
___________ 

*Corresponding author 

E-mail address: moskiplangat@gmail.com 

Received July 02, 2024 

1 

  

          Available online at http://scik.org 

          Commun. Math. Biol. Neurosci. 2024, 2024:105 

https://doi.org/10.28919/cmbn/8744 

ISSN: 2052-2541 

 

 

MIXED EFFECTS AND SEMI-PARAMETRIC BAYESIAN INTEGRATION 

MODELS FOR MEASUREMENT ERROR CORRECTION IN THE CONTEXT 

OF FERTILIZER APPLICATION LEVELS: A SIMULATION STUDY 

AMOS KIPKORIR LANGAT1,2,*, SAMUEL MUSILI MWALILI2, LAWRENCE NDEKELENI KAZEMBE3 

1Pan African University Institute for Basic Sciences, Technology, and Innovation, JKUAT, Nairobi, Kenya 

2Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 

3University of Namibia, Windhoek, Namibia 

Copyright © 2024 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: In agricultural research, the precision of variable measurement is crucial as it forms the foundation for 

accurate estimations and informed decision-making. However, the presence of measurement errors in real-world 

data often leads to skewed estimates and flawed conclusions. This study addresses the common challenge of 

measurement error, focusing on the optimization of fertilizer application levels—a critical factor in sustainable 

agriculture. Through carefully designed simulation studies, we introduce controlled measurement errors into 

Gaussian process models and rigorously evaluate their effects on regression outcomes. To strengthen the reliability 

of our findings, we integrate mixed effects models with a semi-parametric Bayesian framework, leveraging the 

MCMC Gibbs Sampler for robust inference. Our results highlight the significant impact of measurement errors on 

the precision of regression estimates, while also demonstrating that advanced statistical models—particularly those 

combining mixed effects with Bayesian integration—can effectively reduce these errors. This research not only 

improves the accuracy of agricultural analyses but also offers practical methodologies for optimizing fertilizer use, 

ultimately contributing to increased agricultural productivity and sustainability. The implications of our findings 
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extend beyond theoretical significance, providing actionable insights that can transform resource management in 

agricultural practices. 

Keywords: measurement error correction; mixed effects models; Bayesian integration; Gibbs sampler; simulation 

studies; land size; fertilizer levels. 

2020 AMS Subject Classification: 62F15. 

 

1. INTRODUCTION 

Accurate measurement of variables is paramount in statistical modeling, particularly in 

agricultural research where precise estimations drive informed decision-making processes [1,2,3]. 

However, real-world data often suffer from measurement errors, which can lead to biased 

estimates and erroneous conclusions [4,5]. Addressing this challenge requires robust 

methodologies capable of correcting for measurement errors and ensuring the reliability of 

regression analyses. 

This research focuses on correcting measurement error models and optimizing fertilizer 

application levels through simulation studies, with a specific emphasis on land size area and 

various covariates including soil characteristics, fertility, and moisture content. The study 

simulates data from variants of Gaussian processes, allowing for controlled manipulation of 

measurement errors within the regressors [6]. 

The primary objective of this simulation study is to evaluate the impact of measurement errors 

on independent variables (regressors) in regression analysis. By introducing controlled 

measurement errors into the regressors, the study aims to assess how these errors influence the 

accuracy and coverage of estimates provided by the regression model [7,8]. 

Understanding the effects of measurement errors on regression outcomes is crucial for improving 

the reliability and applicability of statistical models in agricultural research [9,10,11,12]. By 

identifying and mitigating the impact of measurement errors, researchers can enhance the 

accuracy of predictions and optimize fertilizer application levels, thereby contributing to more 

efficient and sustainable agricultural practices [13,14,15,16]. 
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In this paper, we present the methodology employed in the simulation study, discussing the 

implications of measurement errors on regression estimates and highlighting the importance of 

corrective measures in enhancing the reliability of statistical analyses in agricultural research 

[17,9,18]. Additionally, we integrate mixed effect models to account for the hierarchical 

structure of the data, further enhancing the robustness of our analyses [19,20]. Then incorporate 

the Semi-Parametric Bayesian integration approach through the Gibbs Sampler, Markov Chain, 

Monte Carlo [21]. The findings from this research have significant implications for optimizing 

agricultural practices and improving productivity while minimizing resource wastage. 

2. METHODOLOGY 

Linear Regression Model with Measurement Error: 

Consider the linear regression model with measurement error: 

              ++= *

10 ii Xy  

where 
*

iX   is the observed independent variable with measurement error. 

        It can be represented as:     iii XX +=*
                     

Our goal is to find the bias in the estimate of 1  due to the measurement error  . 

Therefore,  

We start with the model:  

          +++= )(10 iii XY  

          +++= iii XY 110
 

Now, we can take the expectation 

          )()()( 110 iiii XY  +++=  

          )()( 110 iiii XY  +++=  

Given that 0)( = i  and 0)( = i  

We have: 



4 

LANGAT, MWALILI, KAZEMBE 

ii XY 10)(  +=  

This shows that the expectation of Y  is linearly related to X  without bias. However, the 

coefficient 1  in our model represents the impact of *X  onY , not X . 

So, let's find the expectation of 
iY conditioned on

iX :  

)()|()|( 110 iiiiii XXXY  +++=  

Given that 0)( = i  and 0)( = i  (Since   is assumed to be independent of X , 

 We have 

iii XXY 10)|(  +=  

This implies that 
*

iX  on average has the same effect on 
iY  as 

iX meaning there is no bias in 

estimating 1 . 

2.1 Linear Mixed Effects Models: 

Mixed effects models extend the standard linear regression model to incorporate both fixed and 

random effects. 

 Mathematically, the mixed effects model can be represented as:  

      iijjii XXY  ++++= 10

*

10  

Where: 

• 
0  and 1  represent the random intercept and slope for the thj  group or levels. 

• 
i  is the error term for the thi  observation. 

In mixed effects models, the random effects account for the hierarchical structure of the data, 

capturing variability within groups or levels. This enhances the robustness of the analysis and 

provides more accurate estimates of regression coefficients. 

2.2 Non Linear Regression Model with Measurement Error 

Consider the non-linear regression model with measurement error: iii XfY  += ),( *
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Where 
*

iX is the observed independent variable with measurement error and f  is a non-linear 

function of 
*

iX  with parameters .  

Similar to before, 
*

iX  can be represented as iii XX +=*
 

Our goal is to find the bias in the estimate of the parameters   due to the measurement error .  

Therefore, we can start the model: 

iiii XfY  ++= ),(  

We can use the Taylor expansion to approximate ),( iiXf +  around 
iX  as: 

iiiii XfXfXf  ),(),(),( ++  

Substituting this approximation into the model, we get: 

iiiiii XfXfY  +++ ),(),(  

Now, let’s take expectations: 

)()),(()),(()( iiiiii XfXfY  +++  

Given that 0)( = i  and 0)( = i ,  

We have:  

                      )),(()( ii XfY   

This shows that the expectation of Y  related to X through the non-linear function f without 

bias. However, estimating parameters   using 
*

iX
 can introduce bias due to the measurement 

error. 

2.3 Non-linear Mixed Effects Models 

Mixed effects models can also be extended to non-linear regression settings. These models 

incorporate both fixed and random effects while allowing for no-linear relationships between the 

variables. The structure of the mixed effects model in the non-linear case would be similar to the 

linear case but function f  may be non-linear. 

ijii XfY  ++= 0),(  
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Where: 

• j0  Represents the random effect for the thj  group or levels. 

• 
i  Is the error term for the thi observation. 

Incorporating random effects into the non-linear mixed effects model accounts for the 

hierarchical structure of the data, providing more accurate estimates of the parameters 𝛽β and 

capturing variability within groups or levels. 

2.4 Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is a widely used metric for assessing the accuracy of a 

predictive model. Its formula is:  

                              

( )

n

yy

RMSE

n

ii

ii
=

−

=

2
ˆ

 

Where: 

• 
iy Represents the observed values of the dependent variable. 

• 
iŷ Represents the predicted values of the dependent variable by the model. 

• n  is the total number of observations. 

2.5 Deviance Information Criterion (DIC) 

The DIC is a measure used in Bayesian statistics to compare and select between different 

Bayesian models. The equation for DIC is: 

                                             DIC = D(θ) + 2pD 

Where: 

D(θ) = the mean deviance of the posterior distribution of the parameters θ 

pD = effective number of parameters, which is calculated as 

Here, D(θ) is the deviance of a particular model, which is calculated as: 

 
=

−=
n

i

iyPD
1

))|(log(2)(   
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Where: )|( iyP  is the likelihood of the observed data 
iy  given the parameters. 

4. RESULTS AND FINDINGS 

Data were simulated from variants of the following Gaussian process: 

 +++++= *

4

*

3

*

2

*

110 iiiii xy  

              iii xx +=*
 

              )1,0(~ N
iid

  

              ),0(~ 2

 Ni  

We set parameters ,00 =  ,65.11 =  ,35.12 = ,7.03 =   12.0.4 −=  with 5,4,3,2,1=  

The simulation study aimed to evaluate the impact of measurement error on the independent 

variables (regressors) in a regression analysis.  

By introducing controlled measurement errors into the regressors ,1x  ,2x ,3x  and 4x  the 

simulation study assessed how these errors influenced the accuracy and coverage of the 

regression model’s estimates. 

Figure 1: Linear and Non-Linear Mixed effects model with measurement Error 
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Figure 1 shows the analysis of the investigation between the application of linear and non-linear 

mixed effects models in scenarios with measurement error. The results are presented visually, 

showcasing the true data alongside the observed data with fitted models.  

In a linear mixed effects model, the relationship between a response variable and a predictor 

variable is modeled. However, there are random effects that influence the response variable. 

These random effects are not directly measured, but they can be taken into account by the model. 

Measurement error can also occur when the predictor variable is not measured perfectly. This 

can lead to biased estimates of the relationship between the predictor variable and the response 

variable. 

Non-linear mixed effects models are similar to linear mixed effects models, but they allow for 

the relationship between the response variable and the predictor variable to be non-linear. 

Measurement error can also occur in non-linear mixed effects models, and it can have similar 

effects to those in linear mixed effects models. 

Overall, the figure suggests that linear and non-linear mixed effects models can be used to 

account for measurement error. This can help to improve the accuracy of the estimates of the 

relationship between a response variable and a predictor variable. 

4.1 Process Model (Likelihood) 

The relationship between the outcome Y  and our predictors, including the true variable 
trueX  

and some non-linear function of Z  is given by: 

                             ++= )(ZfY
ObsX

 

Where )(Zf  is a semi-parametric function of Z  and ),0(~ 2 N    

In the context of Hierarchical models 

                                    
ii XXZfY 21 ,),(,|             Model 1 

                                   
ii XXZfY 2

*

1 ,),(,|              Model 2 

                                   *

21 ,),(,| ii XXZfY               Model 3 

                                  *

2

*

1 ,),(,| ii XXZfY                Model 4 

Models and Coefficients mean for the parameters 
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Coefficient  

Mean for Land 

size ( 1 ) 

Coefficient 

Mean  for 

PH 

( 2 ) 

Coefficient  

Mean for 

Moisture 

(
3 ) 

Coefficient  Mean for 

Fertility 

( 4 ) 

Model 1 1.678021926 0.166164303 0.000168374 0.001890047 

Model 2 1.587009748 0.227480184 -7.23E-05 0.002849426 

Model 3 1.026293296 1.580693002 0.000576071 0.021563858 

Model 4 0.464074057 3.125424642 -0.000271011 0.046263336 

R-Squared 0.9227 0.9155 0.3451 0.9226 

Adjusted R-

Squared 

0.9034 0.8944 0.1814 0.9033 

P-Value 0.002301 0.002755 0.2202 0.002305 

 

Table 1: Models and Coefficients mean for the parameters 

The findings reveal interesting differences between four models. Each model explores the 

relationship between various factors and an outcome we haven't been told about yet. These 

factors include land size, PH level, moisture content, and fertility. The results are presented as 

average values across multiple trials. 

For instance, in model one, a larger piece of land (by one unit) is on average linked to a 1.678 

increase in the target outcome. The coefficient values for each factor tell a similar story across 

the models. 

Two key metrics help us evaluate how well each model explains the data. R-squared, a value 

closer to one being better, tells us what proportion of the outcome's variation can be explained by 

the model. Models one and four have the highest R-squared (around 0.92), suggesting they 

capture most of the outcome's variance. 

 



10 

LANGAT, MWALILI, KAZEMBE 

Adjusted R-squared considers the number of factors included in the model, penalizing models 

with too many. It follows the same trend as R-squared here. 

Finally, the p-value indicates how likely it is that the observed connections between the factors 

and the outcome happened by chance. All models have a very low p-value (below 0.05), 

signifying these relationships are statistically significant. 

In conclusion, based on how well they explain the data, models one and four appear strongest. 

Model two might be less favorable due to a lower R-squared value. Choosing the best model 

depends on the specific question being asked and the context of the research. 

Measurement Error Variability 

 

Figure 2: Estimate of β’s with by measurement error variability 
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The figure 2 shows the results of a simulation investigating the effect of measurement error 

variability on the estimation of β. The left side of the figure shows the estimated values of β 

plotted against the true value, with different colors representing different levels of measurement 

error variability. The right side of the figure shows the bias and standard error of the estimate of 

β, plotted against the measurement error variability. 

The findings of the simulation are that there is a positive correlation between the estimate of β 

and the increase in error variability. This means that as the measurement error variability 

increases, the estimate of β also increases. The increase in error variability is also associated with 

an increase in the standard error of the estimate of β. This means that the estimates become more 

spread out as the measurement error variability increases. 

It is important to note that this is just a simulation, and the results may not apply to all real-world 

situations. However, the findings do suggest that measurement error variability can be an 

important factor to consider when estimating β. 

4.2 Bayesian Integration Using Bayes Theorem 

In Bayesian Integration, we can postulate the hierarchical models as follows: 

                      ( ) ( ) ( )ObsiObsiObsi XZfPXZfYPYXZfP |)(,),(,|,|)(,    

                     Therefore, 

    ( ) ( ) ( ) ( ) 



 dXPZfPZfYPYXZfP ObsiiObsi ||)(,),(,|,|)(, 


=  

We consider a model where outcome Y  is influenced by Z  and   follows a semi- 

parametric form based on error-prone predictors X . 

4.3 Gibbs Sampler  

All models were fitted using WinBUGS with the Gibbs Sampler, an MCMC technique for 

estimating the joint posterior distributions of parameters in the models. The resulting samples 

approximate the joint posterior distribution and were used for inference about the parameters. 
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  4.3.1 Trace Plot for posterior Inference 

 

Figure 3: Trace plot showing posterior inference on measurement error variability on model 

parameters 

The figure 3 shows the simulation values at each iteration. The chain shows no particular pattern 

and low autocorrelation. They indicate good mixing and suggest that the sampler is exploring the 

parameters space effectively  

4.3.2 Auto correlation Plot for parameters 

 

Figure 4: Auto correlation plot for the parameters 
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In figure 4, the ACF shows a rapid decay and become close to zero for larger lags. This rapid 

decay of autocorrelation suggests low autocorrelations, good mixing, meaning the chain is 

exploring the parameter space well, and the samples are approximately independent. 

4.4 Model selection 

Table 2: Four models with parameters showing land size with other covariates for measurement 

error variability in optimizing fertilizer application 

 

Parameters Model 1 Model 2 Model3 Model4 

1  -1.0245 -.1.4609 0.1908 -0.2785 

2  0.1248 0.8675 -0.6782 0.9739 

3  1.4789 1.2389 -2.6987 1.5738 

4  -0.8976 -1.3465 1.6729 -0.6826 

DIC 2.9683 1.7678 7.8920 2.5038 

 

This table 2 presents the findings of the model comparison for optimizing fertilizer application. 

Four models were evaluated, considering land size and other covariates to account for 

measurement error variability. 

The Deviance Information Criterion (DIC) was used to compare the goodness-of-fit and model 

complexity. Lower DIC values indicate a better balance between model fit and parsimony. 

Based on the DIC values, Model 2 appears to be the preferred model for fertilizer application 

optimization (DIC = 1.7678). However, it is crucial to acknowledge that DIC is just one metric 

for model selection.  

 

4.5 Measurement error variability plot with the selected model 
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Figure 5: measurement error variability corrected with the selected model 

The figure 5, shows the graph depicts the model's prediction after accounting for some 

measurement errors.  The y-axis appears to show the predicted values, with values increasing 

from bottom to top.   There are multiple data series (representing different groups). The 

hierarchical natures of the data were well fitted to provide the appropriate fit for the data to 

achieve the optimal fertilizer application levels in the midst of several covariates. 

5. DISCUSSION 

This study delved into the impact of measurement error on regression analysis, employing 

Gaussian process simulations. It investigated linear and non-linear mixed effects models, 

highlighting their ability to mitigate measurement error's influence on regression estimates. 

The findings from model comparisons revealed details in the relationship between various 

factors and an undisclosed outcome, emphasizing the significance of model selection based on 

metrics like R-squared, adjusted R-squared, and p-values. Models one and four emerged as 

strong contenders, whereas model two showed relatively lower explanatory power. 

Moreover, the exploration of measurement error variability showcased its correlation with the 

estimation of β, underlining its importance in model accuracy. Bayesian integration using 
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hierarchical models and Gibbs sampling facilitated parameter inference, ensuring robustness in 

the analysis. 

The model selection process, guided by the Deviance Information Criterion (DIC), favored 

Model 2 for optimizing fertilizer application, highlighting its superior balance between 

goodness-of-fit and model complexity. 

Finally, the visualization of measurement error variability corrected with the selected model 

illustrated the model's predictive capabilities in optimizing fertilizer application amidst diverse 

covariates. In summary, this study provides insights into the complexities of regression analysis 

in the presence of measurement error, offering methodological approaches for robust inference 

and model selection. 

6. CONCLUSION 

In conclusion, this study conducted a comprehensive exploration of the impact of measurement 

error on regression analysis, employing Gaussian process simulations. By investigating both 

linear and non-linear mixed effects models, the research elucidated their effectiveness in 

mitigating the influence of measurement error on regression estimates with the extension to 

hierarchical bayesian semi parametric models. 

The comparison of models revealed intriguing insights into the relationships between various 

factors and an undisclosed outcome, emphasizing the importance of thorough model selection 

guided by metrics such as R-squared, adjusted R-squared, and p-values. Furthermore, the 

investigation into measurement error variability underscored its correlation with the estimation 

of β, highlighting its critical role in ensuring the accuracy of regression models. Through 

Bayesian integration using hierarchical models and Gibbs sampling, the study facilitated robust 

parameter inference, enhancing the reliability of the analysis. 

The model selection process, guided by the Deviance Information Criterion (DIC), identified 

Model 2 as the preferred choice for optimizing fertilizer application, striking a delicate balance 

between model fit and complexity. 
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Finally, the visualization of measurement error variability corrected with the selected model 

offered compelling evidence of the model's predictive capabilities, particularly in optimizing 

fertilizer application amidst diverse covariates. 

In summation, this research contributes valuable insights into the intricacies of regression 

analysis in the presence of measurement error, offering methodological approaches for robust 

inference and model selection, with implications for diverse fields reliant on accurate predictive 

modeling. 
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