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Abstract: The paper emphasizes the development and application of the power Garima-generalized extreme value 

distribution for analyzing extreme values of PM2.5 and PM10 in Pathum Thani, Thailand. A new distribution is 

derived from the power Garima-generated family, and the generalized extreme value distribution provides a 

continuous framework for modeling extreme events. Additionally, a discrete version of the proposed distribution, 

namely the discrete power Garima-generalized extreme value distribution, is provided to handle discrete analog data. 

The maximum likelihood method is used to estimate the parameters when fitting the model to empirical data. The 

discrete power Garima-generalized extreme value model was utilized in a study to forecast the highest levels of PM2.5 

and PM10 (measured in micrograms per cubic meter) for different return periods, including 2, 5, 10, 15, 20, 25, 30, 

50, and 100 years. Both PM2.5 and PM10 show increasing return levels as the return period increases. This work's 

importance lies in its contribution to understanding and predicting extreme PM2.5 and PM10 values, which is critical 

for meteorologists and policymakers. By providing tools grounded in extreme value theory, the paper supports 

informed decision-making, planning, and mitigation strategies against the health impacts associated with these 

particulate matters.  
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1. INTRODUCTION 

The extreme value theorem is a theory that describes the properties of any random variable that is 

classified as an “extreme value," which may be the highest or lowest value in any period, and 

studies the probability distribution of these random variables. Data analysis often ignores extreme 

values due to their complexity and difficulty. However, we are interested in determining the 

probability of an event with a high-low value, particularly in heavy-tailed data where the value is 

very small. Examples of extreme values include the highest or lowest rainfall per day, the highest 

or lowest values of particulate matter (PM) in a month, the highest or lowest wind speeds in a 

month, and the highest or lowest temperatures in a day. Extreme value theory is concerned with 

analyzing and predicting rare and extreme events in random variables. It has wide-ranging 

applications in many fields, including climate change, coastal engineering, finance, hydrology, 

meteorology, and insurance. Examples of specific applications of extreme value analysis (EVA) 

in environmental and climate change can be found, for example, in Zhou et al. [1], Hazarika et al. 

[2], Pornsopin et al. [3], Warsono et al. [4], Aryuyuen and Bodhisuwan [5], Aguirre-Salado et al. 

[6], and Tanprayoon et al. [7]. 

There are generally two approaches to identifying and modeling the extrema of a random 

process, such as the block-maxima and peak-over-threshold approaches. The block-maxima 

approach uses the generalized extreme value (GEV) distribution to find and model the extrema of 

a random process. The peak-over-threshold approach, on the other hand, uses a generalized Pareto 

distribution to find and model the extrema. The theory derives extreme value Fréchet, Weibull, 

and Gumbel distributions for the block maxima approach, then develops the GEV distribution 

within the extreme value theory to combine these distributions [8]. However, by designing a fitted 

distribution that accurately represents the actual data, we can achieve improved model accuracy. 

This is especially true when using more versatile distributions that can accommodate a wide range 

of data types. A multitude of scholars employ novel generalizations to enhance the scope and 

adaptability of distribution. The application of new generalizations for continuous distributions 

has gained increased appeal due to its potential to enhance the goodness of fit and ascertain tail 

features. Many researchers have proposed distributions for extreme values to provide flexibility in 

describing them. Some examples of extensions to the GEV distribution are the uniform-GEV [9], 

Topp-Leone GEV [5], Gompertz-GEV [7], and compound GEV [10] distributions. 

In this paper, we provide a new distribution for extreme value analysis, which is derived from 

the power Garima-generated (PGa-G) family of distributions [11] by using the GEV distribution 

as a baseline distribution. This family of distributions derived from the T-X family of distributions 
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[12], using the power Garima (PGa) random variable as a generator. The proposed distribution is 

called the power Garima-generalized extreme value distribution, which is the continuous 

distribution. Additionally, we propose the discretization of the proposed distribution for the 

analysis of discrete analog data [13, 14]. In recent decades, researchers have been interested in 

deriving discrete analogues (discretization) of continuous distributions. Because most of the 

original life-time data in the real world are continuous, they are discrete values in observation. The 

parameters of the proposed distribution are estimated by the maximum likelihood method. Finally, 

the proposed distributions are used for extreme value analysis and risk analysis of the maximum 

value of the PM that have a diameter of less than 2.5 micrometers in diameter (PM2.5) and the PM 

that have a diameter of less than 10 micrometers in diameter (PM10) in Pathum Thani, Thailand. 

Therefore, it is crucial to estimate and anticipate the performance of PM2.5 and PM10 in Pathum 

Tani. Both PM2.5 and PM10 are respirable and can deposit in various parts of the airways, with 

the size of the particles determining the specific locations of particle deposition in the lung. The 

PM2.5 particles have a higher tendency to penetrate and settle in the innermost areas of the lungs, 

whereas the PM10 particles are more prone to settling on the surfaces of the bigger airways in the 

upper section of the lungs. Particles that accumulate on the surface of the lungs have the potential 

to cause harm to the tissue and trigger inflammation in the lungs. Therefore, it is crucial to model 

and predict the performance of PM2.5 and PM10 in Pathum Tani. This is because both PM2.5 and 

PM10, when inhaled, can be deposited in various parts of the airways. However, the specific 

locations of particle deposition in the lung depend on the particle size. The PM2.5 is more likely 

to accumulate on the deeper lung wall, whereas the PM10 is more likely to accumulate on the 

upper lung airways. Particles deposited on the lung surface can induce tissue damage and lung 

inflammation. Meteorologists and policymakers in Thailand need to understand extreme PM2.5 

and PM10 patterns and future behaviors for effective decision-making, planning, and mitigation 

purposes. This article's focus is on extreme value theory, which provides us with relevant tools for 

modeling and predicting extreme PM2.5 and PM10 in Pathum Thani. 

2. PRELIMINARIES 

In this section, we provide an overview of the theoretical background regarding the PGa-G family 

of distributions, the GEV distribution, and the concept of discrete extension of continuous 

probability distributions. 

2.1 The PGa-G family of distributions 

Let X   be a random variable following the PGa-G family of distributions with the positive 

parameters ,a   b   and c   and a vector parameter ω   denoted by X ~ PGa-G ( , , , ).a b c ω   Its 
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cumulative density function (cdf) and probability density function (pdf) are respectively  

PGa-G
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c c
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where ( ; )g x ω   and ( ; )G x ω   are the pdf and cdf of a baseline distribution with a vector 

parameter ω  [11]. Its quantile function (qf) is  

  

1
1

1

PGa-G 1

1
( ) 1 (1 )(2 )exp( 2 ) 2 ,

a
c

Q u G W u b b b
b

−
−

−
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     

  (3) 

for 0 1u   and 
1{}G−   represents the inverse cdf of the baseline distribution. When 1( )W−   is 

the lower branch Lambert W function [15], and it is obtained by W function on LambertW package 

in R [16].  

2.2 Extreme value identify with block maxima and the GEV distribution 

The block maxima model, introduced by Fisher and Tippett in 1928, is a traditional method used 

to discover extreme values. The concept of extreme values refers to the identification of the highest 

values within a given dataset, sometimes referred to as block maxima. The GEV distribution can 

model these extreme values. The block maxima model, introduced by Fisher and Tippett in 1928, 

is a traditional method used to discover extreme values. The concept of extreme values refers to 

the identification of the highest values within a given dataset, sometimes referred to as block 

maxima.  

Let X  be a random variable distributed the GEV distribution with the parameters ,  ,  

and ,  denoted by X  GEV ( , , )   , which was first introduced by [17]. Then its pdf and cdf 

are respectively  

     
1

GEV

1
( ) ( ) exp ( )g x x x

+
= −


 


 and  GEV ( ) exp ( ) ,G x x= −       (4) 

where  
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1

1 if 0,
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x

x
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
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   (5) 

for ,−    0,   and .−      From (4), if 0   then the GEV distribution is 

reduce to the Weibull distribution; if 0  then the GEV distribution is reduce to the Fréchet 

distribution; and the GEV distribution is called the Gumbel distribution when 0→  [18]. Since 

the quantile function is invertible cdf, thus the qf of the GEV distribution has an explicit 

expression,  

  
  
 

GEV

1 log( ) if 0,
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        (6) 

where 0 1.p   Based on the extreme value theory that derives from the GEV distribution, we 

can fit a sample of extremes to the GEV distribution to obtain the parameters that best explain the 

probability distribution of the extremes [19]. Based on ( ) 1pP Z Z p = −   where 1 ,p T=   the 

return level ( )pZ  at period T  from the GEV model is  

  
GEV

1
1 log 1 if 0,

1
log log 1 if 0.

T

T
Z

T

−    
 − − − −    
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  




 


  

         (7) 

2.3 Extension of continuous probability distributions 

In practical scenarios, even though we might deal with measurements on a continuous scale, the 

observed values are often discrete due to limitations in measurement precision. Measurements 

typically record only up to a finite number of decimal places or units, preventing them from 

representing all possible points in a continuous distribution, leading to this discrete value. 

Therefore, when modeling such data, using discrete models might be more appropriate and realistic 

than assuming perfect continuity. This acknowledges the practical constraints of data collection 

and measurement in real-world scenarios. In many practical situations, continuous variables are 
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often measured in discrete terms due to the precision limitations of measuring instruments or to 

conserve space. This is especially evident in fields like survival analysis, where continuous 

variables like survival time are often recorded as discrete counts (e.g., number of days or weeks). 

These examples demonstrate that continuous lifetimes are frequently represented as discrete 

random variables, reflecting the practical necessity and convenience of discrete measurement in 

real-world applications [20]. In this paper, the survival discretization technique is used for 

extension of continuous probability distributions [12, 13], which a discretization of continuous 

probability distributions is obtained from the transforming a continuous random variable X  with 

the survival function as ( ) P( ).XS x X x=    The probability mass function (pmf) of a discrete 

random variable Y  is 

  ( ) ( ) ( 1)Y X Xf y S y S y= − +  ,             (8) 

where a discrete observed random variable Y X=     is equal to the greatest integer less than or 

equal to .X   The discrete version of the GEV distribution called the discrete GEV (DGEV) 

distribution with the parameters ,  ,  and ,  denoted by X  DGEV ( , , ),    its pmf and 

cdf are respectively  
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3. MAIN RESULTS 

3.1 The power Garima-generalized extreme value distribution    

Based on the PGa-G family of distribution proposed by [11] and the GEV distribution as the 

baseline distribution [17], we have the power Garima-generalized extreme value (PGa-GEV) 

distribution with parameters , , , , ,a b c     and ,   denoted by .P ,Ga ,-GE ( , , ,V )a b c      Let 
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X  ,P ,Ga ,-GE ( , , ,V )a b c     then its cdf and pdf can be presented as 

 
 

 
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where ( )x   as equation (5). Scale parameters , , ,a b c   and    are the positive value, and   

denotes a location parameter. For the shape parameter ,c  the PGa-GEV distribution reduces to 

the Garima-GEV distribution for 1.c =  The parameter   is called a shape parameter and may 

be used to define three-sub distribution, i.e., the PGa-GEV distribution is reduce to the PGa-

Weibull distribution, the PGa-Fréchet distribution, and the PGa-Gumbel distribution when 0,  

0  and 0→  respectively. 

The qf of the PGa-GEV distribution is 
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where 0 1u   and  1 (1 )(2 )exp( 2 ) 2.u W u b b b− = − − + − − + +  Its corresponding return level 

at period T  is  
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where 1

1
(2 )exp( 2 ) 2.T W b b b

T
−

 
 = − + − − + + 

 
 

Probability density plots of the PGa-GEV distribution are shown in Figures 1-3. For 0,  

its pdf has a left-skewed shape (see Figure 1). For 0,  its pdf has a right skewed shape (see 

Figure 2). Figure 3 shows the pdf’s shape of the PGa-GEV distribution with the specified 

parameters, and its pdf has various shapes, i.e., symmetric and right-skewed.   

  

  

Figure 1. Probability density plots of the PGa-GEV distribution for 0.  
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Figure 2. Probability density plots of the PGa-GEV distribution for 0.  

3.2 The discrete power Garima-generalized extreme value distribution 

Based on the survival discretization technique [12, 13], a discretization of continuous probability 

distributions is obtained from the transforming a continuous random variable X   with the 

survival function. Let X  PGa-GEV ( , , , , , )a b c     with the cdf in equation (11), and Y X=     

is equal to the greatest integer less than or equal to ,X  then we have the discrete power Garima-

generalized extreme value (DPGa-GEV) distribution, denoted by Y  DPGa-GEV ( , , , , , )a b c    . 
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Its cdf and pdf are respectively 

   
 
 

 
 

exp ( ) exp ( )
( ) 1 exp

2 1 exp ( ) 1 exp ( )

c c

Y

a y a yb
f y b

b a y a y

      −  −  
 = + −       + − −  − −         

  

 
 

 
 

exp ( 1) exp ( 1)
1 exp ,
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c c

a y a yb
b

b a y a y

      −  + −  + 
 − + −       + − −  + − −  +        

  (15) 

 

  

  

Figure 3. Probability density plots of the PGa-GEV distribution for 0.=  
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Figure 4. The pmf plots of the DPGa-GEV distribution for 0.  
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b a y a y

      −  + −  + 
 = − + −       + − −  + − −  +        

  (16) 

where 

1

( ) 1
y

y

−

 −  
= +   

  




 


 if 0   and ( ) exp
y

y
− 

=  
 





  if 0.=   The pmf plots of 

the DPGa-GEV distribution are shown in Figures 4-6. For 0 , its pmf has a left-skewed shape 

(see Figure 1). For 0 , its pmf has a right skewed shape (see Figure 5). Figure 6 shows the 

pmf’s shape of Y  which has symmetric and right skewed. 
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Its corresponding qf and return level at period T  are respectively   

  

1
1

1
1

1
1 log 1 1 1 if 0,

( )

1
log log 1 1 if 0,

a
c

u

Y
a

c

u

b

Q u

b

−
−

−

−
−

         − − − + − − −                = 
          − − + − − =              




  



   

   (17) 

  

1
1

DPGa-GEV

1
1

1
1 log 1 1 if 0,

1
log log 1 1 if 0.

a
c

T

T
a

c

T

b

Z

b

−
−

−

−
−

         − − − + − −                = 
          − − + − − =              




  



   

   (18) 

3.3 Parameter estimation  

Several techniques have been suggested for parameter estimation, but the maximum likelihood 

(ML) method is the most frequently used. ML estimators provide favorable characteristics for the 

model's parameters. Therefore, the ML method is used to estimate the parameters of the PGa-GEV 

and DPGa-GEV distributions. 

 Let 
tX   be independent and identically distributed (iid) random variables of size n  

following the pdf (12) with a vector of parameters ( , , , , , ),a b c=θ     then the log-likelihood 

can be written as follows 

 
 

 
 

 

 1
1

1

1

1

exp ( )

1 exp ( )

exp ( )exp ( )
1

1

( ) log log l

)

og log( 2)

1

(
log l

exp ( ) 1 e
og

xp

i

c

i

i

c

x ii
n

c

i i

n

t

n

t t

n a n b n c n b
a x

a x

ac xa x
b b

a x a x

b

+

=



+
= =

 − 
  − −  

   −  − 
 + + 

−

=

 −    − − 
+

+ + − + −

 
 

+
    

 
  



 

θ

  

 The ML estimator θ̂  of θ  is obtained numerical from the nonlinear equations 

( ) ( ) ( ) ( ) ( ) ( )
0

a b c

     
= = = = = =

     

θ θ θ θ θ θ
.                    (19) 
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Figure 5. Thp pmf plots of the DPGa-GEV distribution for 0 . 

 Let 
tY  be iid random variables of size n  following the pmf (15) with ( , , , , , ),a b c=Θ     

then its log-likelihood is 

  

 
 

 
 

 
 

 
 

1

exp ( ) exp ( )
log 1 exp

2 1 exp ( ) 1 exp ( )

exp ( 1) exp ( 1)
1 exp

2 1 exp ( 1) 1 exp (

( )

1)

c c

t t

t t

c

n

t

c

t t

t t

l
a y a yb

b
b a y a y

a y a yb
b

b a y a y

=

      −  −   
 + −        + − −  − −          

     −  + −  +
 − + −      + − −  + − −  +   

=

 

Θ

.


 
 
  

 

 The ML estimator Θ̂  of Θ  is obtained numerical from the nonlinear equations 

 
( ) ( ) ( ) ( ) ( ) ( )

0
l l l l l l

a b c

     
= = = = = =

     

Θ Θ Θ Θ Θ Θ
.                      (20) 

 Since (19) - (20) cannot be derived in a closed form, thus the numerical method was used. The 

ML estimators of θ  and Θ  were obtained by the nlm function in the stats package [21]. 
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Figure 6. The pmf plots of the DPGa-GEV distribution for 0= . 

3.4 Extreme value analysis of the PM2.5 and PM10 in Pathum Thani, Thailand 

In this study, we used two sets of real data on which we apply the proposed distributions that were 

developed in the preceding Sections 3.1 and 3.2. The data sets are related to air pollution, such as 

the PM2.5 and PM10 in Pathum Thani province, Thailand, from 2019 to 2023. Observations of 

daily PM are the 24-hour averages (unit: micrograms per cubic meter) of PM2.5 and PM10, which 

are report by Air Quality and Noise Management Office, Pollution Control Department, Ministry 

of Natural Resources and Environment, Thailand [22]. 

 Let 1max( , , , , )
tt t tj tnX X X X=  where tjX  is the 24-hour averages of PM2.5 (or PM10) 

in month 1,2,3,...,60t =  and day 1,2,..., tj n= , 
tX  is a maximum value of PM2.5 (or PM10) 

in month t ,  and 
tn  is the number of days in month .t  The maximum value of PM2.5 and 

PM10 in each month, Pathum Thani province from 2019 to 2023 are show in Table 1 and Figure 

7. The distributions of a maximum value of PM2.5 and PM10 are right-skewed and heavy-tailed. 
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Table 1. Summary of empirical data~concerning the maximum value of PM2.5 and PM10 in each 

month, Pathum Thani province from 2019 to 2023 [22]. 

Months 
PM2.5 PM10 

2019 2020 2021 2022 2023 2019 2020 2021 2022 2023 

Jan 88 67 82 34 68 97 84 94 94 120 

Feb 60 74 65 31 111 75 105 79 96 181 

Mar 43 36 45 27 87 64 63 62 85 140 

Apr 32 35 30 33 51 48 50 45 122 93 

May 37 26 28 14 32 76 54 38 55 62 

Jun 22 17 21 12 22 40 31 32 53 46 

Jul 25 19 20 10 18.1 44 31 45 43 40 

Aug 18 22 25 12 21.2 33 39 48 45 45 

Sep 62 22 25 12 22.2 84 36 44 47 43 

Oct 40 36 31 20 40.6 62 53 55 81 60 

Nov 59 40 36 23 44.5 77 54 61 84 79 

Dec 58 55 63 27 56.5 80 69 103 83 83 

  

  

  

Figure 7. Line and box plots of the maximum value of PM2.5 and PM10. 
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 Table 2. The values of ML estimates of distributions, log-likelihood (logL), and KS test for 

extreme value analysis of PM2.5 in Pathum Thani province, Thailand, from 2019 to 2023. 

ML 

estimates 

0  0=  

GEV DGEV PGa-GEV DPGa-GEV GEV DGEV PGa-GEV DPGa-GEV 

̂  30.1970 30.7053 24.1772 17.9468 34.3981 35.3079 38.1509 1.0106 

̂  12.7719 12.7770 49.8722 3.0204 35.8066 50.7084 28.9258 3.9847 

̂  0.3461 0.3452 6.2319 0.0715 - - - - 

â  - - 103.7740 20.7395 - - 89.2176 1.0533 

b̂  - - 1090.042 0.6892 - - 5.1726 0.2302 

ĉ  - - 0.0813 0.1715 - - 0.0215 0.1423 

-logL 259.06 259.07 255.10 252.28 283.50 300.27 264.15 281.51 

KS 0.1054 0.1098 0.0975 0.0693 0.2238 0.3022 0.1192 0.2186 

(p-value) 0.5180 0.4649 0.6181 0.9354 0.0049 <0.0001 0.3609 0.0064 

 In this study, we analyze the extreme value of the PM2.5 and PM10 as an application of the 

PGa-GEV distribution and compare it to the GEV distribution for cases 0  and 0= . The 

PM data sets are continuous value for 
tX , but it is recorded in discrete value. Thus, we apply the 

DPGa-GEV distribution to analysis these data, and compare it with the PGa-GEV distribution, 

GEV distribution, and DGEV distribution. In this study, the Kolmogorov-Smirnov (KS) test is 

used as criteria for the goodness of fit, where the model that gives the smaller values of KS test is 

the better fit to the data.  

Extreme value analysis of the PM2.5 and PM10 in Pathum Thani, Thailand:  

Let 
tX   is a maximum value of PM2.5 (or PM10) in month t   from 2019-2023 for 

1,2,3,...,60t =  , and 
tX     is equal to the greatest integer less than or equal to .tX   The 

parameter estimates and the goodness of fit test for PM2.5 data are summarized in Table 2. The 

DPGa-GEV distribution gives the lower KS values than other distributions, i.e., PGa-GEV, DGEV, 

and GEV distributions. We conclude that the DPGa-GEV distribution with 0   is an 

appropriate distribution to fit the PM2.5 data (KS = 0.0639, p-value = 0.9354), see Figure 8. For 
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PM10 data, the ML estimates and the goodness of fit test are shown in Table 3. The DPGa-GEV 

distribution gives the smallest value of AIC and KS, then it is the best distribution to describe the 

PM10 data (KS = 0.0902, p-value = 0.7131), see Figure 8. 

Table 3. The values of ML estimates of distributions, log-likelihood (logL), and KS test for 

extreme value analysis of PM10 in Pathum Thani province, Thailand, from 2019 to 2023. 

ML 

estimates 

0  0=  

GEV DGEV PGa-GEV DPGa-GEV GEV DGEV PGa-GEV DPGa-GEV 

̂  52.8034 53.3046 39.1634 32.4299 25.8032 29.2679 44.2194 2.0571 

̂  18.7401 18.7385 57.8950 62.7781 113.3222 93.9364 38.3736 4.9957 

̂  0.1789 0.1789 4.8773 41.7813 - - - - 

â  - - 48.8382 0.7245 - - 127.8754 1.0393 

b̂  - - 909.4893 0.2928 - - 5.3544 0.2300 

ĉ  - - 0.1803 34.7365 - - 0.0240 0.1165 

-logL 276.75 276.75 275.13 274.10 348.60 338.64 280.07 304.01 

KS 0.1107 0.1160 0.1020 0.0902 0.3847 0.3786 0.1000 0.2386 

(p-value) 0.4544 0.3951 0.5599 0.7131 <0.0001 <0.0001 0.5861 0.0022 

 

Figure 8. Empirical cumulative distribution and DPGa-GEV cumulative distribution for the 

maximum value of PM2.5 and PM10 in Pathum Thani province 
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Return level of PM2.5 and PM10 in Pathum Thani province 

In our present work, we first calculate the monthly maximum PM2.5 (or PM10). These 

extreme-related quantities are, respectively, fitted to the DPGa-GEV distribution. From the fitted 

distribution, we can estimate how often the extreme quantiles occur with a certain return level. We 

define the return value as the average value that we expect to equal or exceed once every interval 

of time (T), with a probability of 
1

.
T

 The return value can be calculated by solving this equation 

ˆ
ˆ1ˆ1

DPGa-GEV ˆ 1 ˆˆ ˆ 1 log 1 1 ,
ˆ ˆ

a
c

T TZ
b

−
−

−
        = − − − + − −              




 


 

where 1

1 ˆ ˆ ˆˆ (2 )exp( 2 ) 2 .T W b b b
T

−

 
 = − + − − + + 

 
  For calculating  1 ,W z−

 the function 

“W(z,branch=-1)” in the LambertW package in R [20]. 

 From Table 2, the ML estimates of the DPGa-GEV distribution are ̂ =17.9468, ̂ =3.0204, 

̂ =0.0715, â =20.7395, b̂ =0.6892, and ĉ =0.1715. The expression of return levels at period T  

of the maximum value of PM2.5 in Pathum Thani is  

  ( )
0.0715

0.04821717
PM2.5 5.830904ˆˆ 17.9468 42.24336 1 log 1 ( 1.450958 ) 1T TZ

−
−

−
   = − − − + − −      

  

where 1

1ˆ (2.6892)exp( 2.6892) 2.6892.T W
T

−

 
 = − − + 

 
  

From the results in Table 3, the ML estimates of the DPGa-GEV distribution are ̂ =32.4299, 

̂ =62.7781, ̂ =41.7813, â =0.7245, b̂ =0.2928, and ĉ =34.7365. Then the expression of return 

levels at period T of the maximum value of PM10 in Pathum Thani is  

  ( )
41.7813

1.3802620.02878816
PM10 ˆˆ 1.502541 1 log 1 3.41532 032.4 99 1 1T TZ

−
−−    

 = − − − + − −  
     

  

where 1

1ˆ (2. )exp( 2 ) 2 .2928 .2928 .2928T W
T

−

 
 = − − + 

 
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Table 4. The values of the DPGa-GEV return level at period T of PM2.5 and PM10 in Pathum 

Thani province, Thailand 

Data 
Return level at period T (micrograms per cubic meter) 

2 years 5 years 10 years 15 years 20 years 25 years 30 years 50 years 100 years 

PM2.5 36 59 72 78 82 85 87 94 101 

PM10 59 87 106 116 124 129 133 145 161 

 Table 4 shows the predicted maximum PM2.5 and PM10 return levels (in micrograms per 

cubic meter) with the DPGa-GEV model for the return periods of 2, 5, 10, 15, 20, 25, 30, 50, and 

100 years along. The results show an increasing return level of PM2.5 and PM10 as T increases. 

The probability of occurring an PM2.5 that exceeds the magnitude 36 micrograms per cubic meter 

is 0.5 for the next two years; the probability of occurring an PM2.5 that exceeds the magnitude 72 

micrograms per cubic meter is 0.1 for the next ten years; and the probability of occurring an PM2.5 

that exceeds the magnitude 82 micrograms per cubic meter is 0.05 for the next twenty years. For 

PM10 data, the probability of occurring an PM10 that exceeds the magnitude 59 micrograms per 

cubic meter is 0.5 for the next two years; the probability of occurring an PM10 that exceeds the 

magnitude 106 micrograms per cubic meter is 0.1 for the next ten years; and the probability of 

occurring an PM2.5 that exceeds the magnitude 124 micrograms per cubic meter is 0.05 for the 

next twenty years. 

4. CONCLUSIONS 

This study presents the development and application of the power Garima-generalized extreme 

value (PGa-GEV) distribution, alongside its discrete counterpart, for analyzing extreme PM2.5 

and PM10 values in Pathum Thani, Thailand. The research highlights the robustness of these 

models, particularly the DPGa-GEV distribution, in fitting empirical data and predicting extreme 

events over extended return periods. The findings underscore the higher return levels for PM10 

compared to PM2.5, especially over 10- and 20-year periods, which is critical for decision-making 

in public health and infrastructure planning. The study provides essential insights for Thai 

meteorologists and policymakers, enabling them to make decisions that mitigate the adverse 

effects of extreme PM2.5 and PM10 on human health and the environment. The research 

emphasizes the need for continuous preparedness and adaptation to enhance community resilience 

in the face of climate change. This research demonstrates the application and significance of 

extreme value theory in describing extreme PM2.5 and PM10 events in Pathum Thani, Thailand. 
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The DPGa-GEV, PGa-GEV, DGEV, and GEV models are considered for maximum monthly data 

in Pathum Thani from 2019 to 2023. We estimated the model parameters using maximum 

likelihood (ML) estimation and fit the distributions using the block maxima approach. Our findings 

reveal that the DPGa-GEV distribution is the optimal model from the GEV family for the monthly 

maximums of daily PM2.5 and PM10 data. We discovered that as return periods increase, so do 

the return levels. The average value of PM2.5 exceeding 36, 72, and 80 micrograms per cubic 

meter has a 50%, 10%, and 5% probability in the next two years, the next ten years, and the next 

twenty years, respectively. The probability of the PM10 average exceeding 59, 106, and 124 

micrograms per cubic meter is 50%, 10%, and 5% in the next two years, the next ten years, and 

the next twenty years, respectively. When comparing the return levels for PM2.5 and PM10, our 

results show that PM10 has higher return levels for 10 and 20 years compared to PM2.5. The model 

diagnostics showed that the models were reasonable for modeling the PM2.5 and PM10 data. This 

study will equip Pathum Thani's decision-makers with insights into extreme PM2.5 and PM10 

events during the specified return periods, empowering them to make informed choices that 

mitigate the harm extreme PM2.5 and PM10 inflict on people, infrastructure, and lives. As climate 

change persists, continuous preparedness and adaptation measures are essential for the Pathum 

Thani community’s resilience. Therefore, this research will aid in developing strategies for early 

warning, management, preparedness, response, and mitigation of PM2.5 and PM10 risks. 

However, future studies can model and predict extreme rainfall in PM2.5 and PM10 with respect 

to specific regions of the country. Additionally, modeling extreme PM2.5, PM10, rainfall, and 

temperature in Pathum Thani is a possible research direction. 

ACKNOWLEDGMENTS  

This research was supported by the National Science, Research and Innovation Fund, Thailand 

Science Research and Innovation (TSRI), through Rajamangala University of Technology 

Thanyaburi (FRB67E0619) (Grant No.: FRB670027/0168). The authors would like to thank the 

anonymous reviewers for their comments and suggestions. 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests.  

 

 

 



21 

EXTREME VALUE ANALYSIS WITH NEW GENERALIZED EXTREME VALUE DISTRIBUTIONS 

REFERENCES 

[1] S. Zhou, Q. Deng, W. Liu, Extreme air pollution events: Modeling and prediction, J. Cent. South Univ. Technol. 

19 (2012), 1668–1672. https://doi.org/10.1007/s11771-012-1191-2. 

[2] S. Hazarika, P. Borah, A. Prakash, The assessment of return probability of maximum ozone concentrations in an 

urban environment of Delhi: A generalized extreme value analysis approach, Atmos. Environ. 202 (2019), 53–

63. https://doi.org/10.1016/j.atmosenv.2019.01.021. 

[3] J.J. Pornsopin, P. Busababodhin, T. Phoophiwfa, et al. Risk analysis of PM2.5 and PM10: A case study at Khon 

Kaen City, J. Appl. Sci. 20 (2021), 157–172. https://doi.org/10.14416/j.appsci.2021.02.012. 

[4] W. Warsono, Y. Antonio, S.B. Yuwono, et al. Modeling generalized statistical distributions of PM2.5 

concentrations during the COVID-19 pandemic in Jakarta, Indonesia, Decision Sci. Lett. 10 (2021), 393–400. 

https://doi.org/10.5267/j.dsl.2021.1.005. 

[5] S. Aryuyuen, W. Bodhisuwan, The Topp-Leone generalized extreme value distribution: extreme value analysis 

and return level estimation of the PM2.5 in Chiang Mai, Thailand, Songklanakarin J. Sci. Technol. 44 (2022), 

1450-1461. 

[6] A.I. Aguirre-Salado, S. Venancio-Guzmán, C.A. Aguirre-Salado, et al. A novel tree ensemble model to 

approximate the generalized extreme value distribution parameters of the PM2.5 maxima in the Mexico City 

Metropolitan Area, Mathematics. 10 (2022), 2056. https://doi.org/10.3390/math10122056. 

[7] E. Tanprayoon, U. Tonggumnead, S. Aryuyuen, A new extension of generalized extreme value distribution: 

extreme value analysis and return level estimation of the rainfall data, Trends Sci. 20 (2022), 4034. 

https://doi.org/10.48048/tis.2023.4034. 

[8] T.G. Bali, The generalized extreme value distribution, Econ. Lett. 79 (2003), 423–427. 

https://doi.org/10.1016/s0165-1765(03)00035-1. 

[9] C.T. Guloksuz, N. Celik. An extension of generalized extreme value distribution: Uniform-GEV distribution and 

its application to earthquake data, Thail. Stat. 18 (2020), 491-506. 

[10] M.A. Esfeh, L. Kattan, W.H.K. Lam, et al. Compound generalized extreme value distribution for modeling the 

effects of monthly and seasonal variation on the extreme travel delays for vulnerability analysis of road network, 

Transp. Res. Part C: Emerg. Technol. 120 (2020), 102808. https://doi.org/10.1016/j.trc.2020.102808. 

[11] S. Aryuyuen, W. Bodhisuwan, T. Ngamkham, Power Garima-generated family of distributions: Properties and 

application, Lobachevskii J. Math. 42 (2021), 287–299. https://doi.org/10.1134/s1995080221020050. 

[12] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, METRON. 

71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y. 

 



22 

KITTIPONG KLINJAN, TIPAT SOTTIWAN, SIRINAPA ARYUYUEN 

[13] A.W. Kemp, Classes of discrete lifetime distributions, Commun. Stat. – Theory Methods. 33 (2004) 3069–3093. 

https://doi.org/10.1081/sta-200039051. 

[14] D. Roy, Discrete Rayleigh distribution, IEEE Trans. Rel. 53 (2004), 255–260. 

https://doi.org/10.1109/tr.2004.829161. 

[15] D. Veberič, Lambert W function for applications in physics, Computer Phys. Commun. 183 (2012), 2622–2628. 

https://doi.org/10.1016/j.cpc.2012.07.008. 

[16] G.M. Goerg, LambertW: An R package for Lambert W x F random variables, R package version 0.6.9-1, (2023). 

[17] A.F. Jenkinson, The frequency distribution of the annual maximum (or minimum) values of meteorological 

elements, Quart. J. R. Meteorol. Soc. 81 (1955), 158–171. https://doi.org/10.1002/qj.49708134804. 

[18] S. Kotz, S. Nadaraja, Extreme value distribution: theory and applications, Imperial College Press, Singapore, 

2000. 

[19] S. Coles, An introduction to statistical modeling of extreme values, Springer, London, 2001. 

https://doi.org/10.1007/978-1-4471-3675-0.1 

[20] S. Chakraborty, Generating discrete analogues of continuous probability distributions-A survey of methods and 

constructions, J. Stat. Distrib. Appl. 2 (2015), 6. https://doi.org/10.1186/s40488-015-0028-6. 

[21] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 

Vienna, Austria, https://www.R-project.org. 

[22] Air Quality and Noise Management Office, Department of Pollution Control, Air quality historical data, (2024). 

http://air4thai.pcd.go.th/webV3/#/History. 


