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Abstract. A Protein-Protein Interaction Network (PPIN) is a mathematical model in which every protein is de-
scribed as a node, and the physical interaction or similar protein expression is considered an edge. Previous studies
have shown that PPIN performs various analyses and protein predictions in many aspects, such as essential pro-
tein prediction and drug targeting. Numerous centrality measures can provide protein characterization at the node
level. However, we still have insufficient network-level identification. In this study, Persistent Homology (PH)
is incorporated as an additional network-level measurement to analyze 42 aging PPINs, comprising 22 males and
20 females, aged between 20 and 99. The Vietoris-Rips (VR) filtration was used to capture simplicial complexes
before obtaining the persistent barcodes, which are considered the topological representation of a network. The
derivation of persistent barcodes, named the Betti Sequence, is calculated for each network, which represents the
complexity of the network. Node deletion is performed to assess the change in complexity of the network. The
findings reveal a significant change in the Betti sequence after node deletion, indicating that the node is crucial
within the network and could potentially serve as a drug target.
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1. INTRODUCTION

Aging is a continuous process in every living organism. For humans, it usually begins in
their early 20s. Previous research has demonstrated that aging manifests not only physically,
such as in bone acidity formation [1], muscle architecture [2], and the immune system [3], but
also mentally [4]. Proteins are believed to play a crucial role throughout the aging process [5],
underscoring the importance of studying protein interactions to characterize their behaviors and
ascertain their essential roles. Hence, characterizing essential proteins is important as they have
various applications in the medical and pharmaceutical fields, such as drug targeting and design.

The study of essential proteins in aging can be conducted by either a biological laboratory
(wet lab) or computational biology. There are numerous methods to characterize essential pro-
teins, including machine learning [6] and network analysis [7, 8]. In this study, we employed a
computational approach to construct human aging Protein-Protein interaction Interaction Net-
works (PPIN).

A network G can be defined as G = (V,E); where V is the collection of nodes and E is the
collection of edges. In PPIN, the nodes represent proteins whereas the edges are defined as the
connections between any two proteins, usually sharing similar protein expressions or physical
interactions. The measurements in a network can provide information regarding the importance
of their connectivity. For example, proteins with high degree, closeness or betweenness values
have a high tendency to become essential proteins [7]. Apart from the centralities, another
measure used in aging PPIN is clustering [9]. It measures the tendency of nodes (proteins) to
form a cluster by using the Local Clustering Coefficient (LCC) [7].

These classical graph-theoretic measures are beneficial for understanding the nodes and their
interactions. However, they focus on the node level and do not account for the overall network
topology. Therefore, they may have information loss over topological structures, such as the
clique, connected components or holes in the networks. On the other hand, the structure of
the holes in networks could provide important information about network topology [10]. For
instance, node importance can be measured based on the structure of the holes by identifying
the location of holes in which can reveal the new characteristics of the network, that can be used

for network comparison and classification [11].
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Recently, Persistent Homology (PH) has been widely applied to study complex networks as

a topological feature extractor since PH provides a multi-scales summary of the network and
differs from most the existing centralities that summarize the network from a specific point of
view. Therefore, the objective of this study is to implement PH in analyzing aging PPIN of
Homo Sapien. Furthermore, proteins are identified by examining topological changes follow-
ing node perturbation. These identified proteins are subsequently analyzed based on network

topology and their essentiality.

2. PERSISTENT HOMOLOGY FOR NETWORKS

Extracting information from complex or high-dimensional datasets is typically challenging.
Thus, PH, one of the tools in Topological Data Analysis (TDA) may provide a general frame-
work to analyze several data types, such as point-cloud data [12], image [13], time series [14],
as well as network data. In this section, we are focusing on utilizing PH in network analysis.

The notion of PH in analyzing data is illustrated as in Figure 1.

\ Data type | ’ Point-cloud data H Image H Time Series H Network ‘

!
PH Filtration ’ Vietoris-Rips H Clique H Cech H Zigzag ‘
!
Persistent Persistent Persistent Betti
Diagram Barcodes Landscape

Sequence

FIGURE 1. Flowchart illustrating the process of Persistent Homology.

The PH analysis can be divided into two main parts, which are the filtration process and fea-
ture selection. The filtration process is the process of extracting topological features in different
spatial resolutions. In network analysis, the usual topological features involve 0-D and 1-D
components, often referred to as connected components and loops within the network structure.
The simplest 0-D components, known as simplices, serve as fundamental building blocks in
constructing the simplicial complex. The example of 0-D topological components is illustrated

in Figure 2:
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FIGURE 2. List of topological simplices.

There are various filtration processes available, each suited to different types of networks.
One of the most commonly used filtrations for network analysis is the Vietoris-Rips (VR) fil-
tration [15], known for its stability in most undirected network cases. Other filtration methods
include Dowker Sink and Source (DSS) filtration [16], Clique Complex (CC) filtration [17],
zigzag filtration [18], temporal filtration [19], Weighted Simplex (WS) filtration [20], power
filtration [21], and Vertex-Based Clique (VBC) filtration [22]. Note that each filtration method
serves a specific purpose in extracting topological features, making them suitable for particular
types of networks. For example, temporal filtration is ideal for dynamic temporal networks,
while zigzag filtration is specifically designed for dynamic networks. In this study, the network
type under consideration is an undirected static network. Therefore, suitable filtrations include
power filtration, VR filtration, WS filtration, and VBC filtration [15].

The next important process is choosing the right topological features for analysis to obtain
the desired output. The basic output for PH analysis is barcodes. Other features derived from
barcodes are Betti Number, Persistent Diagram (PD) and Persistent Landscape (PL). There are
multiple ways to analyze the output, such as features comparison, data perturbation, or entropy
[15]. Some of past applications of PH in static network are listed in Table 1.

Most studies primarily utilize VR filtration due to its accessibility and simplicity in capturing
topological features for analysis in conjunction with PD for feature selection. Given that our
network type is undirected, we sought to explore alternative filtration methods. Instead of using
power filtration as in [21], we employed VR filtration and utilized Betti Sequences (a sequence
of Betti Numbers) for feature selection, aiming to provide a more comprehensive understanding

of the network’s topological characteristics.
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TABLE 1. Summary of PH filtration and topological features for analysis of

different network types

Authors Network Type Filtration Used  Topological Features
Benzekry et al. [21] PPIN Power Betti Numbers
Chung et al. [23] Brain networks Vietoris-Rips Persistent Diagram
Giusti et al. [24] Brain networks Weighted Simplex Persistent Diagram
Ignacio and Darcy [25]  Migration networks Vietoris-Rips Persistent Diagram
Khalid et al. [26] Brain networks Vietoris-Rips Persistent Diagram
Rieck et al. [22] Brain network Vertex-based Clique  Persistent Diagram
Rucco et al. [27] Simulated network Vietoris-Rips Barcodes
Sizemore et al. [28] Brain network Vietoris-Rips Persistent Diagram
Suh et al. [29] Co-occurrence network Power Barcodes

3. METHODOLOGY

The study comprised four primary stages: constructing the PPIN, obtaining the metric space
representation of these PPINs, calculating PH from the metric space, and analyzing the Betti

Number Sequence (BNS) derived from the PPINSs.

3.1. Aging Protein-Protein Interaction Network of Homo Sapiens. The PPIN were built
using aging proteins collected from four parts of the human brain: the Entorhinal Cortex (EC),
Hippocampus (HC), Post-Central Gyrus (PCG) and Superior Frontal Gyrus (SFG) [30]. The
protein samples were taken from 55 individuals and represented by the network nodes. Conse-
quently, we referred to the Data of Interacting Proteins (DIP) to create the interactions between
the proteins, which serve as the edges of the network [31].

As a result, a total of 42 different unweighted and undirected networks were constructed
according to the age and gender of the individuals. The giant components of those networks
were extracted for further analysis. A giant component is the largest connected component in
a network. It is important to extract the largest connected components of the PPIN because

smaller, disconnected components often consist of nonessential proteins [32].
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3.2. Metric Space Representation of Aging PPIN. In this stage, all unweighted networks
were converted into weighted networks. We defined the edge weight of these networks by using
distance metrics. Originally, the two common methods to obtain weighted networks were the
shortest path algorithm and the Laplacian method. Some of the well-known shortest path algo-
rithms were conceived by Dijkstra, Johnson, Floyd-Warshall and Bellman-Ford. On the other
hand, examples of Laplacian methods include the commute-time distance [33], biharmonic dis-
tance [34] and diffusion distance [35]. Here, we chose the Johnson algorithm from the shortest
path algorithm because it has a low computational cost and suits the best with the nature of our

networks — low density and sparse network [36].

3.3. Persistent Barcodes and Betti Number Sequence. Barcodes are the first PH features
obtained after filtration. The filtration that we used in this study is VR filtration, defined as
follows [15]:

Definition 1: Vietoris-Rips filtration. Let G = (V,E) be an undirected graph with weight
function W : V x V — R defined on E. For any § € R, the G5 = (Vs,E5) C G is defined on the
subgraph of G where Vs =V and its edge set E5 € E only include the edges whose weight is
less than or equal to 8. Correspondingly, for any 6 € R, the Vietoris-Rips (VR) complex as the
clique of the G was defined as CI(Gg). The VR filtration is then defined as:

Cl(Gg) — Cl(Gg/)

In other words, this filtration begins with a set of vertices. The edge weights range from the
minimum weight, wy,;, to the maximum weight wy,,,. At each step, edges are added according
to their weights, and the simplicial complex of the threshold subgraph Gg is constructed. This
process differs slightly from the original filtration process used on point cloud data, as distances
between nodes in this network context are defined by edge weights.

A combination of simplices that are connected is called a simplicial complex. Simplices and
complexes can be seen when the filtration process is completed after a certain filtration thresh-
old. Note that filtration determines the connection of the components in the data at specific

spatial resolutions and is also represented by the distance between the points [37]. The records
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on this process are visualized using barcodes, the length of which is defined by the lifetime of
each topological components.

On the other hand, barcodes can measure the persistency of the topological features by return-
ing the value of their births and deaths. The birth time represents the spatial resolution when the
connected components, for O-dimensional, or loops, for 1-dimensional, of a topological feature
are formed, while the death time is when the components or loops diminish. The length of the
barcodes is referred to as lifetime and is calculated by taking the difference between the death
and birth of topological components. The example of a toy model and its barcode is illustrated

in Figure 3.

o1 2 3 4 5 6 7 8 9 10 11 12

— 0-D topological — 1-D topological
components components

FIGURE 3. The toy model of the weighted network, along with the VR filtration
process. The connection among the nodes of the network is shown at a certain
spatial resolution, D. For example, when D = 2, the edge with weight 2 and less

{A,B} and {C,D} are connected.

In Figure 3, notice that the number of lines for both 0-D and 1-D represents the number
of topological components in respective dimensions. In addition, the lifetime of the longest
barcode is finite. That highlighted the difference between filtration in a network and filtration
for a point cloud data, which is the longest barcode persists from [0, o) [35]. At different values
of D, the number of bars is different, and it can represent a Betti number. In this paper, we
specify the step size of 0.5D to obtain the number of topological components (total number
of bars). The sequence of every topological component at the same step size is denoted by a

BNS [38]. With the step size of 0.5D, the BNS in which includes 0-D and 1-D topological
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components from Figure 3 is:
B =15,5,4,3,3,3,3,2,2,3,2,3,3,3,3,3,3,3,2,2,1,1,0,...}

In a large network setting, it is possible that different network will produce different BNS.
Hence, it may be considered as unique [15]. If there is a minor perturbation in the networks,
BNS will also be affected. Moreover, there are several perturbation methods, involving adding
or removing the nodes or edges [35]. We only focusing on single node deletion and observe
how removing a node affects the topology of the network. Figure 4 demonstrate the flow chart

of the network perturbation process.

| Original PPING |

Node deletion

1 ‘ Perturbed PPIN G’

I

Perturbed Persistent
Barcodes B’

l

Difference calculation Perturbed

Persistent Barcodes B
from original PPIN

Betti Sequence g from
original PPIN Betti Sequence g’

| Betti Sequence
Difference after
l node i deleted

FIGURE 4. Flow chart of network perturbation.

The difference between original BNS and perturbed BNS is computed using the following

formula:

Dpns =

such that x; is the i-th Betti number in the sequence obtained from the original PPIN, y; is
the i-th Betti number in the sequence obtained from perturbed PPIN, and 7 is the length of the

sequence.
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4. RESULTS

This section will comprehensively discuss the results in two parts. The first part involves
calculating the BNS at the network level. Subsequently, the difference between the BNS of the
original network and the perturbed network will be discussed. In the second part, proteins ex-

hibiting significant differences in BNS will be identified and their essentiality will be discussed.

4.1. Node Importance Using Perturbation. We have a total of 42 PPIN datasets, compris-
ing 22 male PPINs and 20 female PPINs. For each network, nodes were deleted one at a time,
and PH was computed to obtain the BNS of the perturbed PPIN. Since we have multiple static
networks for each gender, certain proteins are expressed in some networks but not in others.
Therefore, for each protein, the average BNS difference Dgyg is calculated based on the net-
works in which the protein is expressed.

On the other hand, we also calculate the network centrality to observe the node level measure-
ments for each protein and also the relation of topological changes of the network after protein
removal with the node level measures of proteins in the network. In this study, we selected six
node-level measurements: Degree Centrality (DC), Closeness Centrality (CC), Betweenness
Centrality (BC), Eigenvector Centrality (EC), Reach Centrality (RC), and LCC. The process of
obtaining centrality values for each protein is analogous to Dgys, which represents the aver-
age centrality value based on the networks in which the protein is expressed and categorized
by gender. Therefore, for each centrality comparison across networks, we will analyze outputs
from both male and female aging PPINs.

As a result, proteins present in both male and female PPINs were identified, along with their
average BNS difference and node-level measurements. For each gender, we extracted the top
10% of proteins exhibiting the largest BNS differences and compared them with the remaining

90% of proteins based on their centralities.

4.1.1. Degree Centrality. DC measures the number of proteins connected to a protein. A high
DC value of protein results a high connection made from a protein to the others. The removal
of proteins with high degree will significantly change the topology of the network. Hence, the

BNS difference of perturbed network with respect to the original network is large. Figure 5
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illustrates proteins with high degree centrality are placed among the top 10 percent that giving
a high difference of BNS. The correlation of r = 0.7367 and r = 0.7369 for both male and
female PPIN suggested that the deletion of proteins with high DC value will affect the network

topology. Consequently, it produces a large difference of BNS.

Degree Centrality (Male) Degree Centrality (Female)

[o]e}
[»]e}

00 02 04 06 08 1.0

00 02 04 06 08 1.0

[ 50 100 150 200 0 50 100 150 200

BNS difference BNS difference

pc = 0.7367 pc = 0.7369

FIGURE 5. Graph of average BNS difference against average Degree Centrality
for both male and female aging PPINs. The coloured markers represent the top

10% of highest average BNS difference.

4.1.2. Closeness Centrality. CC measures the distance from a protein to the other proteins
via the shortest path. The overall range of CC for both male and female is low, in which
0.00026 ~ 0. This means that most of the proteins are equidistant from one another. This
also results a weak correlation between BNS where the values are r = 0.3675 and r = 0.3740
for males and females respectively, as illustrated in Figure 6. Since the values for each node
centrality is relatively low, this measurement will be excluded for further analysis as it does not

represent the characterization of the network.

4.1.3. Betweenness Centrality. Similar to CC, BC also measures the shortest path between
any two proteins but focuses on the frequency of another protein being in the pathway of those
two nodes. There are several of BC calculation formulae such as the original formulation from
[39] or the extended version from [40]. For this study, we calculated the BC for each protein
using [39]. Most proteins with high BC are also among the top 10% with significant BNS

differences after node deletion. The rationale behind this is as follows.

e Proteins with high BC often serve as central nodes situated along pathways connecting

multiple proteins.



DISCOVERING THE IMPORTANT PROTEINS THROUGH PERSISTENT HOMOLOGY 11

Closeness Centrality (Male) Closeness Centrality (Female)

cc

00 02 04 06 08 10
cc

0.0 02 04 06 08 1.0
kS
D

0 50 100 150 200 0 50 100 150 200

BNS difference BNS difference

Tcc = 0.3675 Tcc = 0.3740

FIGURE 6. Graph of average BNS difference against average Closeness Cen-
trality for both male and female aging PPINs. The coloured markers represent

the top 10% of highest average BNS difference.

e Deleting proteins with high BC can split the network into disconnected components,

substantially altering the overall network topology.

Moreover, Figure 7 demonstrate that the correlation between proteins’ BC and BNS differ-
ence is the strongest among all six centralities, with correlation coefficients of r = 0.8332 for
male PPIN and r = 0.8459 for female PPIN, indicating that high BNS differences are closely
linked with BC.

Betweenness Centrality (Male) Betweenness Centrality (Female)

BC

0.0 02 04 06 08 10
BC

0.0 02 04 06 08 10

0 50 100 150 200 0 50 100 150 200

BNS difference BNS difference

Bc = 0.8332 Bc = 0.8459

FIGURE 7. Graph of average BNS difference against average Betweenness Cen-
trality for both male and female aging PPINs. The coloured markers represent

the top 10% of the highest average BNS difference.

4.1.4. Eigenvector Centrality. The EC of a protein is the measure of the influence of a protein
over the network. Proteins with high EC tends to be linked with proteins of high degree. Based

on Figure 8, the correlation of average EC with average BNS difference is low, which are
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r=0.1019 and r = 0.09713 for male PPIN and female PPIN respectively. This also shows that
the perturbation of proteins with high EC does not necessarily change the network topology.

Certain proteins with high EC in the top 10% highest BNS group also exhibit high BC or DC.

Eigenvector Centrality (Male) Eigenvector Centrality (Female)

EVC
EVC

00 02 04 06 08 1.0

00 02 04 06 08 1.0

T T° 1 1
0 50 100 150 200 0 50 100 150 200

BNS difference BNS difference

TEc = 0.1019 Tec = 0.09713

FIGURE 8. Graph of average BNS difference against average Eigenvector Cen-
trality for both male and female aging PPINs. The coloured markers represent

the top 10% of the highest average BNS difference.

4.1.5. Reach Centrality. RC is the extended version of DC. While DC calculate the number
of adjacent proteins of a protein, RC calculate the number of proteins within up to nth degree
(usually n up to 3.). Our study defines RC by calculating the number of neighboring nodes up
to the third degree. A high RC value suggests that:
e The protein is centrally located within the network and has extensive connectivity.
e The protein is connected to other proteins with high degrees or is situated within neigh-
borhoods containing proteins with high average DC.
Although DC has a strong correlation (> 0.7) with BNS difference, by extending the neigh-
bors to the third degree reduces the correlation, which is r = 0.5694 and r = 0.5656 for both

male and female PPIN, as depicted in Figure 9.



DISCOVERING THE IMPORTANT PROTEINS THROUGH PERSISTENT HOMOLOGY 13

Reach Centrality (Male) Reach Centrality (Female)

RC

00 02 04 06 08 1.0
RC

00 02 04 06 08 1.0

BNS difference BNS difference

TrRe = 0.5694 TrRe = 0.5656
FIGURE 9. Graph of average BNS difference against average Reach Centrality

for both male and female aging PPINs. The coloured markers represent the top

10% of the highest average BNS difference.

4.1.6. Local Clustering Coefficient. Extensive interconnections among proteins can fragment
the network into multiple modules. Thus, LCC assesses the likelihood of proteins being grouped
into these modules, while also measuring how closely a protein’s neighbors resemble a clique.
Figure 10 illustrates that proteins with high BNS differences tend to have low LCC values. The
correlation coefficients, r = —0.1585 for male PPIN and r = —0.1603 for female PPIN, indicate
a weak negative correlation, suggesting that LCC may not be suitable for characterizing proteins

in further analysis.

Local Clustering Coefficient (Male) Local Clustering Coefficient (Female)

Lcc

0.0 02 04 06 08 1.0
Lcc

0.0 02 04 06 08 1.0

BNS difference BNS difference

TLcc = —0.1585 Tice = —0.1603
FIGURE 10. Graph of average BNS difference against average local clustering

coefficient for both male and female aging PPINs. The coloured markers repre-

sent the top 10% of the highest average BNS difference.
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5. DISCUSSION

5.1. Summary. Our approach aims to assess global topological changes following node re-
moval. We compare the differences in BNS with various node-level centralities to gauge the
significance of nodes in local connectivity. Only two of six network measurements show a
strong positive correlation: DC and BC.

In these aging PPINs, important proteins in maintaining network topology tend to have high
BC or DC. Rather than analyzing each PPIN separately for different centralities, PH combines
these measures into a unified analysis. According to [21], BNS can indicate network complex-
ity. Consistent with our findings, proteins contributing to higher topological changes often have
high degrees or betweenness centrality. Table 2 illustrates a significant disparity between these
two groups in average DC and BC values.

TABLE 2. Average Degree Centrality (DC) and Betweenness Centrality (BC)

for Male and Female Proteins

Gender Group Average DC Average BC
Top 10% difference 6.1019 10240.6388

Male The rest 90% 2.0875 978.6246
All proteins 2.4575 1774.7952
Top 10% difference 5.8911 9771.7581

Female The rest 90% 2.0725 867.6733
All proteins 2.4520 1752.7179

5.2. Protein Essentiality. Essential proteins play a vital role in biological systems and are of-
ten termed lethal proteins because their absence can result in infertility or death [41]. Given the
extensive research on identifying essential proteins, we compiled a list of those exhibiting sig-
nificant differences in BNS for further analysis. The identification of essential proteins through
network analysis involves various metrics, with validated measurements typically linked to DC,
CC, and BC [42]. However, in our datasets, CC did not produce significant results that could

serve as markers for essential proteins.
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In addition to centrality measures, our findings on protein essentiality reveal that several
proteins within the top 10% BNS differences are consistently expressed across all network
datasets. By combining these insights, we identified several essential proteins related to aging

for each gender that are considered crucial candidates for drug targeting, as listed below.

e Male essential aging proteins: P35222, QOUKES, Q12888, P25963, P32121, P19387,
P09619, P13010, P36405, Q13625, P45983, Q16665, P04150, P06213, 014920,
P20226, Q13616, P02786, PO1112, 043318, P20936, and P60709.

e Female essential aging proteins: P35222, Q12888, P45983, P04150, P02786, PO1112,
P20936, P25963, P00533, Q16665, QSTEWO, and Q13451.

The 28 important proteins discovered in the study had a high DC and BC, highlighting their
importance in protein-protein interaction networks (PPINs). The central positions of these pro-
teins in the network highlight their importance in ensuring network stability and functionality.
From a mathematical standpoint, proteins with a high DC serve as hubs, connecting to multiple
other proteins and playing an important role in the network’s structural integrity [43]. Because
of their high connection, they play an important role in network cohesiveness, and targeting
these hubs can effectively alter overall network dynamics, which is especially useful in ad-
dressing the complex processes involved in aging.

Furthermore, the high betweenness centrality of these proteins suggests that they act as im-
portant connectors or bridges within the network. These proteins are engaged in many shortest
pathways between other nodes, allowing for effective communication across network clusters
[44]. Hence, targeting these bridge proteins makes it possible to influence the flow of infor-
mation and regulatory signals within the network, potentially leading to broad and systemic
therapeutic effects. This makes them very appealing candidates for drug targeting, as interven-
tions at these locations might have far-reaching consequences for the network’s behavior and
stability [45].

Moreover, the essentiality of these 28 proteins in aging processes adds another layer of sig-
nificance. In network theory, essential nodes are those whose removal causes major disruptions
in network functionality. These proteins play important roles in essential biological processes

that preserve cellular homeostasis and efficiency as humans age [46]. Targeting these critical
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age-related proteins will increase the network’s resilience to perturbations and general stability,
potentially lessening the effects of aging and prolonging life duration [47].

Considering these proteins’ critical roles and high centrality, modulating their activity may
have a significant impact on network behavior. Therefore, improving the function of an essential
protein that degrades with age can help mitigate the decline associated with aging and restore
network efficiency. On the other hand, network dysfunction can be avoided by blocking a pro-
tein that becomes detrimental [48]. Since these high-centrality proteins are well-characterized,
it is easier to create targeted interventions targeting these crucial nodes and reduce inadvertent
network disruptions.

Previous examples from other fields, like epidemiology and telecommunications, show that
targeting high-centrality nodes is beneficial for controlling the spread of information or illness
[49]. Applying these principles to PPINs in the context of aging can result in beneficial thera-
peutic approaches. In conclusion, the 28 important proteins found, with their high degree and
betweenness centrality, are computationally robust therapeutic targets due to their critical roles
in network structure and dynamics. Targeting these proteins can have a large therapeutic effect,

stabilizing and optimizing the network to battle the difficulties of aging.

6. CONCLUSION

In this study, the BNS proved effective in pinpointing proteins within aging PPINs. By ex-
amining centrality indicators like DC and BC, we pinpointed 28 proteins showing high differ-
ences in BNS values and consistent expression across multiple datasets. These results not only
validate the utility of network analysis for identifying drug targets but also underscore the sig-
nificance of key proteins in processes related to aging. Hence, this study explores the changes
within aging networks by integrating essential characteristics.

However, this study points out some areas where more research is needed. Exploring filtra-
tion techniques could enhance the reliability of the findings by offering fresh perspectives on
the importance of proteins. Additionally, contrasting homology outcomes with network analysis
methods might enhance our comprehension of how network structure relates to biological func-

tions in aging. Subsequent research should incorporate biological experiments to confirm the
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significance of identified proteins, delve into their roles and interactions within aging processes,

and assess their potential for therapeutic use in developing drugs for age-related conditions.
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