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Abstract. We are developing a deterministic model for cholera that incorporates immunization campaigns, treat-

ment of infected individuals, and efforts to sanitize water supplies. This model offers precise and valuable insights

into specific aspects of cholera control. The basic reproduction number, R0, derived from the disease-free equi-

librium (DFE), serves as a critical metric for assessing disease control efforts. Our stability analysis reveals that

the DFE is asymptotically stable both locally and globally when R0 is less than one. Sensitivity analysis of R0

underscores the importance of vaccination, treatment, public awareness campaigns, and sanitation in controlling

cholera. We explore the local and global stability of both the disease-free and disease-endemic equilibrium by

constructing Lyapunov functions and applying the Routh-Hurwitz criteria. Additionally, we perform sensitivity

analyses to identify the parameters that significantly impact R0. Finally, numerical simulations using Matlab are

conducted to validate our theoretical findings.
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1. INTRODUCTION

Cholera continues to pose a significant global public health challenge, causing tens of thou-

sands of deaths annually worldwide [1]. The transmission rate within communities is affected

by various social and environmental factors, with seasonal variations in contact rates contribut-

ing to recurrent outbreaks in certain regions [2, 3]. Understanding these dynamics requires

an accurate estimation of Vibrio cholerae prevalence in endemic populations and a thorough

comprehension of the relationship between bacterial concentration and virulence [2]. Seasonal

changes in contact rates are critical in driving the cyclical nature of cholera outbreaks [4].

In 2001, researchers enhanced Capasso’s model by incorporating the environmental presence

of Vibrio cholerae in water supplies into a basic SIR framework, utilizing a logistic function

to account for incidence and saturation effects. Further refinement was made by Hartley et al.

(2006), who introduced a hyper-infectious stage in Codeco’s model, reflecting the increased

transmissibility of recently shed Vibrio cholerae observed in laboratory studies [4].

During cholera outbreaks, interventions should focus on reducing the transmission risk of

the highly contagious, transient strain of toxigenic Vibrio cholerae. It is also important to ex-

plore whether other prevalent diseases exhibit similarly high transmissibility. Identifying such

conditions and integrating them into disease prevention models can enhance the precision and

effectiveness of targeted interventions, as expanded upon by Joh et al. (2009) in their extension

of Codeco’s model [5].

Public awareness campaigns are vital for controlling the spread of infectious diseases. These

efforts reduce contact transmission among vulnerable populations, especially in the age of rapid

information dissemination via social media and increased international travel. Such initiatives

have a significant impact on disease dynamics by lowering transmission rates and improving

epidemic management [7, 8, 9].

Numerous studies and mathematical models have explored the relationship between human

social behavior and the spread of infectious diseases [10, 11, 12, 13, 14, 15]. Specifically,

various models have been developed and analyzed to mitigate cholera’s impact and reduce the

number of affected individuals [17].
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This paper is structured as follows: Section 1 introduces the model formulation and its core

properties. Section 2 discusses the derivation and stability analysis of the model’s equilibrium

points. In Section 3, the global stability of the equilibrium point is analyzed. Section 4 delves

into the sensitivity of model parameters. Numerical simulations and their interpretations are

presented in Section 5. The paper concludes with a summary of the findings in the final section.

2. A MATHEMATICAL MODEL AND BASIC PROPERTIES

2.1. A Mathematical Model. In the context of cholera, we introduce a continuous dynamics

model of the SICR−B type (Susceptible-Infectious-Centers-Recovered-Bacterial), which in-

corporates bacterial concentration. The total population, N(t), is categorized into four groups:

susceptible individuals S(t), infected individuals I(t) who exhibit symptoms, individuals receiv-

ing treatment in centers C(t), and recovered individuals R(t). The total population at any given

time t is expressed as N(t) = S(t)+ I(t)+C(t)+R(t). A graphical representation of this model

is provided in Figure 1.

FIGURE 1. The dynamics among the five compartments SICR−B of cholera disease.



dS(t)
dt = A−µS−β1

SI
N −β2

SB
κ+B ;

dI(t)
dt = β1

SI
N − I(µ +δ1 +α1 +α2)+β2

SB
κ+B ;

dC(t)
dt = α1I− (σ +µ)C;

dR(t)
dt = α2I +σC−µR;

dB(t)
dt =℘I−δ2B;

(1)
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The initial conditions are defined as S(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0, and B(0) ≥ 0.

For t > 0, the total population N(t) is divided into four categories: susceptible individuals S(t),

infectious individuals I(t) who exhibit symptoms, individuals receiving treatment in centers

C(t), and recovered individuals R(t).

Additionally, we introduce a class B(t), representing the bacterial concentration at time t. We

assume a positive recruitment rate A into the susceptible class S(t) and a positive natural death

rate µ for all t. Susceptible individuals can contract cholera at a rate β2
B(t)

κ+B(t) , where β2 > 0

represents the rate of bacterial ingestion from contaminated sources, κ is the half-saturation

constant of the bacterial population, and B(t)
κ+B(t) reflects the probability of infection upon expo-

sure.

Infected individuals may seek treatment in centers where they are isolated and receive appro-

priate care at rates α1 and α2. Recovery from treatment occurs at a rate σ . The disease-related

death rates for treated and untreated infected individuals are δ1 and µ , respectively.

Each infected individual contributes to an increase in bacterial concentration at a rate℘, while

the bacterial concentration decreases due to bacterial mortality at a rate δ2. These dynamics are

captured by the following equations.

2.2. Basic Properties of the model.

2.2.1. The Invariance Region. To demonstrate that all solutions of system (1) remain positive

for all t > 0 given positive initial values, we will establish this through the following lemma.

Lemma 1: All admissible solutions S(t), I(t),C(t),R(t),, and B(t) of the system (1) are

bounded within the region.

Ω = ΩN ∗ΩB(2)

ΩN =
{
(S, I,C,R) ∈ℜ4

+ : S+ I +C+R≤ A
µ

}
and

ΩB =
{

B ∈ℜ+ : B≤ ℘

δ2

}(3)

Proof. From the equation of the system (1)

dN(t)
dt = A−µN(t)− Iδ1.(4)
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Implies the following.

dN(t)
dt
≤ A−µN(t).

Therefore, it is clear that

N(t)≤ A
µ
+N(0)e−µt .(5)

Since N(0) is the initial value of the total number of people,

lim
t→+∞

SupN(t)≤ A
µ
.(6)

then

S(t)+ I(t)+C(t)+R(t)≤ A
µ
.

Similarly

dB(t)
dt

=℘I−δ2B(t)≤℘−δ2B(t).

B(t)≤℘

δ2
+B(0)e−δ2t .

lim
t→+∞

SupB(t)≤ ℘

δ2
.(7)

B(t)≤℘

δ2
.

For the analysis of model (1), we get the region which is given by the set.

ΩN =
{
(S, I,C,R) ∈ℜ4

+ : S+ I +C+R≤ A
µ

}
and

ΩB =
{

B ∈ℜ+ : B≤ ℘

δ2

}
.

(8)

Which is a positively invariant set for (1), which is a positively invariant set for (1) Therefore,

it is only necessary to consider the dynamics of the system (1) in relation to the set of

non-negative solutions Ω
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2.2.2. Positivity of solutions of the model. .

Theorem 1. If S(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0, and B(0) ≥ 0, then the solutions of

system equation (1), S(t), I(t),C(t),R(t), and B(t), are positive for all t > 0.

Proof: Starting from the first equation of system (1), we obtain

dS(t)
dt = A−M(t)S(t).(9)

Given that

M(t) = µ +β1
I(t)
N +β2

B(t)
κ+B(t) .(10)

We multiply equation (9) by exp
(∫ t

0 M(s)ds
)
; thus, we obtain:

dS(t)
dt ∗ exp(

∫ t
0 M(s)ds) = [A−M(t)∗S(t)]∗ exp(

t∫
0

M(s)ds).(11)

dS(t)
dt ∗ exp(

∫ t
0 M(s)ds)+M(t)∗S(t)∗ exp(

t∫
0

M(s)ds) = A∗ exp(
t∫

0
M(s)ds)(12)

Therefore

d
dt [S(t)∗ exp(

t∫
0

M(s)ds] = A∗ exp(
∫ t

0 M(s)ds)(13)

When we take the integral with respect to s from 0 to t, we obtain

S(t)∗ exp(
t∫

0
M(s)ds)−S(0) = A∗

∫ t
0(exp(

∫ w
0 M(s)ds))dw.(14)

Multiplying equation (14) by exp
(
−
∫ t

0 M(s)ds
)
, we obtain:

S(t)−S(0)∗ exp(−
∫ t

0 M(s)ds) = A∗ exp(−
∫ t

0 M(s)ds)∗
∫ t

0(exp(
∫ w

0 M(s)ds))dw.(15)

Then:

S(t) = S(0)∗ exp(−
∫ t

0 M(s)ds)+A∗ exp(−
∫ t

0 M(s)ds)∗
∫ t

0(exp(
∫ w

0 M(s)ds))dw≥ 0.(16)

Thus, S(t) is a positive solution. Similarly, based on the other equations in system (1), we

obtain:

I(t)≥ I(0)∗ exp(−
∫
(µ +δ1 +α1 +α2−β1

S(s)
N )ds≥ 0.(17)
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C(t)≥C(0)∗ exp(−(σ +µ)t)≥ 0.(18)

R(t)≥ R(0)∗ exp(−(α2 +µ)t)≥ 0.(19)

B(t)≥ B(0)∗ exp(−δ2t)≥ 0.(20)

As a result, the proof is finished since we can see that for all t ≥ 0, the solutions S(t), I(t), C(t),

R(t), and B(t) of the system (1) are positive. Since the variables C and R do not affect the first

three equations in system (1), the dynamics of equation system (1) is equal to the dynamics of

equation system: 
dS(t)

dt = A−µS−β1
SI
N −β2

SB
κ+B ;

dI(t)
dt = β1

SI
N − I(µ +δ1 +α1 +α2)+β2

SB
κ+B ;

dB(t)
dt =℘I−δ2B;

(21)

3. STABILITY ANALYSIS AND SENSITIVITY OF THE MODEL

3.1. Points of Equilibrium: This model has two equilibrium points: the disease-free equilib-

rium, which occurs when cholera is absent, and the epidemic equilibrium, which occurs when

cholera is present. These points can be determined by setting the derivatives in the system of

equations (21) to zero. In the absence of the virus (where I = B = 0), the cholera disease-free

equilibrium is given by E0
eq =

(
A
µ
,0,0

)
. When the disease is present (where I∗ 6= 0 and B∗ 6= 0),

the cholera epidemic equilibrium is reached, denoted by E∗eq = (S∗,B∗, I∗). Where

B∗ = ℘

δ2
I∗(22)

S∗ = N(δ2κ+℘I∗)(µ+δ1+α1+α2)
β1(δ2κ+℘I∗)+β2N℘

(23)

The following results from substituting equations (22) and (23) into system (24)’s first equa-

tion:

a1I∗2 +a2I∗+a3 = 0.(24)

Where

a1 =−(µ +δ2 +α1 +α2)β1℘
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a2 = Aβ2℘−N(µ +δ2 +α1 +α2)(µ℘+δ2κ
β1

N
+β2℘)

a3 = (µ +δ2 +α1 +α2)µNδ2κ[R0−1]

R0 =
A

µ(µ+δ1+α1+α2)
[β1

N + β2℘
δ2κ

](25)

The basic reproduction number, or R0, is the average number of new infections that one

infected person in a population of full susceptibility causes. The frequency of an outbreak is

indicated by the value of R0. The next generation matrix method described in [19] can be used

to calculate the basic reproduction number.

3.2. Analyzing the local stability. .

Now, we will examine equilibrium behavior and stability. E0
eq and E∗eq, respectively.

3.2.1. The condition of a disease-free equilibrium. This section explores the local stability

of the cholera disease-free equilibrium.

Theorem 2. The equilibrium E0
eq =

(
A
µ
,0,0

)
of the system (21), which represents a state

free from cholera, is asymptotically stable when R0 < 1 and unstable when R0 > 1.

Proof. At Eeq, the Jacobian matrix is provided by

J(Eeq) =


−µ−β1

I
N −β2

B
κ+B −β1

S
N −β2

S(κ+B)−SB
(κ+B)2

β1
I
N +β2

B
κ+B β1

S
N − (µ +δ1)− (α1 +α2) β2

S(κ+B)−SB
(κ+B)2

0 ℘ −δ2

(26)

For the disease-free equilibrium, the Jacobian matrix is provided by

J(E0
eq) =


−µ −β1

A
µN −β2

A
κµ

0 β1
A

µN − (µ +δ1)− (α1 +α2) β2
A

κµ

0 ℘ −δ2

(27)

This matrix’s characteristic equation is det(J(E0
eq)− λ I3) = 0, where I3 is an order three

square identity matrix.

Consequently, we can observe that J(E0
eq) has the following characteristic equations φ(λ ):

φ(λ ) = (−µ−λ )[(β1
A

µN − (µ +δ1 +α1 +α2)−λ )(−δ2−λ )−℘β2
A

κµ
](28)
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The characteristic equation of J(E0
eq) has the following eigenvalues:

Then

λ1 =−µ

And

λ 2−λ [−δ2 +β1
A

µN − (µ +δ1 +α1 +α2)]−δ2(β1
A

µN − (µ +δ1 +α1 +α2))−℘β2
A

κµ
= 0

(29)

One eigenvalue is obviously negative.The characteristic equation of the submatrix J1 is now

equation (30) where:

J1 =

 β1
A

µN − (µ +δ1 +α1 +α2) β2
A

κµ

℘ −δ2

(30)

If the trace of J1 ≺ 0 and the det(J1)� 0 then the eigenvalues are negative

The trace of

tr(J1) = β1
A

µN − (µ +δ1 +α1 +α2)−δ2(31)

= (µ +δ1 +α1 +α2)[−β1
A

µN(µ+δ1+α1+α2)
+1]−δ2

= (µ +δ1 +α1 +α2)[−1+(R0−β2
A℘

δ2κµ(µ+δ1+α1+α2)
)]−δ2.

(32)

Trace J1 ≺ 0 if R0 ≺ 1

And

det(J1) =−δ2β1
A

µN +δ2(µ +δ1 +α1 +α2)−℘β2
A

κµ
� 0(33)

That is

δ2(µ +δ1 +α1 +α2)[1−β1
A

µN[(µ+δ1)+(α1+α2)]
−β2

A℘

δ2κµ[(µ+δ1)+(α1+α2)]
]� 0(34)

δ2(µ +δ1 +α1 +α2)[1−
A

µ(µ +δ1 +α1 +α2)
(
β1

N
+

β2℘

δ2κ
)]� 0)

δ2(µ +δ1 +α1 +α2)[1−R0]� 0

1−R0 � 0

if

1� R0
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Consequently, given that each of the characteristic equation’s eigenvalues (29) possess a nega-

tive real part, it is demonstrated that E0
eq has a locally asymptotically stable value.

3.2.2. Disease present equilibrium. In this section, we analyze the local stability of the dis-

ease present equilibrium. We consider dS
dt = 0 , dI

dt = 0 and dB
dt = 0.

We have

B∗ = ℘

δ2
I∗(35)

S∗ = N(δ2κ+℘I∗)(µ+δ1+α1+α2)
β1(δ2κ+℘I∗)+β2N℘

(36)

From the second equation in the system (21), we have

a1I∗2 +a2I∗+a3 = 0(37)

Where

a1 =−(µ +δ2 +α1 +α2)β1℘

a2 = Aβ2℘−N(µ +δ2 +α1 +α2)(µ℘+δ2κ
β1

N
+β2℘)

a3 = (µ +δ2 +α1 +α2)µNδ2κ[R0−1]

Let the following theorem analysis the local stability of the disease present equilibrium:

Theorem 3.

The Cholera disease present equilibrium E∗eq is locally asymptotically stable if R0 > 1 and un-

stable if R0 ≤ 1

Proof. When present E∗eq = (S∗;B∗; I∗) as the Cholera disease the present equilibrium of system

(18) and the disease exists (S∗ 6= 0 , I∗ 6= 0 and B∗ 6= 0).

The Jacobian matrix at E∗eq is given by:

J(E∗eq) =


−µ−β1

I∗
N −β2

B∗
κ+B∗ −β1

S∗
N −β2

S∗(κ+B∗)−SB∗

(κ+B∗)2

β1
I∗
N +β2

B∗
κ+B∗ β1

S∗
N − (µ +δ1)− (α1 +α2) β2

S∗(κ+B∗)−SB∗

(κ+B∗)2

0 ℘ −δ2



(38)

. We see that the characteristic equation ϕ(λ ) of J(E∗eq) is:
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ϕ(λ ) = λ 3 +a3λ 2 +a2λ +a1(39)

where

a3 = (µ +β1
I∗
N +β2

B∗
κ+B∗ )+(µ +δ1 +α1 +α2)+δ2(40)

a2 = (µ +β1
I∗
N +β2

B∗
κ+B∗ )(µ +δ1 +α1 +α2)+(µ +β1

I∗
N

+β2
B∗

κ+B∗ )δ2 +(µ +δ1 +α1 +α2)δ2−β1
S∗
N (β1

I∗
N

+β2
B∗

κ+B∗ )−℘β2
S∗(κ+B∗)−SB∗

(κ+B∗)2 .

(41)

a1 =−δ2[(µ +β1
I∗
N +β2

B∗
κ+B∗ )(µ +δ1 +α1 +α2)−β1

S∗
N (β1

I∗
N +β2

B∗
κ+B∗ )]−℘β2

S∗(κ+B∗)−SB∗

(κ+B∗)2 .(42)

By routh- Hurwitz Criterion, the system (21) is locally asymptotically stable if a1 > 0 , a2> 0

a3 > 0 and a1a2 > a3.

Thus, the present equilibrium E∗eq of system (21) is locally asymptotically stable if R0 > 1.

4. GLOBAL STABILITY

4.1. The global stability of a disease-free cholera equilibrium. .

To show that the system (18) is globally asymptotically stable, we use the Lyapunov function

theory for both the Cholera disease free equilibrium and the Cholera disease present equilib-

rium. First, we present the global stability of the Cholera disease-free equilibrium E0
eq

Theorem 4. The Cholera disease free equilibruim E0
eq is globally asymptotically stable Ω If

R0 ≤ 1 and unstable otherwise.

Proof. Let the following Lyapunov function:

V : Γ→ℜ

V (S, I,B) = (S−S∗ ln S
S∗ )+

1
β1

I + 1
δ2

B,(43)

Γ = {(S, I,B) ∈ Γ/S > 0, I > 0,B > 0}
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dV
dt =− (µS−A)2

µS − (1− A
µS)(

β1SI
N +β2

SB
κ+B)+

1
β1
(β1

SI
N − I(µ +δ1 +α1 +α2)+β2

SB
κ+B)+

1
δ2
(℘I−δ2B).

(44)

Thus:
dV (S, I,B)

dt
≤ 0

for R0 ≤ 1

Note do dV
dt = 0 if and only if S = S0,I = 0 and B = 0.Hence, by Lasalle’s invariance principle

[16], E0
eq is globally asymptotically stable in Γ.

4.2. Global stability of the Cholera disease present equilibrium. The final result of the

global stability of E∗eq in this section is as follows:

Theorem 5. The disease of Cholera disease present equilibrium point E∗eq is globally asymptot-

ically stable if R0 > 1:

Proof. Let the Lyapunov function V:

V : Γ→ℜ

V (S, I,B) = S−S∗ ln
( S

S∗
)
+ I− I∗ ln ln

( I
I∗
)
+B−B∗ ln

( B
B∗
)
.(45)

Γ = {(S, I,B) ∈ Γ/S > 0, I > 0,B > 0}

Then, the time derivative of the Lyapunov function is

dV
dt =

(
1− ln

( S
S∗
))(

A−µS−β1
SI
N −−β2

SB
κ+B

)
+
(
1− ln

( I
I∗
))(

β1
SI
N − I(µ +δ1 +α1 +α2)+β2

SB
κ+B

)
+
(
1− ln

( B
B∗
))

(℘I−δ2B).
(46)

Then
dV (S, I,B)

dt
≤ 0

Also ,we obtain dV (S,I,B)
dt = 0⇔ I∗ = I,B∗ = B and S∗ = S.

Hence, by LaSalle’s invariance principle [16] the Cholera disease present equilibrium point

E∗eq is globally asymptotically stable on Γ.
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5. SENSITIVITY ANALYSIS OF R0 .

Sensitivity analysis is a powerful tool for evaluating how changes in parameter values in-

fluence the robustness of a model. It helps identify the key parameters that affect the basic

reproduction number R0, especially when considering assumptions about parameter values and

uncertainties in data collection. Following the approach outlined by Chitnis et al. [10], we

calculate the normalized forward sensitivity indices for R0. Let

TR0
u = ∂R0

∂u ∗
u

R0
(47)

Table 1 provides the sensitivity index of R0 with respect to the parameter u.

Parameter Description Sensitivity indices

A New populations are added to the model at a constant rate. 1.0000

µ The natural death rate 1.0000

β1 Transmission rate from human to human 1.0000

β2 Transmission rate from environment to human 1.0000

α1 ; α2 Recovery rate from cholera -1.5504

κ Concentration of Vibrio cholera -1.0000

δ1 The death rate induced by the cholera -0.1008

δ2 Bacteria death rate -0.9706

℘ Shedding rate of bacteria by infectious population 1.0000
TABLE 1. Sensitivity indices of R0

Table 1 shows that the threshold R0 is directly sensitive to changes in the parameter values A,

β1, β2, and ℘. This indicates that an increase or decrease in any of these parameters will result

in a corresponding increase or decrease in R0. Conversely, R0 is inversely related to changes in

µ , α1, α2, δ1, and κ , meaning that a rise or fall in any of these parameters leads to a proportional

decrease or increase in R0.

6. NUMERICAL SIMULATIONS

In this section, we present numerical solutions to model (1) for various parameter values.

To solve system (1), Gumel et al. [21] developed the Gauss-Sade-like implicit finite-difference
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method (GSS1 method), as detailed in [22]. Main results.

The fundamental data values: The model’s parameters are displayed in a table2. The sources

are also cite.

Parameter Baseline value Reference

A 10 Assumed

µ 0.025 [24]

β1 0.02 [23]

β2 0.02 [23]

α1 ; α2 0.214 [24]

κ 104cell/day Assumed

δ1 0.013 [25]

δ2 0.33 [26]

℘ 10 cell/day [25]
TABLE 2. Baseline Parameter values for system(21)

First, we graphically illustrate the cholera disease-free equilibrium E0
eq, using the initial val-

ues and parameters listed in Table 2, where R0 < 1.

By varying the initial values of the variables S(0), I(0), C(0), and R(0), the following obser-

vations were made:

- The susceptible population steadily increases and approaches S(0) = 250 (see Figure 2(a)).

- The number of patients in the treatment center decreases and approaches zero (see Figure

2(b)).

- The populations of carriers and symptomatic infected individuals initially rise but then de-

crease, nearing zero (see Figure 2(c)).

- The number of recovered individuals also declines, approaching zero (see Figure 2(d)).

These results show that the solution curves converge to the equilibrium E0
eq = (S0,0,0,0)

when R0 < 1. Thus, the model (1) is globally asymptotically stable.
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c d

FIGURE 2.

We have identified an equilibrium for cholera when R0 > 1. According to Theorem (5), the

cholera disease equilibrium E∗eq for system (1) is globally asymptotically stable.

To illustrate this, we provide a graphical representation of the cholera disease equilibrium

E∗eq, using the parameters and initial values specified in Table 2, where R0 > 1.

The total number of susceptible individuals initially increases, then experiences a slight decline,

ultimately approaching S∗ = 42. The proportion of infected cases with no or only mild symp-

toms initially decreases rapidly before experiencing a slight rise (See Figure 3 (a)).Concerning

the patient population at the treatment center is advancing towards the threshold of 16(Figure

3(b)).The number of carriers of the bacteria and symptomatic infected individuals converge at

I∗ = 24 (See Figure 3(c)). As the number of recovered individuals grows, it approaches the

target value of R∗ = 170 (See Figure 3(d)). This indicates that the recovery rate is improving

and the number of individuals who have successfully recovered is nearing the desired threshold.
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a b

c d

FIGURE 3.

7. CONCLUSION

In this study, we developed and presented a continuous SICR-B mathematical model to de-

scribe the dynamics of cholera transmission. We derived the basic reproduction number R0 for

the system as follows:

R0 = β1
A

µN(µ +δ1 +α1 +α2)
+β2

A℘

δ2κµ(µ +δ1 +α1 +α2)

This expression for R0 provides insight into the system’s behavior. We performed a sensitivity

analysis on the model parameters to identify those that have a significant influence on the re-

production number R0. Additionally, we applied stability analysis theory for nonlinear systems

to assess both the local and global stability of the cholera model.

Our analysis indicates that the disease-free equilibrium E0
eq is locally asymptotically stable

when R0 ≤ 1, meaning that the disease will eventually be eradicated. On the other hand, if

R0 > 1, the endemic equilibrium E∗eq becomes locally asymptotically stable, suggesting that

the disease will persist in the population. Furthermore, by employing a Lyapunov function,

we demonstrated that E0
eq is globally asymptotically stable when R0 ≤ 1, and E∗eq is globally

asymptotically stable when R0 > 1.
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