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Abstract: This research focuses on numerical simulations of the prey-predator mathematical model in inland 

fisheries. The problem of excessive harvesting results in unsustainable harvesting so fishermen will spend capital for 

restocking the fish population. Mathematical models can provide ideal harvesting effort calculations to obtain a 

sustainable harvesting strategy to reduce the cost of harvesting in the following period. Two mathematical models 

were created in this paper. The first model considered a condition in which there was no interaction between prey 

and predator, and the second model considered a condition in which there was interaction between prey and predator. 

The first model assumed that a juvenile fish population (x1) was introduced and grew into native adult fish (x2) and 

the native adult fish reproduced spawn fish (x3). The second model behaves like the first but adds a predatory fish 

population, and assumes it interacts with the introduced juvenile stock fish population (x1) and the spawn fish 

population (x3). Dynamic analysis of the mathematical models is carried out to obtain the equilibrium points and 

their stability analysis. Numerical simulations of both models were done using the Euler method to show that the 
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maximum sustainable yield effort (EMSY) value influences the number of fish populations in inland fisheries 

because harvesting effort will maintain sustainable harvesting. The simulation suggests that if the harvesting effort is 

above the 2EMSY value, the fish population will approach the equilibrium point (0,0,0) in the first model and 

(0,0,0,0) in the second model. However, if the harvesting effort is less than or the same as the 2EMSY value, the fish 

population will approach the equilibrium point when adult fish and spawn fish exist in both models. In conclusion, 

determining harvesting efforts following the EMSY value is expected to support sustainable harvesting so that the 

economy of inland fishery can be sustainable. 

Keywords: predator-prey; mathematical model; inland fisheries; MSY; numerical simulations. 

2020 AMS Subject Classification: 34C25, 34D20, 92D25, 92D40. 

 

1. INTRODUCTION 

Fisheries are an integral part of the blue economy and demand thorough research across 

multiple scientific disciplines to ensure sustainable management [1], [2], [3], [4], [5], [6]. The 

study of species interactions within their habitats allows for a deeper understanding of 

mathematical modeling in sustainable resource management in inland fisheries. In these 

environments, predator fish species will prey on other fish to survive, resulting in a dynamic 

predation process where both predator and prey fish coexist [7], [8]. The sizes of both predator 

and prey populations are influenced by the intensity of predation, which is determined by 

whether predatory fish have reached their predation threshold and the time required for digestion 

before engaging in subsequent predation [9], [10], [11], [12]. 

In a mathematical model, differential equations can provide an overview of population 

dynamics over time since they represent the dynamics of the number of species populations 

relative to time variables [13], [14]. The dynamic analysis of the model will also provide a 

complete understanding, allowing for stability analysis of the produced conditions [15], [16]. 

Mathematical models can provide information on maximum sustainable yield (MSY) [17], 

enabling fishermen to determine ideal harvesting conditions to obtain sustainable yield [18], [19], 

[20]. In a sustainable harvesting condition, fishermen benefit economically by minimizing the 

need for fish stocking without decreasing the intensity of harvesting [9], [21], [22]. The 

traditional concept, which includes continuous harvesting without considering the sustainability 

of future harvests, can be abandoned and replaced with a concept adhering to MSY [17], [23], 

[25]. 
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Mathematical model requires precise numerical simulations and visualization in order to 

provide in-depth information on the calculation and visualization process [25], [26]. Numerical 

simulations may be carried out using Mathematical model requires precise numerical simulations 

and visualization to provide in-depth information on the calculation and visualization process 

[25], [26]. Numerical simulations can use different methods, including the Euler, Runge Kutta, 

and many others. The results from the numerical simulations and visualization can provide 

alternative options for fishermen to minimize their loss of economically valuable fish. 

 

2. MATERIALS AND METHODS 

The process of developing a mathematical model, the dynamic analysis of the model [27], 

[28], and numerical simulations using Euler’s method were conducted to show and visualize 

population numbers over time in graphical form. 

 

2.1 MATHEMATICAL MODEL 

The first model was constructed in a simplified form engaging introduced juvenile fish stock 

(𝑥1), which would then develop into native adult fish (𝑥2) and reproduce as spawn fish (𝑥3). Both 

fishes, the juvenile fish stock (𝑥1) and the spawn fish (𝑥3) have the same species but different 

origins. The introduced juvenile fish stock (𝑥1) was introduced into the habitat from external 

sources, while spawn fish (𝑥3) were the offspring of breeding native adult fish (𝑥2) within the 

habitat. Specifically, there was no interaction with predator fish (𝑦) in this first mathematical 

model, as shown in Figure 1.  

 

Figure 1. The first model fish species interaction diagram 
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The first mathematical model covered the harvesting of fish in the reservoir (𝑥2) without 

interaction between juvenile stocked fish (𝑥1) and the fish spawn (𝑥3) with predatory fish. This 

scenario could happen in various form, including using a cage system land fisheries to separate 

prey and predator, thereby preventing interactions [29]. The parameters used included 𝑚, 𝑝, 𝑟, 𝐾, 

and 𝑒 and they were all positive. 

 

 

Figure 2. The second model fish species interaction diagram 

The second mathematical model consisted of harvesting native adult fish (𝑥2) and predator 

fish (𝑦) in the reservoir, with interactions occurring between introduced juvenile fish stock (𝑥1) 

and spawn fish ( 𝑥3 ) with predator fish ( 𝑦 ). The parameters used consisted of 

𝛽𝑥, 𝑏𝑥, 𝑚, 𝑝, 𝑟, 𝐾, 𝑒, 𝐶𝑥, 𝜇, and 𝛿 and they were all positive. 

Table 1. Mathematical Model 

The First Model The Second Model 

𝑓1 =
𝑑𝑥1

𝑑𝑡
= −𝑚𝑥1 − 𝑝𝑥1 

𝑓2 =
𝑑𝑥2

𝑑𝑡
= 𝑝𝑥3 −

𝑟𝑥2
2

𝐾
− 𝑒𝑥2 + 𝑝𝑥1 

𝑓3 =
𝑑𝑥3

𝑑𝑡
= 𝑟𝑥2 − 𝑚𝑥3 − 𝑝𝑥3. 

𝑔1 =
𝑑𝑥1

𝑑𝑡
= −

𝛽𝑥𝑥1𝑦

1 + 𝑏𝑥𝑥1
− 𝑚𝑥1 − 𝑝𝑥1, 

𝑔2 =
𝑑𝑥2

𝑑𝑡
= 𝑝𝑥3 −

𝑟𝑥2
2

𝐾
− 𝑒𝑥2 + 𝑝𝑥1, 

𝑔3 =
𝑑𝑥3

𝑑𝑡
= 𝑟𝑥2 −

𝛽𝑥𝑥3𝑦

1 + 𝑏𝑥𝑥3
− 𝑚𝑥3 − 𝑝𝑥3, 

𝑔4 =
𝑑𝑦

𝑑𝑡
=

𝐶𝑥𝛽𝑥𝑥1𝑦

1 + 𝑏𝑥𝑥1
+

𝐶𝑥𝛽𝑥𝑥3𝑦

1 + 𝑏𝑥𝑥3
− 𝜇𝑦 − 𝛿𝑦2 − 𝑒𝑦. 
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As shown in Table 1, the mathematical model assumed that there was only one fish stocking 

period. To ensure a repeated stocking period, further investigations were required. Therefore, this 

research aimed to optimize harvesting in order to reduce the stocking period to minimize 

fishermen's expenses [3]. 

Table 2. Description of symbols and parameters 

Symbol Description Unit 

𝑥1 Introduced juvenile stock fish population Ton 

𝑥2 Native adult fish population Ton 

𝑥3 Spawn fish population Ton 

𝑦 Predator fish population Ton 

𝑚 Death rate of stocked fish 𝑡𝑖𝑚𝑒−1 

𝑟 Intrinsic growth rate of fish 𝑡𝑖𝑚𝑒−1 

𝐾 Carrying capacity Ton 

𝑝 Fish stocking rate 𝑡𝑖𝑚𝑒−1 

𝑒 Fishing rate 𝑡𝑖𝑚𝑒−1 

𝛽𝑥 Predation coefficient of stocked fish or fish spawned by 

predator 

(𝑇𝑜𝑛 × 𝑡𝑖𝑚𝑒)−1 

𝑏𝑥 Half saturation coefficient/predation saturation level in 

predatory fish 

𝑇𝑜𝑛−1 

𝐶𝑥 
The conversion coefficient of the number of calories 

required by predator for each prey 
- 

𝜇 Death rate of predatory fish 𝑡𝑖𝑚𝑒−1 

𝛿 The rate of predator competition for prey 𝑡𝑖𝑚𝑒−1 

 

2.2. EQUILIBRIUM POINTS 

The equilibrium points of the first and second mathematical models are presented in Table 1. 

Since there was only one stocking period, introduced juvenile fish stock (𝑥1) would be 

depleted, resulting equilibrium points of 𝐸(0, 𝑥2
∗, 𝑥3

∗) and 𝑇(0, 𝑥2
∗, 𝑥3

∗, 𝑦∗) for the first 

and second models, respectively. The resulting equilibrium points must meet the conditions of 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, and 𝑦 ≥ 0 [27]. Therefore, the equilibrium point that did not meet 

the requirements would not be used in this study. It was discovered that the equilibrium points 

for both the first and second models are the same. 
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Table 3. The Eligible Equilibrium Points 

No. Mathematical Model Equilibrium Points Condition 

1. The First Model 𝐸0(0,0,0) - 

2. The First Model 𝐸1 (0, 𝐾 (
𝑝𝑟 − 𝑒(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
) , 𝐾 (

𝑝𝑟 − 𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)2
)) 𝑝𝑟 − 𝑒(𝑚 + 𝑝) ≥ 0 

3. The Second Model 𝑇0(0,0,0,0) - 

4. The Second Model 𝑇1 (0, 𝐾 (
𝑝𝑟 − 𝑒(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
) , 𝐾 (

𝑝𝑟 − 𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)2
) , 0) 𝑝𝑟 − 𝑒(𝑚 + 𝑝) ≥ 0 

 

2.3. JACOBIAN MATRIX OF THE EQUILIBRIUM POINTS 

The Jacobian matrices of the models are created to determine the stability of the equilibrium 

points. 

Table 4. Jacobian Matrix of Mathematical Models 

No. 
Mathematical 

Models 

Equilibrium Points 

1. 
The First 

Model 
𝐽𝐸0

= [
−𝑚 − 𝑝 0 0

𝑝 −𝑒 𝑝
0 𝑟 −𝑚 − 𝑝

] 

2. 
The First 

Model 
𝐽𝐸1

=

[
 
 
 
−𝑚 − 𝑝 0 0

𝑝 −
2𝑝𝑟

(𝑚 + 𝑝)
− 3𝑒 𝑝

0 𝑟 −𝑚 − 𝑝]
 
 
 
 

3. 
The Second 

Model 
𝐽𝑇0

= [

−𝑚 − 𝑝

𝑝

0

0

     

0

−𝑒

𝑟

0

     

0

𝑝

−𝑚 − 𝑝

0

     

0

0

0

−𝜇 − 𝑒

] 

4. 
The Second 

Model 
𝐽𝑇1

=

[
 
 
 
 
 
 
 
 −(𝑚 + 𝑝)

𝑝

0

0

   

0

(
2𝑝𝑟 − 3𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)
)

𝑟

0

  

0

𝑝

−(𝑚 + 𝑝)

0

  

0

0

0

𝐶𝑥𝛽𝑥𝐾(𝑝𝑟 − 𝑒(𝑚 + 𝑝))

(𝑚 + 𝑝)2 + 𝑏𝑥𝐾(𝑝𝑟 − 𝑒(𝑚 + 𝑝))
− 𝜇 − 𝑒

]
 
 
 
 
 
 
 
 

 

 

2.4. STABILITY OF THE EQUILIBRIUM POINTS 

In both the first and second models, the stability analysis of the equilibrium points were 

carried out using the Jacobian matrices by investigating the eigenvalues (𝜆) of the matrices, i.e. 
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solving the equation|𝐴 − 𝜆𝐼| = 0 [27]. 

Table 5. The Stability of The Equilibrium points 

No. Mathematical Model Equilibrium Points Condition 

1. The First Model 𝐸0(0,0,0) Stable 

2. The First Model 𝐸1 (0, 𝐾 (
𝑝𝑟 − 𝑒(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
) , 𝐾 (

𝑝𝑟 − 𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)2
)) Stable 

3. The Second Model 𝑇0(0,0,0,0) Stable 

4. The Second Model 𝑇1 (0,
𝑝𝑟𝐾 − 𝑒𝐾(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
,
𝑝𝑟𝐾 − 𝑒𝐾(𝑚 + 𝑝)

(𝑚 + 𝑝)2
, 0) Stable 

 

Definition 2.1 [27]. The stability of an equilibrium point is fulfilled when all the eigenvalues are 

negative. 

For the first mathematical model, at the equilibrium point 𝐸0(0,0,0), the eigenvalues are 

𝜆1 = −𝑚 − 𝑝, 

𝜆2 = −
1

2
(𝑒 + 𝑚 + 𝑝 + √𝑒2 − 2𝑒𝑚 − 2𝑒𝑝 + 𝑚2 + 2𝑚𝑝 + 𝑝2 + 4𝑝𝑟) , and 

𝜆3 = −
1

2
(𝑒 + 𝑚 + 𝑝 − √𝑒2 − 2𝑒𝑚 − 2𝑒𝑝 + 𝑚2 + 2𝑚𝑝 + 𝑝2 + 4𝑝𝑟) 

 

For the first mathematical model, at the equilibrium point 

𝐸1 (0, 𝐾 (
𝑝𝑟−𝑒(𝑚+𝑝)

𝑟(𝑚+𝑝)
) , 𝐾 (

𝑝𝑟−𝑒(𝑚+𝑝)

(𝑚+𝑝)2
)) the eigenvalues are 

𝜆1 = −𝑚 − 𝑝, 

𝜆2 =
−((𝑚 + 𝑝 + 3𝑒)(𝑚 + 𝑝) + 2𝑝𝑟) − √𝐷∗

2(𝑚 + 𝑝)
, and 

𝜆3 =
−((𝑚 + 𝑝 + 3𝑒)(𝑚 + 𝑝) + 2𝑝𝑟) − √𝐷∗

2(𝑚 + 𝑝)
 

with 𝐷∗ = (𝑚 + 𝑝 + 3𝑒 +
2𝑝𝑟

(𝑚 + 𝑝)
)
2

− 4(
2𝑝𝑟

(𝑚 + 𝑝)
+ 3𝑒) (𝑚 + 𝑝) + 4𝑝𝑟. 

𝜆3 =
𝐶𝑥𝛽𝑥𝐾(𝑝𝑟−𝑒(𝑚+𝑝))

(𝑚+𝑝)2+𝑏𝑥𝐾(𝑝𝑟−𝑒(𝑚+𝑝))
− 𝜇 − 𝑒, with 𝑚, 𝑝, 𝜇, and 𝑒 are positive constants.  Hence, 

the conditions for the stability are 𝜆1 < 0, 𝜆2 < 0 and 𝜆3 < 0 and:  
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𝑒 >  
2𝑝𝑟

3(𝑚+𝑝)
 and (𝐶𝑥𝛽𝑥𝐾 − 𝑏𝑥𝐾(𝜇 + 𝑒))(𝑝𝑟 − 𝑒(𝑚 + 𝑝)) − (𝜇 + 𝑒)(𝑚 + 𝑝)2 < 0. 

2.5. MSY 

Further, we calculate the MSY value to determine the ideal conditions for sustainable 

harvesting [17], [23], [25]. Harvesting was only carried out on mature prey populations, i.e., the 

native adult fish (𝑥2) and predator fish (y), while introduced juvenile fish stock (𝑥1) and spawn 

fish (𝑥3) were left un-harvested. 

 

Table 6. The Effort and MSY of the Models 

No. 
Mathematical 

Models 
Equilibrium Points 𝐸𝑀𝑆𝑌 𝑀𝑆𝑌 

1. The First Model 𝐸0(0,0,0) - - 

2. The First Model 𝐸1 (0, 𝐾 (
𝑝𝑟 − 𝑒(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
) , 𝐾 (

𝑝𝑟 − 𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)2
)) (

𝑝𝑟

2(𝑚 + 𝑝)
) 

𝑝2𝑟𝐾

4(𝑚 + 𝑝)2
 

3. 
The Second 

Model 

𝑇0(0,0,0,0) - 
- 

4. 
The Second 

Model 

𝑇1 (0, 𝐾 (
𝑝𝑟 − 𝑒(𝑚 + 𝑝)

𝑟(𝑚 + 𝑝)
) , 𝐾 (

𝑝𝑟 − 𝑒(𝑚 + 𝑝)

(𝑚 + 𝑝)2
) , 0) (

𝑝𝑟

2(𝑚 + 𝑝)
) 𝑝2𝑟𝐾

4(𝑚 + 𝑝)2
 

 

The 𝐸𝑀𝑆𝑌 value represented a sustainable harvesting effort to obtain the MSY. It this the  

effort that maintaining a viable population condition. The calculation of the MSY value 𝐸𝑀𝑆𝑌 

could be followed as outlined in the [30], [31]. 

 

3. RESULT AND DISCUSSIONS 

The general form of Euler's method was obtained from the first model. 

𝑥1(𝑡 + 0.1) = 𝑥1(𝑡) + ∆𝑡 × {−𝑚𝑥1(𝑡) − 𝑝𝑥1(𝑡)} 

𝑥2(𝑡 + 0.1) = 𝑥2(𝑡) + ∆𝑡 × { 𝑝𝑥3(𝑡) −
𝑟(𝑥2(𝑡))

2

𝐾
− 𝑒𝑥2(𝑡) + 𝑝𝑥1(𝑡)} 

𝑥3(𝑡 + 0.1) = 𝑥3(𝑡) + ∆𝑡 × {𝑟𝑥2(𝑡) − 𝑚𝑥3(𝑡) − 𝑝𝑥3(𝑡)} 

The general form of Euler's method was obtained on the second model. 

𝑥1(𝑡 + 0.1) = 𝑥1(𝑡) + ∆𝑡 × {−
𝛽𝑥𝑥1(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥1(𝑡)
− 𝑚𝑥1(𝑡) − 𝑝𝑥1(𝑡)} 
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𝑥2(𝑡 + 0.1) = 𝑥2(𝑡) + ∆𝑡 × { 𝑝𝑥3(𝑡) −
𝑟(𝑥2(𝑡))

2

𝐾
− 𝑒𝑥2(𝑡) + 𝑝𝑥1(𝑡)} 

𝑥3(𝑡 + 0.1) = 𝑥3(𝑡) + ∆𝑡 × {𝑟𝑥2(𝑡) −
𝛽𝑥𝑥3(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥3(𝑡)
− 𝑚𝑥3(𝑡) − 𝑝𝑥3(𝑡)} 

𝑥3(𝑡 + 0.1) = 𝑦(𝑡) + ∆𝑡 × { 
𝐶𝑥𝛽𝑥𝑥1(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥1(𝑡)
+

𝐶𝑥𝛽𝑥𝑥3(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥3(𝑡)
− 𝜇𝑦(𝑡) − 𝛿(𝑦(𝑡))

2
− 𝑒𝑦(𝑡)} 

3.1 EULER’S METHOD FOR THE FIRST MODEL 

The Euler’s method was used in the first model to carry out numerical simulations of 

mathematical model. From the first model, the formula for the Euler's method was derived, 

starting from 𝑡 = 0. The initial value used was 𝑥1(0) = 8, 𝑥2(0) = 0, and 𝑥3(0) = 0, with the 

parameters being 𝑝 = 8, 𝑟 = 0.7,𝑚 = 0.2, and 𝐾 = 207.522 in accordance with the research 

criteria [32]. For the harvest effort value, the value used was 𝑒𝑀𝑆𝑌 = 0,34. 

Introduced juvenile stock fish population (𝒙𝟏)  

𝑥1(𝑡 + 0.1) = 𝑥1(𝑡) + ∆𝑡 × {−𝑚𝑥1(𝑡) − 𝑝𝑥1(𝑡)} 

𝑥1(0 + 0.1) = 𝑥1(0) + ∆𝑡 × {−𝑚𝑥1(0) − 𝑝𝑥1(0)} 

𝑥1(0.1) = 8 + (0.1 − 0) × {−(0.2 × 8) − (8 × 8)} 

𝑥1(0.1) = 8 + (0.1) × (−65.6) 

𝑥1(0.1) = 8 − 6.56 

𝑥1(0.1) = 1.44 

Native adult fish population (𝒙𝟐) 

𝑥2(𝑡 + 0.1) = 𝑥2(𝑡) + ∆𝑡 × { 𝑝𝑥3(𝑡) −
𝑟(𝑥2(𝑡))

2

𝐾
− 𝑒𝑥2(𝑡) + 𝑝𝑥1(𝑡)} 

𝑥2(0 + 0.1) = 𝑥2(0) + ∆𝑡 × {𝑝𝑥3(0) −
𝑟(𝑥2(0))

2

𝐾
− 𝑒𝑥2(0) + 𝑝𝑥1(0)} 

𝑥2(0.1) = 0 + (0.1 − 0) × { (8)(0) −
0.7 × (0)2

207.522
− (0.34 × 0) + (8 × 8)} 

𝑥2(0.1) = 0 + (0.1) × 64 

𝑥2(0.1) = 0 + 6.4 

𝑥2(0.1) = 6.4 

Spawn fish population (𝒙𝟑) 

𝑥3(𝑡 + 0.1) = 𝑥3(𝑡) + ∆𝑡 × {𝑟𝑥2(𝑡) − 𝑚𝑥3(𝑡) − 𝑝𝑥3(𝑡)} 
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𝑥3(0 + 0.1) = 𝑥3(0) + ∆𝑡 × {𝑟𝑥2(0) − 𝑚𝑥3(0) − 𝑝𝑥3(0)} 

𝑥3(0.1) = 0 + (0.1 − 0) × {(0.7 × 0) − (0.2 × 0) − (8 × 0)} 

𝑥3(0.1) = 0 

Table 7. All population of fish with Euler’s Method on the first model 

T 𝑒𝑀𝑆𝑌 =
𝑝𝑟

2(𝑚 + 𝑝)
 𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 

0 0.34 8 0 0 

0.1 0.34 1.44 6.40 0 

0.2 0.34 0.26 7.10 0.45 

0.3 0.34 0.05 7.16 0.58 

0.4 0.34 0.01 7.16 0.61 

0.5 0.34 0.00 7.14 0.61 

0.6 0.34 0.00 7.13 0.61 

0.7 0.34 0.00 7.11 0.61 

0.8 0.34 0.00 7.10 0.61 

0.9 0.34 0.00 7.08 0.61 

1 0.34 0.00 7.06 0.60 

1.1 0.34 0.00 7.05 0.60 

⋮ ⋮ ⋮ ⋮ ⋮ 

⋮ 0.34 ⋮ ⋮ ⋮ 

 

 

(a) 0 ≤ 𝑡 ≤ 2 
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(b) 0 ≤ 𝑡 ≤ 60 

Figure 1. Visualization of Numerical simulations of the first model for all populations 

The species population in the first mathematical model showed that introduced juvenile stock 

fish (𝑥1) population would approach zero. The populations of native adult fish (𝑥2) and spawn 

fish (𝑥3) tended to remain stable at a certain point. 

3.2. EULER’S METHOD FOR SECOND MODEL 

The Euler’s method was used in the first model to carry out numerical simulations of 

mathematical model. From the second model, the formula for the Euler method was derived, 

starting from 𝑡 = 0 . The initial value used were 𝑥1(0) = 8 , 𝑥2(0) = 0 , 𝑥3(0) = 0 , and 

𝑦(0) = 1, with the parameters being 𝑝 = 8, 𝑟 = 0.7,𝑚 = 0.2, and 𝐾 = 207.522 in accordance 

with the research requirements [32]. The assumed parameters were 𝛽𝑥 = 0.2, 𝑏𝑥 = 0.1, 𝐶𝑥 =

0.001, 𝜇 = 0.01, and 𝛿 = 0.001, and the harvest effort value used was 𝑒𝑀𝑆𝑌 = 0,34. 

Introduced Juvenile Stock fish population (𝒙𝟏)  

𝑥1(𝑡 + 0.1) = 𝑥1(𝑡) + ∆𝑡 × {−
𝛽

𝑥
𝑥1(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥1(𝑡)
− 𝑚𝑥1(𝑡) − 𝑝𝑥1(𝑡)} 

𝑥1(0 + 0.1) = 𝑥1(0) + ∆𝑡 × {−
𝛽

𝑥
𝑥1(0)𝑦(0)

1 + 𝑏𝑥𝑥1(0)
− 𝑚𝑥1(0) − 𝑝𝑥1(0)} 

𝑥1(0.1) = 8 + (0.1 − 0) × {−
(0.2 × 8 × 1)

1 + (0.1 × 8)
− (0.2 × 8) − (8 × 8)} 

𝑥1(0.1) = 8 + (0.1) × {−0.89 − 1.6 − 64} 
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𝑥1(0.1) = 8 + (0.1) × (−66.49) 

𝑥1(0.1) = 8 − 6.65 

𝑥1(0.1) = 1.35 

Native adult fish population (𝒙𝟐) 

𝑥2(𝑡 + 0.1) = 𝑥2(𝑡) + ∆𝑡 × { 𝑝𝑥3(𝑡) −
𝑟(𝑥2(𝑡))

2

𝐾
− 𝑒𝑥2(𝑡) + 𝑝𝑥1(𝑡)} 

𝑥2(0 + 0.1) = 𝑥2(0) + ∆𝑡 × {𝑝𝑥3(0) −
𝑟(𝑥2(0))

2

𝐾
− 𝑒𝑥2(0) + 𝑝𝑥1(0)} 

𝑥2(0.1) = 0 + (0.1 − 0) × { (8)(0) −
0.7 × (0)2

207.522
− (0.34 × 0) + (8 × 8)} 

𝑥2(0.1) = 0 + (0.1) × 64 

𝑥2(0.1) = 0 + 6.40 

𝑥2(0.1) = 6.40 

Spawn fish population (𝒙𝟑) 

𝑥3(𝑡 + 0.1) = 𝑥3(𝑡) + ∆𝑡 × {𝑟𝑥2(𝑡) −
𝛽

𝑥
𝑥3(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥3(𝑡)
− 𝑚𝑥3(𝑡) − 𝑝𝑥3(𝑡)} 

𝑥3(0 + 0.1) = 𝑥3(0) + ∆𝑡 × {𝑟𝑥2(0) −
𝛽

𝑥
𝑥3(0)𝑦(0)

1 + 𝑏𝑥𝑥3(0)
− 𝑚𝑥3(0) − 𝑝𝑥3(0)} 

𝑥3(0.1) = 0 + (0.1 − 0) × {(0.7 × 0) −
(0.2 × 0 × 1)

1 + (0.1 × 0)
− (0.2 × 0) − (8 × 0)} 

𝑥3(0.1) = 0 

Predator fish population (𝒚) 

𝑥3(𝑡 + 0.1) = 𝑦(𝑡) + ∆𝑡 × { 
𝐶𝑥𝛽𝑥

𝑥1(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥1(𝑡)
+

𝐶𝑥𝛽𝑥
𝑥3(𝑡)𝑦(𝑡)

1 + 𝑏𝑥𝑥3(𝑡)
− 𝜇𝑦(𝑡) − 𝛿(𝑦(𝑡))

2
− 𝑒𝑦(𝑡)} 

𝑥3(0 + 0.1) = 𝑦(0) + ∆𝑡 × { 
𝐶𝑥𝛽𝑥

𝑥1(0)𝑦(0)

1 + 𝑏𝑥𝑥1(0)
+

𝐶𝑥𝛽𝑥
𝑥3(0)𝑦(0)

1 + 𝑏𝑥𝑥3(0)
− 𝜇𝑦(0) − 𝛿(𝑦(0))

2
− 𝑒𝑦(0)} 

𝑥3(0.1) = 1 + (0.1 − 0) × { 
0.0016

1.8
+ 0 − (0.01 × 1) − 0.001(1)2 − (0.34 × 1)} 

𝑥3(0.1) = 1 + (0.1) × (0.00089 + 0 − 0.01 − 0.001 − 0.34) 

𝑥3(0.1) = 1 − 0.035 

𝑥3(0.1) = 0.965 

Numerical calculations using the Euler’s method were shown in Table 8. 
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Table 8. The all population of fish with Euler’s Method on the second model 

T 𝑒𝑀𝑆𝑌 =
𝑝𝑟

2(𝑚 + 𝑝)
 𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑦(𝑡) 

0 0.34 8 0 0 1 

0.1 0.34 1.40 6.40 0.00 0.96 

0.2 0.34 0.24 7.07 0.45 0.93 

0.3 0.34 0.04 7.12 0.57 0.90 

0.4 0.34 0.01 7.11 0.59 0.87 

0.5 0.34 0.00 7.08 0.59 0.84 

0.6 0.34 0.00 7.06 0.59 0.81 

0.7 0.34 0.00 7.04 0.59 0.78 

0.8 0.34 0.00 7.02 0.59 0.75 

0.9 0.34 0.00 7.00 0.59 0.73 

1 0.34 0.00 6.97 0.59 0.70 

1.1 0.34 0.00 6.95 0.59 0.68 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

⋮ 0.34 ⋮ ⋮ ⋮ ⋮ 

   

 

 

(a) 0 ≤ 𝑡 ≤ 2 
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(b) 0 ≤ 𝑡 ≤ 40 

Figure 2. Numerical simulations second model of the all population 

 

The species population in the first mathematical model showed that introduced juvenile 

stock fish (𝑥1) and predator fish (𝑦) would approach zero. The populations of native adult fish 

(𝑥2) and spawn fish (𝑥3) tended to remain stable at a certain point. 

 

3.3. NUMERICAL SIMULATIONS ON EFFORT OF HARVESTING 

In this numerical simulation, a numerical simulation will be displayed based on harvesting 

effort. Harvesting when following the 𝑒𝑀𝑆𝑌 value, below and above the 𝑒𝑀𝑆𝑌 value will be 

visible in the visualization of the numerical simulation results. The two mathematical models 

created produce two similar conditions, namely the existing population is a population of adult 

fish (𝑥2) and spawning fish (𝑥3) so that for visualization the population is displayed on the fish 

population. If the harvesting effort used is less than 2𝑒𝑀𝑆𝑌 then the population will follow the 

equilibrium point with the existing population, but if the harvesting effort is more than 2𝑒𝑀𝑆𝑌 

then the population will follow the equilibrium point with the population going towards zero. 
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(a) 0 ≤ 𝑡 ≤ 2; 0.1 ≤ 𝑒 ≤ 0.68 

 

(b) 0 ≤ 𝑡 ≤ 30; 0.1 ≤ 𝑒 ≤ 0.68 

Figure 3. Numerical simulations population of native adult fish (𝑥2) 

 

In figure 3, fish harvesting when it is less than 𝑒𝑀𝑆𝑌 tends to stabilize the population of 

native adult fish (𝑥2). This condition results in the population of native adult fish (𝑥2) 

remaining in the system. Visualization shows that at a value of 0.1 ≤ 𝑒 ≤ 0.68 the trend of 
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the graph will follow the equilibrium point 𝐸1(0, 𝑥2
∗, 𝑥3

∗)  or the equilibrium point 

𝑇1(0, 𝑥2
∗, 𝑥3

∗, 0). 

 

(a) 0 ≤ 𝑡 ≤ 2; 0.69 ≤ 𝑒 ≤ 2 

 

(b) 0 ≤ 𝑡 ≤ 30; 0.69 ≤ 𝑒 ≤ 2 

 

Figure 4. Numerical simulations population of native adult fish (𝑥2) 
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The population of native adult fish (𝑥2) was reduced to zero, ensuring the population was 

depleted in the system. The condition was not expected because it would continuously 

require introduced juvenile stock fish (𝑥1). 

 

(a) 0 ≤ 𝑡 ≤ 2; 0.1 ≤ 𝑒 ≤ 0.68 

 

(b) 0 ≤ 𝑡 ≤ 30; 0.1 ≤ 𝑒 ≤ 0.7 

 

Figure 5. Numerical simulations population of spawn fish (𝑥3) 
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In figure 5, fish harvesting when it is less than 2𝑒𝑀𝑆𝑌 tends to stabilize the population of 

spawning fish (𝑥3). This condition results in the population of spawning fish (𝑥3) remaining 

in the system. 

 

(a) 0 ≤ 𝑡 ≤ 2; 0.69 ≤ 𝑒 ≤ 2 

 

(b) 0 ≤ 𝑡 ≤ 30; 0.69 ≤ 𝑒 ≤ 2 

 

Figure 6. Numerical simulations population of spawn fish (𝑥3) 
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The population of spawn fish (𝑥3) was reduced to zero, ensuring that the population would 

run out in the system. The condition was not expected because it would further require 

introduced juvenile stock fish (𝑥1). 

4. CONCLUSIONS 

Numerical simulations in this research show that the effort for maximum sustainable yield 

value (EMSY) produced from the two mathematical models has the same effect on sustainable 

harvesting. Harvesting effort above the value of 2EMSY will make the population decline and 

approach the zero equilibrium point. Meanwhile, if the harvesting effort is less than or the same 

as 2EMSY, then the adult fish and spawn fish populations will continue to exist. In this case, the 

adult fish population can be harvested at the level of the MSY, while the spawn fish population 

will still develop into adult fish without re-stocking. This condition generates the sustainable 

harvesting that we are looking for. The model here assumed that prey stocking takes place only 

once. The effect of repeated stocking is worth analyzing. Among other directions of studies in the 

future are the effect of recruitment delay time to maturity [33] and the inclusion of fleet size of 

ships in the harvesting effort [34], [35].  
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