQR model with Quarantine

class suggests that TB in India may be eliminated by 2035 if the treatment success rate could

be achieved to 95%, contact tracing and also isolating at least 50% of MDR-TB. Mengistu

and Witbooi [16] developed a model for the dynamics transmission of MDR-TB with optimal

control and cost-effectiveness analysis. The study found that the most effective control factor

for eliminating MDR-TB transmission among single strategies is successful treatment for DS-

TB whereas with different combined strategies, the combination of social distancing and DS-TB

treatment is more effective and cheaper than other combinations.

In this article, we propose a mathematical model by modified [5, 6, 16]. In this research,

we present SVEIR model with some assumptions in Section 2. In Section 3, we provide the

non-negative and boundness solution. The equilibrium points, basic reproduction number, and

the stability of equilibrium points are provided in Section 4 and Section 5. The numerical

simulation was carried out in Section 6 and the conclusion was given in Section 7.
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2. MODEL DEVELOPMENT

In this study, the population is divided into 6 classes, namely susceptible class (S), vaccinated

class (V ), latent class(E), active DS-TB class (Is), active MDR-TB class (Ir), recovered class

(R). The model construction in this research uses assumptions as follows.

noitemsep,nolistsep Vaccinations are given to newborn babies, but some babies are not vac-

cinated because their health conditions make it impossible. Thus, ba-

bies who receive the vaccine enter the (V ) vaccinated class [16].

noiitemsep,noliistsep Vaccines are not completely effective for life so vaccinated individuals

can become susceptible [16].

noiiitemsep,noliiistsep Latent individuals cannot transmit the disease so transmission occurs

due to contact with active TB individuals [5].

noivtemsep,nolivstsep Individuals with active TB can return to the latent class if the therapy

given is not effective [5].

novtemsep,nolvstsep TB-DS individuals can become MDR-TB if they do not undergo treat-

ment according to the rules [16].

novitemsep,nolvistsep Individuals with active TB can be cured if treatment therapy is carried

out completely [6].

noviitemsep,nolviistsep Individuals will become active TB, both DS-TB and MDR-TB after

going through the latent phase.

FIGURE 1. Flow diagram of the model
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The recruitment rate is divided into 2, namely those entering class S and those entering class

V because there are newborns who are vaccinated at a rate of ε . Over time, immunity can

weaken so that individuals who have been vaccinated can become susceptible and enter the

Susceptible class at a rate of η . The infected individuals can transmit the disease, namely DS-

TB (Is) at a rate of β1 and MDR-TB (Ir) at a rate β2. Individuals in the Infected class are given

therapy at a rate p and these individuals will return to the latent class because the therapy is

ineffective. Active TB individuals who are sensitive to drugs will become resistant at a rate α if

they do not adhere to treatment. In the active TB class, the individuals must do treatment until

completed so that the individual can enter the recovered class at a rate θ1 and θ2. The natural

death rate occurs in each classes is assumed to be equal and is given at a rate µ . The death rate

of disease for infected individuals is at a rate ds and dr.

Based on the diagram in Figure 1, we have the following system of non-linear ordinary

differential equations:

dS
dt

= (1− ε)Λ+ηV − (β1Is +β2Ir)S−µS

dV
dt

= εΛ− (η +µ)V

dE
dt

= (β1Is +β2Ir)S+(1− p)θ1Is +(1− p)θ2Ir− (k1 + k2 +µ)E

dIs

dt
= k1E− (θ1 +α +µ +ds)Is

dIr

dt
= k2E +αIs− (θ2 ++µ +dr)Ir

dR
dt

= pθ1Is + pθ2Ir−µR

(2.1)

3. THE NON-NEGATIVE AND BOUNDEDNESS OF SOLUTION

In this section, we prove the non-negative and boundness solution of model (2.1).

Theorem 3.1. All solution of the model (2.1) subject to non-negative initial values are non-

negative and ultimately bounded.

Proof. First, we show the non-negative solution of V with a non-negative initial value. Let

V < 0 for some t > 0. We can find t∗ > 0 such that
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V (t−∗ )≥ 0,V (t∗) = 0,V (t+∗ )< 0

Based on the system (1), we obtain

dV
dt

∣∣∣∣
t=t∗

= εΛ > 0

This means that V (t)> 0 on (t∗, t∗+ε) for arbitrary small positive constant ε . Hence, this leads

to a contradiction, which concludes that V is non-negative for all t ≥ 0. As a result, V (t) ≥ 0

for all t ≥ 0. By using the similar way, we can show that the other variables are non-negative.

So, all the solutions are positive for all t ≥ 0.

Total population defined as the number of living humans in the population. So, the total

population N(t) can be obtained by adding up all sub-populations in system (2.1), N(t) = S(t)+

V (t)+E(t)+Is(t)+Ir(t)+R(t). By substituting the derivatives in system (2.1) and simplifying,

we obtain
dN
dt

= Λ−µS−µV −µE−µIs−µIr−µR−dsIs−drIr

= Λ−µN−dsIs−drIr

≤ Λ−µN

Upon integration we get

N(t)≤ N0e−µt +
Λ

µ

(
1− e−µt) ,

where N(0) is the initial value. It is clear that

lim
t→∞
≤ 0,

thus N(t) is bounded with N(t)≤ Λ

µ
. Hence, we can see that the feasible closed region of model

(2.1) is

Ω =

{
(S,V,E, Is, Ir,R) ∈ R6

+ : N = S+V +E + Is + Ir +R≤ Λ

µ

}
�
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4. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER

For dynamical analysis, the last equation of model (2.1) can be reduced because other

equations do not involve variable R. Hence, we consider only first five equations. Let

X = (S,V,E, Is, Ir), the equilibrium point can be obtained by setting dX
dt = ~0. We get

V = εΛ

η+µ
,S = Λ(η+µ−ηµ)

(η+µ)(β1Is+β2Ir+µ) ,E = (θ1+α+µ+ds)(θ2+µ+dr)
(θ1+α+µ+ds)k2+k1α

Ir, Is =
k1(θ2+µ+dr)

(θ1+α+µ+ds)k2+k1α
Ir. By

substituting Ir = 0, we have a disease-free equilibrium point (Q1)

Q1 = (S1,V1,E1, Is1, Ir1) =
(

ΛA5
A4µ

, εΛ

A4
,0,0,0

)
.

Next, if we substituting Ir 6= 0 with suppose that A1 = θ1+α +µ +ds;A2 = θ2+µ +dr;A3 =

A1k2+k1α;A4 = η +µ;A5 = η +µ−ηµ;A6 = β1k1A2+β2A3;A7 = θ1k1A2+θ2A3;A8 = k1+

k2 +µ;A9 = A1A2A8− (1− p)A7 then we obtain the endemic equilibrium points,

S2 =
A9

A6

V2 =
εΛ

A4

E2 =
A1A2(ΛA5A6−A4A9µ)

A4A6A9

Is2 =
k1A2(ΛA5A6−A4A9µ)

A4A6A9

Ir2 =
A3(ΛA5A6−A4A9µ)

A4A6A9

Next, the basic reproduction number (R0) is defined as the number of secondary infections

produced by one infective. The basic reproduction number can be determined by the next

generation matrix method. This method involved a compartment causes infection, that is Z =

E, Is, Ir. So, we have
dZ
dt

= F (Z)−V (Z)

where

F (Z) =


(β1Is +β2Ir)S

0

0

 ; V (Z) =


−(1− p)θ1Is− (1− p)θ2Ir +(k1 + k2 +µ)E

−k1E +(θ1 +α +µ +ds)Is

−k2E−αIs +(θ2 +µ +dr)Ir


the Jacobian matrix of F and V evaluated at disease-free equilibrium point (Q1) are respec-

tively given by F and V as follows
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F =
∂Fi(x1)

∂x j
=


0 β1S β2S

0 0 0

0 0 0

=


0 β1ΛA5

A4µ

β2ΛA5
A4µ

0 0 0

0 0 0



V =
∂Vi(x1)

∂x j
=


k1 + k2 +µ −(1− p)θ1 −(1− p)θ2

−k1 θ1 +α +µ +ds 0

−k2 −α θ2 +µ +dr



=


A8 −(1− p)θ1 −(1− p)θ2

−k1 A1 0

−k2 −α A2


The basic reproduction number (R0) which is defined as the spectral radius of the next genera-

tion method, and denoted by ρ(FV−1) is evaluated to:

R0 = ρ(FV−1) =
A5A6Λ

A4A9µ

Thus, E2, Is2 and Ir2 can be expressed as

E2 =
A1A2µ

A6
(R0−1)

Ir2 =
A3µ

A6
(R0−1)

Is2 =
k1A2µ

A6
(R0−1)

Because the parameter values are all positive so that A1,A2,A3, and A6 are also positive. Thus,

E2, Is2 and Ir2 exist if R0 > 1.

Theorem 4.1. The model (2.1) has two equilibrium points as follows:

(1) The disease-free equilibrium point Q1 = (S1,V1,E1, Is1, Ir1) =
(

ΛA5
A4µ

, εΛ

A4
,0,0,0

)
(2) The endemic equilibrium point Q2(S2,V2,E2, Is2, Ir2)

5. THE STABILITY ANALYSIS OF EQUILIBRIUM POINTS

Theorem 5.1. The disease-free equilibrium point Q1 of model (2.1) is locally asymtotically

stable in domain Ω if R0 < 1,a0 > 0,a1 > 0,a3 > 0, and a1a2−a3a0 > 0.
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Proof. The Jacobian matrix evaluated at Q1 is given by

J(Q1) =



−µ η 0 −β1ΛA5
A4µ

−β2ΛA5
A4µ

0 −A4 0 0 0

0 0 −A8
β1ΛA5
A4µ

+(1− p)θ1
β2ΛA5
A4µ

+(1− p)θ2

0 0 k1 −A1 0

0 0 k2 α −A2


The first two eigenvalues are λ1 =−µ < 0,λ2 =−A4 < 0, while the other three eigenvalues in

the form of polynomial as follow,

λ 3 +a1λ 2 +a2λ +a3 = 0

where:

a1 = A1 +A2 +A8

a2 = A1A2 +A2A8 +A1A8− k2

(
β2ΛA5
A4µ

+(1− p)θ2

)
− k1

(
β1ΛA5
A4µ

+(1− p)θ1

)
a3 = A9(1−R0)

By Routh-Hurwitz criterion, the equilibrium point Q1 is locally asymptotic stable if and only if

hold conditions:

• a1 > 0,

• a3 > 0,

• a1a2−a3 > 0

We can see that a1 is always positive, a3 = A9(1−R0)> 0 if R0 < 0 and other conditions will

be proven by numerical simulations. Therefore all solutions of the characteristic polynomial

have negative real parts if R0 < 0,a1 > 0,a3 > 0, and a1a2−a3 > 0. So that, the disease-free

equilibrium point is locally asymptotically stable. �

The global stability of equilibrium points offers a more comprehensive understanding of the

model’s dynamics beyond just local stability. Analyzing the global stability of the equilibrium

point is crucial for a more precise interpretation because it doesn’t rely on the initial size of

subpopulations, thus capturing the dynamic essence of the model [17]. In this context, we use

the Castillo-Chavez method to examine the global stability of the Disease-Free Equilibrium
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(DFE). In this method the system is written as,

dY
dt

= F(Y,Z)

dZ
dt

= G(Y,Z)

where the Y ∈ Rm is the class of uninfected individuals and Z ∈ mathbbRn is the class of in-

fected individuals. Suppose Q1 = (Y 0,~0) is the disease-free equilibrium point, Q1 is globally

asymptotic stable if R0 < 1 and meets the following conditions

(1) for dY
dt = (Y,0),Y 0 globally asymptotically stable

(2) G(Y,Z) = AZ− Ĝ(Y,Z), Ĝ(Y,Z)≥ 0,∀(Y,Z) ∈Ω

where A = DZG(Y 0,0) is the M-matrix (the off diagonal elements of A are non-negative ) and

Ω is the region.

Theorem 5.2. The disease-free equilibrium point of the system Q1 = (Y 0,0) is globally asymp-

totic stable if R0 < 1 and following the conditions (H1) and (H2).

Proof. In order to prove the theorem of Castillo-Chavez method [18], first the model can be

rewrite as

dY
dt

= F(Y,Z) =

(1− ε)Λ+ηV − (β1Is +β2Ir +µ)S

εΛ− (η +µ)V



dZ
dt

= G(Y,Z) =


(β1Is +β2Ir)S+(1− p)θ1Is +(1− p)θ2Ir− (k1 + k2 +µ)E

k1E− (θ1 +α +µ +ds)Is

k2E +αIs− (θ2 +µ +dr)Ir


G(Y,~0) =~0

where Y = (S,V ) ∈ R2
+ and Z = (E, Is, Ir) ∈ R3

+. We consider that,

dY
dt

= F(Y,~0) =

(1− ε)Λ+ηV −µS

εΛ− (η +µ)V


which we get,

Y (t) =

S(t)

V (t)

=

 (1−ε)Λ
µ

+ εΛ

η+µ
+S(0)e−µt +V (0)e−(η+µ)t

εΛ

η+µ
+V (0)e−(η+µ)t





DYNAMICAL ANALYSIS OF TUBERCULOSIS DISEASE WITH SVEIR MODEL 11

It is observed that S(t)→ Λ(η+µ−ηµ)
µ(η+µ) and V (t)→ εΛ

η+µ
as t → ∞, showing that Y 0 is globally

asymptotically stable and condition (H1) is satisfied. Next, we notice that A is Jacobian matrix

evaluated at the disease-free point,

A =


−(k1 + k2 +µ) β1Λ(η+µ−ηµ)

(η+µ)µ +(1− p)θ1
β2Λ(η+µ−ηµ)

(η+µ)µ +(1− p)θ2

k1 −(θ1 +α +µ +ds) 0

k2 α −(θ2 +µ +dr)



Ġ(Y,Z) =


(β1Is +β2Ir)

(
Λ(η+µ−ηµ)

(η+µ)µ −S
)

0

0


It is seen that G(Y,Z) are non-negative, and condition (H2) also satisfied. Since both condition

are satisfied, the disease-free point Q1 is globally asymptotically stable in domain Ω. �

Theorem 5.3. The endemic equilibrium point Q2 of model (2.1) exist if R0 > 1 and locally

asymtotically stable in domain Ω if b1 > 0,b4 > 0,∆∗2 > 0, and ∆∗3 > 0.

Proof. The Jacobian matrix evaluated at Q2 is given by

J(Q2) =



−(µ(R0−1)+µ) η 0 −β1A9
A6

−β2A9
A6

0 −A4 0 0 0

µ(R0−1) 0 −A8
β1A9
A6

+(1− p)θ1
β2A9
A6

+(1− p)θ2

0 0 k1 −A1 0

0 0 k2 α −A2


The first eigenvalue is λ1 =−A4 < 0, while the other eigenvalues in the form of polynomial as

follow,

λ 4 +b1λ 3 +b2λ 2 +b3λ +b4 = 0

where:

b1 = A1 +A2 +A8 +µR0

b2 = A2µR0 +(A1 +A8)(A2 +µR0)+A1A8− k1

(
β1A9
A6

+(1− p)θ1

)
− k2

(
β2A9
A6

+(1− p)θ2

)
b3 = µR0 (A1(A2 +A8)+A2A8− (1− p)(k1θ1 + k2θ2))−

A9

A6
µ(k1β1 + k2β2)

b4 = A9µ(R0−1)
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The endemic equilibrium point Q2 is locally asymptotically stable if only if following Routh-

Hurwitz criterion

• b1 > 0,

• b4 > 0,

• ∆∗2 = b1b2−b3 > 0,

• ∆∗3 = b3∆∗2− (b1)
2b4 > 0

We can see that b1 is always positive, b4 = A9µ(R0− 1) > 0 if R0 > 0, and other conditions

will be proven by numerical simulations. �

6. NUMERICAL SIMULATION

Numerical simulation aims to illustrate the results of the analysis that has been obtained in

the previous section. In this section, a numerical simulation will be shown with initial val-

ues (S,V,E, Is, Ir) = (50,18,10,7,5). By taking values of parameters β1 = 0.006356,β2 =

0.003458, p = 0.8 in the first simulation, we have basic reproduction number R0 = 0.311 < 1

with the disease-free equilibrium point Q1 = (61.1143,1.3856,0,0,0). By using this parame-

ters, we hold Routh-Hurwitz criterion, that is a1a2− a3 = 2.179 > 0. Based on the analytical

analysis, the equilibrium point Q1 is locally asymptotically stable. Thus, by using the initial

values above, the graph shown in Figure 2 is obtained.

Next, by using a set of parameter values β1 = 0.06356,β2 = 0.03458, p= 0.57, we have R0 =

3.99> 1 with the disease-free equilibrium point Q1 = (61.1143,1.3856,0,0,0) and the endemic

equilibrium point Q2 = (15.2812,1.3856,11.6773,0.3111,0.8159). By using this parameters,

we have λ 4+(2.116)λ 3+(1.1705)λ 2+(0.06916)λ +0.0028. These also holds Routh-Hurwitz

criterion ∆∗2 = 2.407 > 0 and ∆∗3 = 0.1539 > 0. From the analytical analysis, the equilibrium

point Q2 is locally asymptotically stable when R0 > 1 and the graph shown in Figure 3.

Based on Figure 2, the susceptible populations S and the vaccinated populations V progress

to their state value while populations E, Is and Ir towards zero as time goes on. This suggests

that if R0 < 1, then the disease will disappear from a population. From the graph it can be

seen that the solution will go to the disease-free equilibrium point Q1 when the value is R0 < 1,

thus the simulation confirm that from the results of the disease-free equilibrium point analysis
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FIGURE 2. Simulation when

R0 < 1

FIGURE 3. Simulation when

R0 > 1

is locally asymptotically stable. Based on Figure 3, for the value of R0 > 1 the solution of the

model both susceptible, vaccinated, latent and infected populations will go to a value that is an

endemic equilibrium point as time goes on. This means that if R0 > 1 then the system will

remain endemic and the disease will continue to spread in the population.

(A) The effect of treatment rate on the number of Is (B) The effect of treatment rate on the number of Ir

FIGURE 4. The number of infected class with different p values

From the basic reproduction number formula and the parameter values, we can reduce the

number of R0 by decreasing the rate of infection β1 and β2. In order to decreasing the rate of
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infection we can increasing the rate of treatment (p). Figure 4 illustrate the effect of treatment

rate on the number of the infected population. It is shows that enhancing both treatment is indis-

pensable for reducing the overall infected TB patient population. This shows that tuberculosis

disease can be controlled by treating infective people until the treatment is completed.

7. CONCLUSION

The mathematical model of tuberculosis disease spread is in the form of a nonlinear ordinary

differential equation system SV EIR. The system has two equilibrium points, namely disease-

free equilibrium (DFE) points and endemic equilibrium (EE) points, and has a basic reproduc-

tion number (R0). Based on stability analysis, the disease-free equilibrium point is locally and

globally asymptotically stable when R0 < 1. Furthermore, the endemic equilibrium point exists

if R0 > 1 and locally asymptotic stable if the Routh–Hurwitz criterion is met. Numerical sim-

ulations also support the results of the analysis obtained. By using a parameter that R0 < 1, the

graph solution goes to the disease-free equilibrium point and when the parameter gives R0 > 1

the graph solution goes to the endemic point. Furthermore, from the basic reproduction number

formula we can reduce the number of by decreasing the rate of infection. In order to decreas-

ing the rate of infection we can increasing the rate of treatment. This shows that tuberculosis

disease can be controlled by treating infective people until completed treatment.
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