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Abstract. This paper examined the mathematical model of Zika virus transmission, focusing on the impact of

the virus on humans and mosquitoes. Human and mosquito populations involved in Zika virus transmission are

divided into two categories: susceptible and infected. In addressing the nonlinear differential equation that govern-

ing Zika virus transmission, the Taylor series method (TSM) and the new Homotopy perturbation method (NHPM)

were employed to derive semi-analytical solutions. Furthermore, for a comprehensive assessment of the nonlinear
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system behavior and the accuracy of the obtained solutions, a comparative analysis was performed using numeri-

cal simulations. This comparative analysis enabled us to validate the results and to gain valuable insights into the

behavior of the Zika virus transmission model under different conditions. Moreover, to decrease the number of in-

fected human population, we analyzed the contact rate of Zika virus transmission between humans and mosquitoes,

as well as between humans and humans.

Keywords: Zika virus transmission; Taylor series method (TSM); new homotopy perturbation method (NHPM);

system of nonlinear equation; semi-analytical solution; mathematical modeling; numerical simulation.
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1. INTRODUCTION

The primary mosquito that spreads the Zika virus is the Aedes species. In addition, the virus

can be transferred from mother to children through blood transfusions, pregnancy, or soon after

delivery. Recent studies have focused on the effectiveness and challenges associated with the

Zika virus. It examines the stability of disease-free equilibrium, investigates the impact of sig-

nificant variables on disease propagation, and conducts numerical simulations to evaluate strate-

gies for control and the effect of delayed pregnancy on ZIKV transmission and microcephaly

rates [1, 2, 3]. In epidemiology, the SIS model is a prominent tool for understanding the trans-

mission dynamics of infectious diseases within a population via mathematical models. Over

time, this model has undergone modifications, giving rise to variants such as the SIR model,

the SEIR model, and more in the field of mathematics. The epidemiological model describes

the dynamic interplay of the compartments across time using a set of differential equations,

which provides crucial insights into illness transmission and growth [4, 5, 6]. Researchers have

constructed mathematical models to understand Zika virus transmission dynamics. Mathemat-

ical models hypothesize that the virus primarily moves from mosquitoes to humans. Optimal

control methods for a mathematical model of Zika virus (ZIKV) were developed by [7, 8]. In

addition, [9] formulated and analyzed an innovative system of ordinary differential equations

that encompassed both vector and sexual transmission pathways. [10] presented and scrutinized

several SEIR models of Zika epidemics. [11, 12, 13, 14] contributed by developing a mathe-

matical model of the Zika virus that incorporates nonlinear incidence, vertical transmission,

and temperature considerations. A new mathematical model and Caputo derivative of the Zika

virus transmission among humans and mosquitoes were developed by [15]. Semi-analytical
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solutions are commonly utilized in cases where precise solutions to equations are unattainable

[16, 17, 18, 19]. In a recent investigation [20] a hybrid approach incorporating the Shehu trans-

form, Akbari-Ganji method, and Padé approximation was employed to obtain semi-analytical

solutions for coffee berry disease. Furthermore, [21] utilized the Laplace-Adomian decomposi-

tion method to address a model related to SARS-CoV-2.

The main aim of this paper was to determine an semi-analytical solution for Zika virus trans-

mission using the Taylor series method (TSM) and the new Homotopy perturbation method

(NHPM). To validate these findings, the analytical results were compared with numerical sim-

ulations, offering valuable insights into the dynamics of Zika virus transmission.

Section 2 provides new mathematical model for the Zika virus transmission. The system of

equations is analytically solved using the Taylor series method and a new Homotopy perturba-

tion method in Sections 3 and 4, respectively. The numerical simulation of the model is pre-

sented in Section 5, followed by the discussion of results and the paper’s conclusion in Sections

6 and 7.

2. GOVERNING SYSTEM OF EQUATION

Numerous mathematical models that study the spread of the Zika virus presume that

mosquito-to-human transmission is the primary pathway. However, the World Health Orga-

nization recognizes that the Zika virus can also be spread via transfusion of infected blood

and sexual contact with someone carrying the virus. [15] has developed a mathematical model

including both transmission pathways. The Zika virus transmission model is based on the pop-

ulation of humans and mosquitoes, which are divided into two groups:

dNh

dt
= ∧h− k1(Sh + Ih),

dNm

dt
= ∧m− k2(Sm + Im).

These two categories are divided into four sub-classes, where Nh represents the combined num-

ber of susceptible and infected humans (Nh = Sh+ Im), and Nm represents the combined number

of susceptible and infected mosquitoes (Nm = Sm + Im).
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(1)

dSh

dt
= ∧h−β1ShIh−β2ShIm− k1Sh,

dIh

dt
= β1ShIh +β2ShIm− k1Ih,

dSm

dt
= ∧m−µ1SmIh− k2Sm,

dSm

dt
= µ1SmIh− k2Im.

with initial conditions:

(2) Sh(0) = S0h, Ih(0) = I0h, Sm(0) = S0m, Im(0) = I0m.

where the recruitment rate of the human population is denoted by ∧h, and ∧m represents the

recruitment rate of the mosquito population. β1 indicates the effective contact rate from humans

to humans, while β2 denotes the effective contact rate from mosquitoes to humans. The effective

contact rate between humans and mosquitoes is denoted by µ . k1 and k2 represent the natural

death rates of humans and mosquitoes, respectively. The state variables Sh and Ih represent

susceptible and infected individuals, respectively, in the human population, while Sm and Im

represent susceptible and infected mosquitoes. Variable t corresponds to time.

As equation (1) lacks an exact solution, we provide an semi-analytical solution by employ-

ing the Taylor series method (TSM) and new Homotopy perturbation method (NHPM). For

computational purposes, systematic analysis was conducted using MATLAB.

3. SEMI-ANALYTICAL SOLUTION FOR ZIKA VIRUS USING TAYLOR SERIES METHOD

(TSM)

In this section, we apply the Taylor series method to a system of nonlinear equation for Zika

virus transmission. The basic concept and applications of TSM was discussed by researchers:

[22] developed a Taylor series technique with numerical derivatives for initial value issues, [23]

solved the Lane-Emden problem using the Taylor series approach, [24] implemented Taylor

series approach in partial derivatives. This method has been successfully used to solve many

differential problems in applied fields [25, 26, 27, 28, 29].



MATHEMATICAL ANALYSIS OF ZIKA VIRUS TRANSMISSION 5

The Taylor series expansion (upto order four) for the Zika virus model is written as:

(3)

Sh(t) =
4

∑
n=0

dnSh

dtn

∣∣
t=0

tn

n!
= Sh(0)+

S
′
h(0)
1!

t +
S
′′
h(0)
2!

t2 +
S
′′′
h (0)
3!

t3 +
S

iv

h (0)
4!

t4,

Ih(t) =
4

∑
n=0

dnIh

dtn

∣∣
t=0

tn
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I
′
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t +
I
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iv

h (0)
4!
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Sm(t) =
4
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∣∣
t=0
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n!
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S
′
m(0)
1!

t +
S
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m(0)
2!

t2 +
S
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3!

t3 +
S

iv

m(0)
4!

t4,

Im(t) =
4

∑
n=0

dnIm
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∣∣
t=0

tn

n!
= Im(0)+

I
′
m(0)
1!

t +
I
′′
m(0)
2!

t2 +
I
′′′
m(0)
3!

t3 +
I

iv

m(0)
4!

t4.

We consider the following numerical values [15] for the parameters in Zika virus transmis-

sion: ∧h = 1.2, ∧m = 0.3, β1 = 0.125×10−4, β2 = 0.4×10−4, k1 = 0.004, k2 = 0.0014, µ1 =

0.475×10−5 and initial conditions Sh(0) = 800, Ih(0) = 200, Sm(0) = 600 and Im(0) = 300.

Using the numerical values, equation (1) becomes:

(4)

S′h(t) = 1.2− (0.125×10−4)Sh(t)Ih(t)− (0.4×10−4)Sh(t)Im(t)− (0.004)Sh(t),

I′h(t) = (0.125×10−4)Sh(t)Ih(t)− (0.4×10−4)Sh(t)Im(t)− (0.004)Ih(t),

S′m(t) = 0.3− (0.475×10−5)Sm(t)Ih(t)− (0.0014)Sm(t),

I′m(t) = (0.475×10−5)Sm(t)Ih(t)− (0.0014)Im(t).

Setting t = 0 in equation (4) and using initial conditions, one can obtain:

(5) S′h(0) =−13.6, I′h(0) = 10.8, S′m(0) =−1.11, I′m(0) = 0.15.

To find the next derivative, differentiate equation (4) with respect to t, one can obtain:

(6)

S′h(t) =−(0.125×10−4)[Sh(t)I′h(t)+S′h(t)Ih(t)]− (0.4×10−4)[S′h(t)Im(t)+Sh(t)I′m(t)]

−(0.004)S′h(t),

I′h(t) = (0.125×10−4)[Sh(t)I′h(t)+S′h(t)Ih(t)]+(0.4×10−4)[S′h(t)Im(t)+Sh(t)I′m(t)]

−(0.004)I′h(t),

S′m(t) =−(0.475×10−5)[S′m(t)Ih(t)+Sm(t)I′h(t)]− (0.0014)S′m(t),

I′m(t) = (0.475×10−5)[S′m(t)Ih(t)+Sm(t)I′h(t)]− (0.0014)I′m(t).
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Setting t = 0 in equation (6) and using initial conditions and equation (5), one can obtain:

(7) S′′h(0) = 0.1388, I′′h (0) =−0.1276, S′′m(0) =−0.0281715, I′′m(0) = 0.0295155.

Proceeding like this, the successive Taylor series derivatives are as follows:

Third order:

(8)
S′′′h (0) = 0.001598904, I′′′h (0) =−0.001643704,

S′′′m (0) = 0.000543749, I′′′m (0) =−0.00054563.

Fourth order:

(9)
S

iv

h (0) =−0.0000713016, I
iv

h (0) = 0.00007148,

S
iv

m(0) = 5.724027041×10−6, I
iv

m(0) =−5.721392801×10−6.

By substituting the initial conditions, equations (5), (8) and (9) in equation (3), one can obtain

the TSM solution for the Zika virus transmission:

Sh(t) = 800−13.6t +0.0694t2 +0.000266484t3−2.9709×10−6t4,(10)

Ih(t) = 200+10.8t−0.0638t2−0.00027395t3 +2.97836710−6t4,(11)

Sm(t) = 600−1.11t−0.01408575t2 +0.000090625t3 +2.385008333×10−7t4,(12)

Im(t) = 300+0.15t +0.01475775t2−0.0000909383t3−2.38391210−7t4.(13)

4. SEMI-ANALYTICAL SOLUTION FOR ZIKA VIRUS USING NEW HOMOTOPY PER-

TURBATION METHOD (NHPM)

In this section, we apply the NHPM to a system of nonlinear equation for Zika virus transmis-

sion. The basic concept and applications of the new Homotopy perturbation method (NHPM)

was discussed by researchers: [30] solved prey-predator system of equation using NHPM, [31]

applied for virus dynamics in computer network, [32] solved nonlinear parabolic equation in

chemical sciences, [33] solved heat conduction equation. The new approach to the Homo-

topy perturbation method provides a simple semi solution in the zeroth iteration. This method

employs a Homotopy transform to produce a series solution that converges to the differential

equations.

We construct the Homotopy for the Equation (1) using initial conditions (2):
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(14)

(1− p)[
dSh

dt
−∧h +β1ShI0h +β2ShI0m + k1Sh]+ p[

dSh

dt
−∧h +β1ShIh +β2ShIm + k1Sh],

(1− p)[
dIh

dt
−β1S0hIh−β2S0hI0m + k1Ih]+ p[

dIh

dt
−β1ShIh−β2ShIm + k1Ih],

(1− p)[
dSm

dt
−∧m +µ1SmI0h + k2Sm]+ p[

dSm

dt
−∧m +µ1SmIh + k2Sm],

(1− p)[
dIm

dt
−µ1S0mI0h + k2Im]+ p[

dSm

dt
−µ1SmIh + k2Im].

The approximate solutions of the equation (14) are given by

(15)

Sh = Sh0 + pSh1 + p2Sh2 + ...,

Ih = Ih0 + pIh1 + p2Ih2 + ...,

Sm = Sm0 + pSm1 + p2Sm2 + ...,

Im = Im0 + pIm1 + p2Im2 + ....

Substituting the equation (15) in equation (14) and equating the coefficients of p0, one can

obtain:

(16)

dSh0

dt
−∧h +β1Sh0I0h +β2Sh0I0m + k1Sh0 = 0,

dIh0

dt
−β1S0hIh0−β2S0hI0m + k1Ih0 = 0,

dSm0

dt
−∧m +µ1Sm0I0h + k2Sm0 = 0,

dIm0

dt
−µ1S0mI0h + k2Im0 = 0.

subject to the initial conditions for the equation (16):

(17) Sh0(0) = S0h, Ih0(0) = I0h, Sm0(0) = S0m, Im0(0) = I0m.

Solving equation (16) using the initial conditions (17), one can obtained the following NHPM

solutions for the Zika virus transmission:

(18)

Sh(t) = e−k1t [S0h +
β1S0hI0h +β2S0hI0m−∧h

k1
]− [

β1S0hI0h +β2S0hI0m−∧h

k1
],

Ih(t) = e−k1t [I0h−
β1S0hI0h +β2S0hI0m

k1
]+ [

β1S0hI0h +β2S0hI0m

k1
],

Sm(t) = e−k2t [S0m +
µ1S0mI0h−∧m

k2
]+ [−µ1S0mI0h +∧m

k2
],
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Im(t) = e−k2t [I0m−
µ1S0mI0h

k2
]+ [

µ1S0mI0h

k2
].

Setting up the numerical values [15] for the obtained NHPM: ∧h = 1.2, ∧m = 0.3, β1 = 0.125×

10−4, β2 = 0.4× 10−4, k1 = 0.004, k2 = 0.0014, µ1 = 0.475× 10−5, with initial conditions

Sh(0) = 800, Ih(0) = 200, Sm(0) = 600 and Im(0) = 300. Hence, the solution of system (1) by

NHPM is as follows:

Sh(t) = 3400e−0.004t−2600,(19)

Ih(t) =−2700e−0.004t +2900,(20)

Sm(t) = 792.8571427e−0.0014t−192.8571429,(21)

Im(t) =−107.1428572e−0.0014t +407.1428572.(22)

5. NUMERICAL SIMULATION

Using the ode solver, a system of first-order nonlinear differential equation (1) was numer-

ically solved. The MATLAB software program was used to obtain numerical solutions. The

accuracy of the solution was then determined by comparing the numerical results with the semi-

analytical solutions obtained using the TSM and NHPM. Visual representations of the analytical

expressions for the concentrations Sh, Ih, Sm and Im are shown in the figures along with the cor-

responding numerical results for the given parameter values. The comparison demonstrates

satisfactory agreement between the analytical solution obtained through TSM, but there is a

small deviation in the NHPM with the numerical results. To further illustrate the accuracy of

the analytical solutions with the simulation, error estimation tables are provided. The maximum

averages for the TSM and NHPM with the numerical simulation are noted as 0.0000001% and

0.0074546% respectively.

6. DISCUSSIONS

The Taylor series method (TSM) and the new Homotopy perturbation method (NHPM) are

used to solve the system of equation for the concentration profiles Sh, Ih, Sm, Im in Zika virus
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transmission. The semi-analytical solutions of equations (10-13) and equations (19-22) are

compared to the numerical simulation and figures were produced using the given parameters.

The concentration of susceptible human Sh is plotted in Figure 1.a using the equation (10)

and equation (19). With the effect of these parameters, the concentration of the susceptible

humans decreases. Table 1 provides the results of TSM and NHPM for susceptible humans.

Similar to Figure 1.a in Figure 1.c, the concentration of susceptible mosquitoes Sm equation

(12) and equation (21) is visually presented and decreases as a result of these parameters. It is

clear that human and mosquito susceptibility rates fall over time due to impact of the infection

rates. Table 3 provides the results of TSM and NHPM for susceptible mosquitoes.

The concentration of the infected human Im is plotted in Figure 1.b using equation (11) and

equation (20). With the effects of these parameters, the concentration of infected humans is

increasing. Table 2 provides the results of TSM and NHPM for infected humans. Similar to

Figure 1.b in Figure 1.d, concentration of infected mosquitoes Im equation (13) and equation

(22) is visually presented and increases as a result of these parameters. It is evident that the

rates of human and mosquito infections are growing over time, as the contact rate is on high.

Table 4 provides the results of TSM and NHPM for infected mosquitoes.

From the simulation computed using MATLAB, we can conclude that TSM provides a better

approximation than NHPM in solving the system of nonlinear equation in Zika virus trans-

mission. It should be noted that within a small time internal, TSM and NHPM provide better

approximation with simulation, but NHPM diverges as the average error % increases over the

time. The convergence of the TSM with numerical simulation for time t, t ∈ [0,100] is shown

in Figure 2.

In Figure 3.a, when β1 is increased [ 0.1×10−4 - 0.7×10−4 ] while keeping other parameters

fixed, the susceptible human population decreases. Figure 3.b illustrates that with an increase

in β1 [ 0.1× 10−4 - 0.7× 10−4 ] and fixed parameters, the infected human population also

increases. In Figure 4.a, as β2 is increased [ 0.1× 10−4 - 0.9× 10−4 ] while other parameters

remain fixed, the susceptible mosquito population decreases. Figure 4.b illustrates that with an

increase in β2 [ 0.1×10−4 - 0.9×10−4 ] and fixed parameters, the infected mosquito population

also increases.



10 DHARMALINGAM, JEEVA, NASIR, RIAD, FADUGBA, KEKANA, FIKADU, HESHAM, MAYSOON

Figures 5.a-5.c illustrates the impact of the human-to-human contact rate β1, on the con-

centrations of susceptible humans Sh, and infected humans Ih. It is evident that a decrease in

β1 values [1.25× 10−4, 1.25× 10−5, 1.25× 10−6] leads to an increase in the number of sus-

ceptible humans and a decrease in the number of infected humans. Similarly, Figures 6.a-6.c

demonstrates the effect of the mosquito-to-human contact rate β2, on Sh and Ih concentrations.

The graphs show that a decrease in β2 values [0.4×10−3, 0.4×10−4, 0.4×10−5] results in an

increase in the number of susceptible humans and a decrease in the number of infected humans.

(a) Susceptible human population Sh(t) (b) Infected human population Ih(t)

(c) Susceptible mosquitoes population Sm(t) (d) Infected mosquitoes population Im(t)

FIGURE 1. Comparison of semi-analytical expressions obtained by TSM and

NHPM with numerical simulation for the Zika virus transmisson.
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FIGURE 2. The accuracy of TSM with numerical simulation over time t ∈ [0,100]

(a) (b)

FIGURE 3. Impact of varying β1 values on susceptible human population Sh(t)

and infected human population Ih(t)



12 DHARMALINGAM, JEEVA, NASIR, RIAD, FADUGBA, KEKANA, FIKADU, HESHAM, MAYSOON

(a) (b)

FIGURE 4. Impact of varying β2 values on susceptible mosquitoes population

Sm(t) and infected mosquitoes population Im(t)

TABLE 1. Comparison of TSM and NHPM with numerical results for the con-

centration susceptible human Sh

Susceptible human Sh

t Num. TSM NHPM
TSM

Error%

NHPM

Error%

0 800.000000 800.000000 800.000000 0.000000 0.000000

0.2 797.282778 797.282778 797.281088 0.000000 0.000211

0.4 794.571121 794.571121 794.564350 0.000000 0.000852

0.6 791.865041 791.865041 791.849784 0.000000 0.001926

0.8 789.164551 789.164551 789.137389 0.000000 0.003441

1 786.469664 786.469663 786.427164 0.000001 0.005403

Average Error 0.0000001 0.0019721
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(a) Effect of β1 = 1.25×10−4 (b) Effect of β1 = 1.25×10−5

(c) Effect of β1 = 1.25×10−6

FIGURE 5. Graphical representation of the susceptible and infected human pop-

ulation when varying the contact rate of humans to humans β1
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(a) Effect of β2 = 0.4×10−3 (b) Effect of β2 = 0.4×10−4

(c) Effect of β2 = 0.4×10−5

FIGURE 6. Graphical representation of the susceptible and infected human pop-

ulation when varying the contact rate of mosquitoes to humans β2
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TABLE 2. Comparison of TSM and NHPM with numerical results for the con-

centration infected human Ih

Infected human Ih

t Num. TSM NHPM
TSM

Error%

NHPM

Error%

0 200.000000 200.000000 200.000000 0.000000 0.000000

0.2 202.157446 202.157445 202.159136 0.000001 0.000836

0.4 204.309775 204.309774 204.316546 0.000001 0.003314

0.6 206.456973 206.456973 206.472230 0.000000 0.007390

0.8 208.599029 208.599028 208.626191 0.000001 0.013021

1 210.735929 210.735929 210.778429 0.000000 0.020167

Average Error 0.0000001 0.0074546

TABLE 3. Comparison of TSM and NHPM with numerical results for the con-

centration susceptible mosquitoes Sm

Susceptible mosquitoes Sm

t Num. TSM NHPM
TSM

Error%

NHPM

Error%

0 600.000000 600.000000 600.000000 0.000000 0.000000

0.2 599.777437 599.777437 599.778030 0.000000 0.000099

0.4 599.553751 599.553752 599.556123 0.000001 0.000396

0.6 599.328947 599.328948 599.334278 0.000001 0.000889

0.8 599.103029 599.103031 599.112496 0.000001 0.001580

1 598.876001 598.876005 598.890775 0.000001 0.002467

Average Error 0.0000001 0.0009051
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TABLE 4. Comparison of TSM and NHPM with numerical results for the con-

centration infected mosquitoes Im

Infected mosquitoes Im

t Num. TSM NHPM
TSM

Error%

NHPM

Error%

0 300.000000 300.000000 300.000000 0.000000 0.000000

0.2 300.030590 300.030589 300.029995 0.000001 0.000198

0.4 300.062356 300.062355 300.059983 0.000001 0.000791

0.6 300.095294 300.095293 300.089962 0.000001 0.001777

0.8 300.129400 300.129398 300.119932 0.000001 0.003155

1 300.164669 300.164666 300.149895 0.000001 0.004922

Average Error 0.0000001 0.0018071

7. CONCLUSION

In this paper, we derived a solution for a system of nonlinear equations describing Zika virus

transmission dynamics. By utilizing the Taylor series method and new Homotopy perturbation

method (NHPM), we obtained semi-analytical expressions for the populations of susceptible

humans, infected humans, susceptible mosquitoes, and infected mosquitoes. The analytical

solutions were compared with numerical simulations, and the results showed that the Taylor

series method demonstrated excellent agreement with the numerical outcomes. Figures and Ta-

bles emphasize the accuracy and efficiency of the Taylor series method in addressing strongly

nonlinear equations. The behavior of the different population compartments was distinct un-

der the Taylor series method, new Homotopy perturbation method, and numerical approaches.

Specifically, the number of susceptible humans and mosquitoes declined, while the infected

populations of both humans and mosquitoes increased. A key part of the analysis focused

on reducing the infected human population by decreasing the mosquito-to-human and human-

to-human contact rates. The results indicated that when both contact rates were reduced, the

number of infected humans diminished over time, thereby illustrating an effective strategy for

controlling the spread of Zika. These semi-analytical methods offer powerful computational
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tools in the field of epidemiology, aiding in the understanding of disease transmission and pro-

viding insights into infectious disease management within populations.
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