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Abstract: The presence of nutrients is an important factor that affects the growth rate of organisms found in nature In 

this research, we presented a mathematical model in which we studied the effect of the concentration of nutrients on 

the growth rate of organisms with two predators competing to feed on organisms. We designed all the feeding 

processes in this system according to the Holling type -II and linear type functional response, we found five 

biologically plausible critical points. We studied for these five points local stability and also studied for the positive 

point global stability. In addition, we found the conditions for the local bifurcation of the positive point, finally, we 

studied the system numerically. 
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1. INTRODUCTION 

         Competition is considered one of the types of interactions that can occur between species 

existing in nature, regardless of the differences between these species and the form of this 

competition. Where competition occurs between individuals of the same species that live in the 

same clan. Competition also occurs between creatures of different species that live in the same 

environment and consume similar resources. Competition can occur between plants and animals as 
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well as humans. Many studies have dealt with competition between plants, see [10, 29, 30]. Many 

researchers are interested in studying competition between animals or other living organisms, 

whether they are of the same species or different species, see [1, 2, 3, 4, 6, 14, 15, 20, 23, 24, 25]. 

The concentration of nutrients found in nature has a significant impact on the growth rate of the 

organisms that feed on them, and thus also affects the presence and growth rate of predatory 

organisms that feed on these organisms [8, 16, 17, 18, 19]. Bhattacharyya [3] focused his research 

on a special study of an aquatic food chain, the presence of a constant rate of flow of input nutrients, 

the presence of organisms that feed on the nutrients, and the presence of two predators of the same 

species that feed on organisms, regardless of their age stages. In this research, the focus was on 

studying the presence and concentration rate of nutrients found in nature, the growth rate of 

organisms that feed on these nutrients, and the existence of competition between two predators of 

two different species competing for their food over these organisms. We noticed that when 

increasing the concentration of nutrients, the growth rate of organisms and predators increases, 

While when the concentration of nutrients decreases, it leads to a decrease in the growth rate of 

living organisms and thus to a decrease in the growth rate of predatory animals, which leads to their 

gradual extinction. As for competition between predators to obtain food, the greater the rate of 

competition between one predator, the more it leads to the extinction of the other. The effect of the 

rate of nutrient concentration as well as competition between predators on the dynamic behavior of 

the system was acceptable and clear analytically and numerically. The conditions for bifurcation of 

the system were found in the presence of nutrients, organisms, and predators together, and the 

results were clear.  

2. MODEL ASSUMPTION 

          In this part, we formulated an ecological mathematical model in which we studied the effect 

of competition between predators. The model consists of naturally occurring nutrients whose 

concentration in the system at the time 𝑡 is 𝑥(𝑡). Organisms 𝑦(𝑡) at time 𝑡 grow by feeding on 

those nutrients. We also took into the system two predators whose total population density at time 
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𝑡 are 𝑧(𝑡) and 𝑤(𝑡). We assumed predators 𝑧(𝑡) and 𝑤(𝑡)  feeding on living organisms 𝑦(𝑡) and 

competing with each other to obtain their food. 

The mathematical model can be represented by four of the differential equations as show in the 

following with parameters: 

                                  
𝑑𝑥

𝑑𝑡
= (𝑥0 − 𝑥)𝑑1 −

∝𝑥𝑦

𝛽1(𝑎+𝑥)
= 𝑥𝑓1(𝑥, 𝑦, 𝑧, 𝑤) 

                               
𝑑𝑦

𝑑𝑡
=

∝𝑥𝑦

𝛽1(𝑎+𝑥)
− 𝑑2𝑦 − 𝑛1𝑦𝑧 − 𝑛2𝑦𝑤 = 𝑦𝑓2(𝑥, 𝑦, 𝑧, 𝑤) 

                               
𝑑𝑧

𝑑𝑡
= 𝑛3𝑦𝑧 − 𝑑3𝑧 − 𝛾1𝑧𝑤 = 𝑧𝑓3(𝑥, 𝑦, 𝑧, 𝑤) 

                               
𝑑𝑤

𝑑𝑡
= 𝑛4𝑦𝑤 − 𝑑4𝑤 − 𝛾2𝑧𝑤 = 𝑤𝑓4(𝑥, 𝑦, 𝑧, 𝑤)                                             (1) 

System (1) was analyzed by adopting the initial conditions   𝑥(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥

0, 𝑤(0) ≥ 0. where all parameters of model (1) are positive,  these parameters have been described 

as follows: 𝑥0 represents the rate of increase of nutrients and 𝑑1 is the rate of decrease of these 

nutrients, ∝ represent maximum nutrition, 𝛽 is a constant of what nutrients are transformed into 

the organism, 𝑎  is the half saturation constant “ Michaelis-Menten” which is the nutrient 

concentration at which the functional response of the organism is half maximal. (𝑑𝑖, 𝑖 = 2,3,4) it 

represents the death of species 𝑦, 𝑧  and 𝑤  respectively. 𝑛1, 𝑛2   describes the rate at which 

predators attack  𝑧, 𝑤 an organism respectively, while 𝑛3, 𝑛4 It represents the rate of predation of 

organisms by predators 𝑧  and 𝑤 . Finally, both 𝛾1  and 𝛾2  represent competition coefficients 

between predators. 

3. BOUNDEDERY 

Theorem 1. The solutions 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) with 𝑤(𝑡)  of  a system (1), which are start in  𝑅+
4  will 

be uniformly bounded.   

Proof: Let us assume that (x(t),y(t),z(t),w(t)) is a solution of system (1) provided that it is non-

negative.  

Let     𝑀(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) + 𝑤(𝑡),  we obtained   
 𝑑𝑀

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
+

𝑑𝑧

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
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𝑑𝑀

𝑑𝑡
= 𝑥0𝑑1 − 𝑥𝑑1 −

∝ 𝑥𝑦

𝛽(𝑎 + 𝑥)
+

∝ 𝑥𝑦

𝛽(𝑎 + 𝑥)
−𝑑2𝑦−𝑛1𝑦𝑧 − 𝑛2𝑦𝑤 

+𝑛3𝑦𝑧 − 𝑑3𝑧 − 𝛾1𝑧𝑤 + 𝑛4𝑦𝑤 − 𝑑4𝑤 − 𝛾2𝑧𝑤 

Hence,   
𝑑𝑀

𝑑𝑡
+ 𝑚𝑀(𝑡) ≤ 𝑥0𝑑1 = 𝛿, where, 𝑚 = 𝑚𝑖𝑛{𝑑1, 𝑑2, 𝑑3, 𝑑4},   

 Then, 

𝑀(𝑡) ≤ 𝛿 − 𝛿𝑒−𝑚𝑡 + 𝑀0𝑒
−𝑚𝑡, 

where  𝑀0 = 𝑀(𝑥(0), 𝑦(0), 𝑧(0), 𝑤(0)). 

Now , for   𝑇 ≥ 0 we will be obtained 0 ≤ 𝑀(𝑇) ≤ 𝛿 

So, any solution of model (1) starting at  𝑅+
4  will be within the  following region: 

𝜗 = {(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) ∈ 𝑅+
4 :𝑀 = 𝑥 + 𝑦 + 𝑧 + 𝑤 ≤ 𝛿 + 𝜀, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜀 > 0}.  

4. EQUILIBRIUM POINTS WITH AN ANALYSIS OF THEIR STABILITY 

         In this part of the manuscript, we studied the existence of equilibrium points for a system 

(1) and analyzed their local stability, we found five equilibrium points which are: 

1. The nutrient equilibrium point is  𝐸0 = (𝑥0, 0,0,0). 

2. The predator's free equilibrium point is  𝐸1 = (�̌�, 𝑦,̌ 0,0), where  �̌� =
𝑎𝑑2𝛽

𝛼−𝑑2𝛽
  and  

 �̌� =
𝑑1(𝑥0𝛼−𝑑2𝛽(𝑥0+𝑎))

𝛼−𝑑2𝛽
 exists if the following condition holds: 

                                          𝛼 > 𝑑2𝛽 +
𝑑2𝛽𝑎

𝑥0                                                                                  (2) 

3. The equilibrium point without predator 𝑤 is 𝐸2 = (�̅�, 𝑦,̅ 𝑧̅, 0), where  �̅� =
−ℎ1+√ℎ1

2+4𝑎𝑥0

2
,  

�̅� =
𝑑3

𝑛3
  and 𝑧̅ =

𝛼�̅�−𝑑2𝛽(𝑎+�̅�)

𝑛1𝛽(𝑎+�̅�)
  exists if the following conditions hold:  

                                        𝛼�̅� > 𝑑2𝛽(𝑎 + �̅�)                                                                          3(a)  

  √ℎ1
2 + 4𝑎𝑥0 > ℎ1                                                                         3(b) 

                                                ℎ1 > 0                                                                                        3(c) 

            where ℎ1 =
𝑎𝑑1𝑛3𝛽+𝑑3𝛼−𝑑1𝑛3𝑥0𝛽

𝑑1𝑛3𝛽
 .  
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4. The equilibrium point without predator 𝑧 is 𝐸3 = (�̇�, �̇�, 0, �̇�), where  �̇� =
−ℎ2+√ℎ2

2+4𝑎𝑥0

2
,  

�̇� =
𝑑4

𝑛4
  and  �̇� =

𝛼�̇�−𝑑2𝛽(𝑎+�̇�)

𝑛2𝛽(𝑎+�̅�)
  exists if the following conditions hold:         

                            𝛼�̇� > 𝑑2𝛽(𝑎 + �̇�)                                                                               4(a) 

                                        √ℎ2
2 + 4𝑎𝑥02

> ℎ2                                                                             4(b) 

                                                ℎ2 > 0                                                                                        4(c) 

            Where ℎ2 =
𝑎𝑑1𝑛4𝛽+𝑑4𝛼−𝑑1𝑛4𝑥0𝛽

𝑑1𝑛3𝛽
 

5. The positive equilibrium point 𝐸4 = (�̈�, �̈�, �̈�, �̈�), where  �̈� =
𝑑1𝛽(𝑎+�̈�)(𝑥0−�̈�)

𝛼�̈�
,  

 �̈� =
𝑛4�̈�−𝑑4

𝛾2
, �̈� =

𝑛3�̈�−𝑑3

𝛾1
  while the positive solution of the following polynomial will be     

 the value of �̈�:  

 �̈�𝑥3 + �̈�𝑥2 + �̈�𝑥 + �̈� = 0   

             Where  �̈� = 𝑑1𝛽
2(𝑛1𝑛4𝛾1 + 𝑛2𝑛3𝛾2) > 0  

             �̈� = 𝛼2𝛾1𝛾2 + 𝑑1𝛽(2𝑎𝛽 + 𝑥0)(𝑛1𝑛4𝛾1 + 𝑛2𝑛3𝛾2) − 𝛼𝛽𝛾1(𝑑2𝛾2 + 𝑑4𝑛1) − 𝑛2𝑑3𝛾2𝛽  

             �̈� = −𝑎𝛼𝛽(𝛾
1
(𝑑2𝛾2

+ 𝑛1𝑑4) + 𝑛2𝑑3𝛾2
) − (𝑛1𝑛4𝛾1

+ 𝑛2𝑛3𝛾2
)(𝑎𝑑1𝛽(𝑥0𝛽 − (𝑎𝛽 + 𝑥0))        

            �̈� = −𝑎2𝛽2𝑥0𝑑1(𝑛1𝑛4𝛾1
+ 𝑛2𝑛3𝛾2

) < 0   

So, the above equations will have a positive root according to the discard rule of sign. Let us call 

it �̈�  if it fulfills the following conditions.               

   𝛼2𝛾1𝛾2 + 𝑑1𝛽(2𝑎𝛽 + 𝑥0)(𝑛1𝑛4𝛾1 + 𝑛2𝑛3𝛾2) < 𝛼𝛽𝛾1(𝑑2𝛾2 + 𝑑4𝑛1) + 𝑛2𝑑3𝛾2𝛽             5(a) 

                                                   𝑥0𝛽 > 𝑎𝛽 + 𝑥0                                                                       5(b) 

Or when 𝐵 and 𝐶 are negative. Then 𝐸4 = (�̈�, �̈�, �̈�, �̈�) exist under conditions 5(a-b) and when the 

following conditions are met 

                                                   �̈� > 𝑚𝑎𝑥 {
𝑑4

𝑛4
,
𝑑4

𝑛4
  }                                                                   5(c) 

                                                           𝑥0 > �̈�                                                                             5(d) 

If not, the positive equilibrium point for system (1) will not exist. 
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Now, the local behavior of the five equilibrium points that we found for system (1) can be known 

by calculating the Jacobian matrix for system (1) and finding the eigenvalues of the matrix at each 

of the equilibrium points.  Jacobian matrix for system (1) can be written at (𝑥, 𝑦, 𝑧, 𝑤) as follows 

                       𝐽 =

[
 
 
 
 −𝑑1 −

𝑎𝛼𝑦

𝛽(𝑎+𝑥)2
−𝛼𝑥

𝛽(𝑎+𝑥)
0 0

𝑎𝛼𝑦

𝛽(𝑎+𝑥)2
𝛼𝑥

𝛽(𝑎+𝑥)
− 𝑑2 − 𝑛1𝑧 − 𝑛2𝑤 −𝑛1𝑦 −𝑛2𝑦

0 𝑛3𝑧 −𝑑3 −𝛾1𝑧
0 𝑛4𝑤 −𝛾2𝑤 −𝑑4 ]

 
 
 
 

                     (6) 

Stability at 𝐸0:  

At  E0 = (𝑥0, 0,0,0) can be written Jacobian matrix of  system (1) in the following form 

                𝐽(𝐸0) =

[
 
 
 
 
 −𝑑1

−𝛼𝑥0

𝛽(𝑎+𝑥0)
0 0

0
𝛼𝑥0

𝛽(𝑎+𝑥0)
− 𝑑2 0 0

0 0 −𝑑3 0
0 0 0 −𝑑4]

 
 
 
 
 

          

The eigenvalues of  𝐽(𝐸0) are: 𝜆0𝑥 = −𝑑1, 𝜆0𝑦 =
𝛼𝑥0

𝛽(𝑎+𝑥0)
− 𝑑2, 𝜆0𝑧 = −𝑑3 and 𝜆0𝑤 = −𝑑2 

This means that if the condition (7) is met, point  𝐸0 will be locally  asymptotically stable and 

vice versa 

                                                       𝛼 < 𝑑2𝛽 +
𝑑2𝛽𝑎

𝑥0                                                                    (7) 

While the point is unstable saddle point in the R+
4  with a locally unstable manifold of dimension   

one (i.e. dimωu = 1) and with a locally stable manifold of dimension three (i.e. dimωs = 3)  if 

the condition (2) is met. Therefore stability at 𝐸0 leads to the non-existence of  𝐸1.                                                                                 

Stability at 𝐸1: 

 At  E1 = (�̌�, �̌�, 0,0) can be written  Jacobian matrix of  system (1) as follows: 

             𝐽(𝐸1) =

[
 
 
 
 
 −𝑑1 −

𝑎𝛼�̌�

𝛽(𝑎+�̌�)2
−𝑑2 0 0

𝑎𝛼�̌�

𝛽(𝑎+�̌�)2
0 −𝑛1�̌� −𝑛2�̌�

0 0 −𝑑3 0
0 0 0 −𝑑4 ]
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Where the eigenvalues of  𝐽(𝐸1) satisfy the following relations: 

                                         𝜆1𝑥 + 𝜆1𝑦 = −𝑑1 −
𝑎𝛼�̌�

𝛽(𝑎+�̌�)2
< 0                                                      8(a) 

                                          𝜆1𝑥. 𝜆1𝑦 =
𝑎𝑑2𝛼�̌�

𝛽(𝑎+�̌�)2
> 0                                                                    8(b) 

                                          𝜆1𝑧 + 𝜆1𝑤 = −𝑑3 − 𝑑4 < 0                                                            8(c) 

                                          𝜆1𝑧 . 𝜆1𝑤 = 𝑑3𝑑4 > 0                                                                       8(d) 

According to Eqs. 8(a-d), 𝐸1 is locally asymptotical stable according to Routh–Hurwitz criterion  

Stability at 𝐸2: 

At 𝐸2 = (�̅�, 𝑦,̅ 𝑧̅, 0)  can be written Jacobian matrix of  system (1) as follows: 

             𝐽(𝐸2) =

[
 
 
 
 −𝑑1 −

𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
−𝛼�̅�

𝛽(𝑎+�̅�)
0 0

𝑎𝛼𝑦

𝛽(𝑎+𝑥)2
0 −𝑛1�̅� −𝑛2�̅�

0 𝑛3𝑧̅ −𝑑3 𝛾1𝑧̅
0 0 0 −𝑑4 ]

 
 
 
 

 

One of the eigenvalues of  𝐽(𝐸2) is 𝜆2𝑤 = −𝑑4 and the other three eigenvalues can be given by 

the following quadratic equation: 𝜆3+𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0 

Where  �̇�1 = 𝑑1+𝑑3 +
𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
> 0                                                                                          9(a) 

           �̇�2 = 𝑑3 (𝑑1 +
𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
) + 𝑛1𝑛3�̅�𝑧̅ +

𝑎𝛼2�̅��̅�

𝛽2(𝑎+�̅�)3
> 0                                                       9(b) 

           �̇�3 = 𝑛1𝑛3�̅�𝑧̅ (𝑑1 +
𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
) +

𝑑3𝑎𝛼2�̅��̅�

𝛽2(𝑎+�̅�)3
> 0                                                                9(c)   

By Routh-Hurwitz criterion for dimension three, all the eigenvalues of  𝐽(𝐸2)   have roots with 

negative real parts if and only if Ai(i = 1,3) > 0 and Δ > 0, where  

            𝛥 = 𝐴1𝐴2 − 𝐴3 

               = (𝑑1 +
𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
) [𝑑3 (𝑑1 +

𝑎𝛼�̅�

𝛽(𝑎+�̅�)2
) +

𝑎𝛼2�̅��̅�

𝛽2(𝑎+�̅�)3
+ 𝑑3

2] + 𝑑3𝑛1𝑛3�̅�𝑧̅ > 0             9(d) 

This is certain and clear from the Eqs. 9(a-d) the conditions of the Routh-Hurwitz are met, so 𝐸2 

is a locally asymptotical stable point wherever it is located. 

Stability at 𝐸3: 
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 At 𝐸3 = (�̇�, �̇�, 0, �̇�)  can be written the Jacobian matrix of  system (1) as follows: 

                    𝐽(𝐸3) =

[
 
 
 
 
 −𝑑1 −

𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
−𝛼�̇�

𝛽(𝑎+�̇�)
0 0

𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
0  −𝑛1�̇� −𝑛2�̇�

0 0 −𝑑3 0
0 𝑛4�̇� −𝛾2�̇� −𝑑4 ]

 
 
 
 
 

 

One of the eigenvalues of  𝐽(𝐸3) is �̇�2𝑧 = −𝑑3 and the other three eigenvalues can be given by 

the following quadratic equation: �̇�3+𝐵1�̇�
2 + 𝐵2�̇� + 𝐵3 = 0 

Where �̇�1 = 𝑑1+𝑑4 +
𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
> 0                                                                                        10(a) 

           �̇�2 = 𝑑4 (𝑑1 +
𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
) + 𝑛2𝑛4�̇��̇� +

𝑎𝛼2�̇��̇�

𝛽2(𝑎+�̇�)3
> 0                                                   10(b) 

          �̇�3 = 𝑛2𝑛4�̇��̇� (𝑑1 +
𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
) +

𝑑4𝑎𝛼2�̇��̇�

𝛽2(𝑎+�̇�)3
> 0                                                             10(c)         

By Routh-Hurwitz criterion for dimension three, all the eigenvalues of  𝐽(𝐸3)   have roots with 

negative real parts if and only if Bj(j = 1,3) > 0 and ∆̇> 0, where  

            �̇� = �̇�1�̇�2 − �̇�3 

               = (𝑑1 +
𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
) [𝑑4 (𝑑1 +

𝑎𝛼�̇�

𝛽(𝑎+�̇�)2
) +

𝑎𝛼2�̇��̇�

𝛽2(𝑎+�̇�)3
+ 𝑑4

2] + 𝑑4𝑛2𝑛4�̇��̇� > 0           10(d) 

This is certain and clear from the Eqs. 10(a-d) the conditions of the Routh-Hurwitz are met, so 

𝐸3 is a locally asymptotical stable point wherever it is located. 

Stability at 𝐸4: 

 Finally, at the positive equilibrium point 𝐸4 = (�̈�, �̈�, �̈�, �̈�)  can be written Jacobian matrix of  

system (1) as follows: 

             𝐽(𝐸4) =

[
 
 
 
 
 − ( 𝑑1 +

𝑎𝛼�̈�

𝛽(𝑎+�̈�)2
)

−𝛼�̈�

𝛽(𝑎+�̈�)
0 0

𝑎𝛼�̈�

𝛽(𝑎+�̈�)2
𝛼�̈�

𝛽(𝑎+�̈�)
− 𝑑2 − 𝑛1�̈� − 𝑛2�̈� −𝑛1�̈� −𝑛2�̈�

0 𝑛3�̈� −𝑑3 −𝛾1�̈�
0 𝑛4�̈� −𝛾2�̈� −𝑑4 ]

 
 
 
 
 

                (11)                                                       

 The characteristic equation of  𝐽(𝐸4) can be written as follows: 

                             �̈�4 + �̈�1�̈�
3 + �̈�2�̈�

2 + �̈�3�̈� + �̈�4 = 0                                                                               (12) 
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Where,    �̈�1 = −(𝑚1 + 𝑚2),                                                                                                   12(a) 

               �̈�2 = 𝑎11𝑚2 + 𝑚3 + 𝑚4 + 𝑚5 + 𝑚6,                                                                      12(b) 

              �̈�3 = 𝑎12𝑎21𝑚2 − 𝑎11𝑚6 − 𝑎11𝑚4 − 𝑎22𝑚6 − 𝑎11𝑚5 + 𝑎42𝑚7 +  𝑎32𝑚8,         12(c) 

             �̈�4 = 𝑚3𝑚6 − 𝑎11𝑎42𝑚7 − 𝑎11 𝑎32𝑚8,     

With   

       𝑚1 = 𝑎11 + 𝑎22, 𝑚2 = 𝑎33 + 𝑎44 < 0, 𝑚3 = 𝑎11𝑎22 − 𝑎12𝑎21,  

       𝑚4 = 𝑎22𝑎33 − 𝑎23𝑎32 , 𝑚5 = 𝑎22𝑎44 − 𝑎24𝑎42, 𝑚6 = 𝑎33𝑎44 − 𝑎34𝑎43 > 0,  

       𝑚7 = 𝑎42(𝑎24𝑎33 − 𝑎23𝑎34), 𝑚8 = 𝑎32(𝑎23𝑎44 − 𝑎24𝑎43). 

 And 

      ∆̈= �̈�1�̈�2�̈�3 − �̈�3
2 − �̈�1

2�̈�4                                                                                                 12(d) 

        = −(𝑚1 + 𝑚2)(𝑎11𝑚2 + 𝑚3 + 𝑚4 + 𝑚5 + 𝑚6)(𝑎12𝑎21𝑚2 − 𝑎11(𝑚6 + 𝑚4 + 𝑚5) −

           𝑎22𝑚6 + 𝑎42𝑚7 +  𝑎32𝑚8) − (𝑎12𝑎21𝑚2 − 𝑎11(𝑚6 + 𝑚4 + 𝑚5) − 𝑎22𝑚6 +

           𝑎42𝑚7 +   𝑎32𝑚8))
2
− ((𝑚1 + 𝑚2))

2
(𝑚3𝑚6 − 𝑎11𝑎42𝑚7 − 𝑎11 𝑎32𝑚8) 

Thus, it can be proven that the positive equilibrium point is locally asymptotically stable 

according to the following theorem 

Theorem 2. The positive equilibrium point 𝐸4 = (�̈�, �̈�, �̈�, �̈�) of system (1) is locally 

asymptotically stable in the 𝐼𝑛𝑡. 𝑅+
4  under the following conditions: 

                              
𝛼�̈�

𝛽(𝑎+�̈�)
< 𝑑2 + 𝑛1�̈� + 𝑛2�̈�,                                                                         13(a) 

                                 
𝑛2𝑑3

𝑛3𝑑4
< 𝑛1�̈� <

𝑛2𝑛4𝑑3�̈�

𝛾1
,                                                                            13(b) 

                                      and   ∆̈> 0                                                                                          13(c) 

Proof: By Routh-Hurwitz criterion for dimension four, all the eigenvalues of  𝐽(𝐸4)   have roots 

with negative real parts, if and only if  �̈�i(i = 1,3,4) > 0 and ∆̈> 0. Now, straightforward 

computations and elements of  𝐽(𝐸4) due to the coefficients of equation (12), we get that  �̈�1 > 0 

under condition 13(a), so �̈�i(i = 3,4) > 0 under conditions 13(a-b), also the positive terms are 

greater than the negative terms for equation 12(d) under condition 13(c). Thus, all the 
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eigenvalues of  𝐽(𝐸4) contain negative real parts. As a result 𝐸4 is locally asymptotically stable in 

the 𝐼𝑛𝑡. 𝑅+
4  and thus the proof ends.                                            

Theorem 3. Assume that 𝐸4 of model (1) is locally asymptotically stable in the 𝐼𝑛𝑡𝑅+
4 , and if 

The following terms are met: 

                                               
𝑎𝑛4

𝛽(𝑎+𝑥)(𝑎+�̈�)
− 𝑎 < �̈� <

𝑥0𝑑1

𝛼�̈�
                                                        (14)           

Then  E4 is globally asymptotically stable in the following region: 

𝜑 = {(𝑥, 𝑦, 𝑧, 𝑤): 𝑥 > �̈�, 𝑦 > �̈�, 𝑧 > �̈�, 𝑤 > �̈�} 

Proof: 

Consider the following: 

                          𝑈(𝑥, 𝑦, 𝑧, 𝑤) = 𝑐1 [𝑥 − �̈� − �̈�𝑙𝑛
𝑥

�̈�
] + 𝑐2 [𝑦 − �̈� − �̈�𝑙𝑛

𝑦

�̈�
] + 𝑐3 [𝑧 − �̈� − �̈�𝑙𝑛

𝑧

�̈�
] 

+𝑐4 [𝑤 − �̈� − �̈�𝑙𝑛
𝑤

�̈�
] 

Clearly 𝑈:𝑅+
4 → 𝑅  is  𝐶1 . Now  

                          
𝑑𝑈

𝑑𝑡
= 𝑐1

(𝑥−�̈�)

𝑥

𝑑𝑥

𝑑𝑡
+ 𝑐2

(𝑦−𝑦)̈

𝑦

𝑑𝑦

𝑑𝑡
+ 𝑐3

(𝑧−𝑧)̈

𝑧

𝑑𝑧

𝑑𝑡
+ 𝑐4

(𝑤−𝑤)̈

𝑤

𝑑𝑤

𝑑𝑡
  

              = −𝑐1 [
𝑥0𝑑1−𝛼�̈��̈�

𝑥�̈�
] (𝑥 − �̈�)2 − (𝑐1(𝑎𝛼 + 𝛼�̈�) − 𝑐2

𝑎𝛼

𝛽(𝑎+𝑥)(𝑎+�̈�)
) (𝑥 − �̈�)(𝑦 − �̈�) 

−[𝑐2𝑛1 − 𝑐3𝑛3](𝑦 − �̈�)(𝑧 − �̈�) − [𝑐2𝑛2 − 𝑐4𝑛4](𝑦 − �̈�)(𝑤 − �̈�) 

−[𝑐3𝛾1 + 𝑐4𝛾2](𝑤 − �̈�)(𝑧 − �̈�) 

By choosing the positive constant as: 

  𝑐1 = 1, 𝑐2 = 𝑛4, 𝑐3 =
𝑛1𝑛4

𝑛3
, 𝑐4 = 𝑛2 

Then we obtain: 

              
𝑑𝑈

𝑑𝑡
= −[

𝑥0𝑑1−𝛼�̈��̈�

𝑥�̈�
] (𝑥 − �̈�)2 − [𝛼(𝑎 + �̈�) −

𝑎𝛼𝑛4

𝛽(𝑎+𝑥)(𝑎+�̈�)
] (𝑥 − �̈�)(𝑦 − �̈�) 

−[
𝑛1𝑛4𝛾1

𝑛3
+ 𝑛2𝛾2] (𝑤 − �̈�)(𝑧 − �̈�) 

 Clearly,  
𝑑𝑈

𝑑𝑡
< 0  under condition (14).  
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Hence, 𝑈 is strictly a Lyapunov function. So, 𝐸4 is a globally asymptoticaly stable in the 𝜑.  

5. BIFURCATION 

        In this part of the manuscript, we studied the type of local bifurcation of the positive point, as 

it is the most important point among the points we found. In order to know the type of local 

bifurcation of this point, we used Sotomayor’s theorem. Most researchers studied some different 

types of bifurcation by using Sotomayor’s' theory [5, 7, 9, 11, 12, 13, 21, 22, 25, 27, 28, 31], such 

as transcortical, saddle nodes and pitchfork bifurcation Further, can be reformulated model (1) as 

follows: 

     
𝑑𝑁

𝑑𝑡
= 𝐹(𝑁) with 𝑁 = [

𝑥
𝑦
𝑧
𝑤

], and 𝐹 =

[
 
 
 
𝑥𝑓1(𝑥, 𝑦, 𝑧, 𝑤)

𝑦𝑓2(𝑥, 𝑦, 𝑧, 𝑤)

𝑧𝑓3(𝑥, 𝑦, 𝑧, 𝑤)

𝑤𝑓4(𝑥, 𝑦, 𝑧, 𝑤)]
 
 
 

. 

Now, (6) it gives us the Jacobian matrix at any point, then for non-zero vector 𝐴 =

(𝑎1, 𝑎2, 𝑎3, 𝑎4)
𝑇: 

𝐷𝐹 =

[
 
 
 
 
 

 

− (𝑑1 +
𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)2
) 𝑎1 −

𝛼𝑥

𝛽(𝑎 + 𝑥)
𝑎2

𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)2
𝑎1 + (

𝛼𝑥

𝛽(𝑎 + 𝑥)
− 𝑑2 − 𝑛1𝑧 − 𝑛2𝑤)𝑎2−𝑛1𝑦𝑎3−𝑛2𝑦𝑎4

𝑛3𝑧𝑎2−𝑑3𝑎3−𝛾1𝑧𝑎4

𝑛4𝑤𝑎2−𝛾2𝑤𝑎3−𝑑4𝑎4 ]
 
 
 
 
 

 

and, 

𝐷2𝐹 =

[
 
 
 
 
 

2𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)3
𝑎1

2 −
2𝑎𝛼 

𝛽(𝑎 + 𝑥)2
𝑎1𝑎2

−2𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)3
𝑎1

2 +
2𝑎𝛼 

𝛽(𝑎 + 𝑥)2
𝑎1𝑎2

𝑛3𝑎2𝑎3−𝛾1𝑎3𝑎4

𝑛4𝑎2𝑎4−𝛾2𝑎3𝑎4 ]
 
 
 
 
 

 

𝐷3𝐹 =

[
 
 
 
 
 

−6𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)4
𝑎1

3 +
6𝑎𝛼

𝛽(𝑎 + 𝑥)3
𝑎1

2𝑎2

6𝑎𝛼𝑦

𝛽(𝑎 + 𝑥)3
𝑎1

3 −
6𝑎𝛼

𝛽(𝑎 + 𝑥)3
𝑎1

2𝑎2

0
0 ]
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Theorem 4. If 𝑑3 = 𝑑3
∗   where 

                        𝑑3
∗ =

(𝑎11+𝑎22+𝑎44)𝐴2𝐴3−𝐴3
2−𝐴1

2𝐴4

𝐴2𝐴3
 

And if condition (15) is met , system (1) have a saddle-noade bifurcation at 𝐸4 

                        (𝐵[4])
𝑇
[𝐷2𝐹𝑑(𝐸4, 𝑑3

∗)𝐴[4]] ≠ 0                                                                         (15)                 

Proof:  𝐽(𝐸4), given by (11) at 𝑑3 = 𝑑3
∗ can be inscribed as: 

𝐽∗(𝐸4, 𝑑3
∗) =

[
 
 
 
 
 
 − ( 𝑑1 +

𝑎𝛼�̈�

𝛽(𝑎 + �̈�)2
)

−𝛼�̈�

𝛽(𝑎 + �̈�)
0 0

𝑎𝛼�̈�

𝛽(𝑎 + �̈�)2

𝛼�̈�

𝛽(𝑎 + �̈�)
− 𝑑2 − 𝑛1�̈� − 𝑛2�̈� −𝑛1�̈� −𝑛2�̈�

0 𝑛3�̈� −𝑑3
∗ −𝛾1�̈�

0 𝑛4�̈� −𝛾2�̈� −𝑑4 ]
 
 
 
 
 
 

 

The calculation tells that (𝐽∗(𝐸4, 𝑑3
∗) has zero eigenvalue, say  𝜆4𝑧 = 0. 

Now, let 𝐴[4] = (𝑎1
[4]

, 𝑎2
[4]

, 𝑎3
[4]

, 𝑎4
[4]

)
𝑇

 the eigenvector matching to 𝜆4𝑧 = 0 , accordingly 

(𝐽∗(𝐸4) − 𝜆4z𝐹)𝐴[4] = 0  gives: 𝑎1
[4]

=
𝛼�̈�(𝑎+�̈�)

𝑘1
𝑎3

[4]
, 𝑎2

[4]
=

𝑘1𝛽�̈�(𝑎+�̈�)(𝑛1�̈�𝑘4+𝑛2�̈�𝑘3)

𝑘4�̈�(𝑎𝛼2�̈��̈�+𝑘1𝑘2)
𝑎3

[4]
, 𝑎4

[4]
=

𝑘3�̈�

𝑘4�̈�
𝑎3

[4]
, where 𝑎3

[4]
 be any nonzero real number.  

Let 𝐵[4] = (𝑏1
[4]

, 𝑏2
[4]

, 𝑏3
[4]

, 𝑏4
[4]

)
𝑇

 the eigenvector associated to  𝜆4z = 0 of the  (𝐽∗(𝐸4, 𝑑3
∗))

𝑇
.  

𝐽∗𝑇(𝐸4, 𝑑3
∗) =

[
 
 
 
 
 
 − ( 𝑑1 +

𝑎𝛼�̈�

𝛽(𝑎 + �̈�)2
)

𝑎𝛼�̈�

𝛽(𝑎 + �̈�)2
0 0

−𝛼�̈�

𝛽(𝑎 + �̈�)

𝛼�̈�

𝛽(𝑎 + �̈�)
− 𝑑2 − 𝑛1�̈� − 𝑛2�̈� 𝑛3�̈� 𝑛4�̈�

0 −𝑛1�̈� −𝑑3
∗ −𝛾2�̈�

0 −𝑛2�̈� −𝛾1�̈� −𝑑4 ]
 
 
 
 
 
 

 

Then ((𝐽∗(𝐸4))
𝑇 − 𝜆4𝑧𝐼)𝐵

[4] = 0 gives :  𝑏1
[4]

=
𝑎𝛼�̈�

𝑘1
𝑏2

[4]
 , 𝑏2

[4]
=

𝑘1𝛽(𝑎+�̈�)(𝑛3𝑘6�̈�+𝑛4𝑘5�̈�)

𝑘6(𝑎𝛼2�̈��̈�−𝑘1𝑘2)
𝑏3

[4]
, 

  𝑏4
[4]

=
𝑘5

𝑘6
𝑏3

[4]
 where 𝑏3

[4]
  any nonzero real number. 

We will calculate the following to see whether the bifurcation of saddle nodes type satisfies the 

all conditions or not 
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𝜕𝐹

𝜕𝑠
= 𝐹𝑑3

(𝑁, 𝑑3) = (
𝜕𝑓1
𝜕𝑑3

,
𝜕𝑓2
𝜕𝑑3

,
𝜕𝑓3
𝜕𝑑3

,
𝜕𝑓3
𝜕𝑑3

)
𝑇

= (0,0, 1,0)𝑇 

 So  𝐹𝑑3
(𝐸4, 𝑑3

∗) = (0,0, 1,0)𝑇and (𝐵[4])
𝑇
𝐹𝑑3

∗ = (𝑏1
[3]

, 𝑏2
[3]

, 𝑏3
[4]

, 𝑏4
[4]

)
𝑇
(0, 0,1,0)𝑇 = 𝑏3

[4]
≠ 0. 

Thus, the first condition for the bifurcation of the saddle nodes has been verified, while the 

conditions for pitchfork and transcortical bifurcation were not met  

Here, 

                                  𝐷2𝐹𝑑(𝐸4, 𝑑3
∗)𝐴[4]  =

[
 
 
 
 
 
 

2𝑎𝛼�̈�

𝛽(𝑎+�̈�)3
(𝑎1

[4]
)
2

−
2𝑎𝛼 

𝛽(𝑎+�̈�)2
𝑎1

[4]
𝑎2

[4]

−2𝑎𝛼�̈�

𝛽(𝑎+�̈�)3
(𝑎1

[4]
)
2

+
2𝑎𝛼 

𝛽(𝑎+�̈�)2
𝑎1

[4]
𝑎2

[4]

𝑛3𝑎2
[4]

𝑎3
[4]

−𝛾1𝑎3
[4]

𝑎4
[4]

𝑛4𝑎2
[4]

𝑎4
[4]

− 𝛾2𝑎3
[4]

𝑎4
[4]

]
 
 
 
 
 
 

 

Hence,  

(𝐵[4])
𝑇
[𝐷2𝐹𝑑(𝐸4, 𝑑3

∗)𝐴[4]] = (𝑏1
[4]

, 𝑏2
[4]

, 𝑏3
[4]

, 𝑏4
[4]

)
𝑇

[
 
 
 
 
 
 

2𝑎𝛼�̈�

𝛽(𝑎 + �̈�)3
(𝑎1

[4]
)
2

−
2𝑎𝛼 

𝛽(𝑎 + �̈�)2
𝑎1

[4]
𝑎2

[4]

−2𝑎𝛼�̈�

𝛽(𝑎 + �̈�)3
(𝑎1

[4]
)
2

+
2𝑎𝛼 

𝛽(𝑎 + �̈�)2
𝑎1

[4]
𝑎2

[4]

𝑛3𝑎2
[4]

𝑎3
[4]

−𝛾1𝑎3
[4]

𝑎4
[4]

𝑛4𝑎2
[4]

𝑎4
[4]

− 𝛾2𝑎3
[4]

𝑎4
[4]

]
 
 
 
 
 
 

 

 =𝑏1
[4]

[
2𝑎𝛼�̈�(𝑎1

[4]
)
2
−2𝑎𝛼(𝑎+�̈�)𝑎1

[4]
𝑎2

[4]
  

𝛽(𝑎+�̈�)3
] + 𝑏2

[3]
[
−2𝑎𝛼�̈�(𝑎1

[4]
)
2
+2𝑎𝛼(𝑎+�̈�)𝑎1

[4]
𝑎2

[4]

𝛽(𝑎+�̈�)3
]       

       +𝑏3
[4]

[𝑎3
[4]

(𝑛3𝑎2
[4]

−𝛾1𝑎4
[4]

)] + 𝑏4
[4]

[𝑎4
[4] 

(𝑛4𝑎2
[4]

−𝛾2𝑎3
[4]

)] 

It is clear that condition (15) guarantees the fulfillment of one of the conditions for the bifurcation 

of the saddle nodes. Thus, model (1) has saddle node bifurcation at 𝐸4 with 𝑑3 = 𝑑3
∗ . 

6. NUMERICAL ANALYSIS  

           In this part, we calculated the time series for system (1) by analyzing the system 

numerically by MATLAB and with appropriate data, as follows:        
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𝑥0 = 0.69 ; 𝑑1 = 0.25;  𝛼 = 0.35;  𝛽 = 0.4;  𝑎 = 0.2; 𝑑2 = 0.4; 𝑛1 = 0.7; 𝑛2 = 0.6; 𝑛3 =

0.61; 𝑑3 = 0.12; 𝛾1 = 0.012; 𝑛4 = 0.51; 𝑑4 = 0.1; 𝛾2 = 0.02                                            (16)                                        

Now, after we took different ratios for the parameter (𝑥0) with parameters as in Eq.(16), we have 

seen an acceptable result on the dynamical behavior of model (1)  as in fig. I (a-d)  

 

 

fig. I: Time series of model (1) with data as in Eq. (16) with varying of 𝑥0 as shown in a,b,c and d respectively.        

                                  

For fig. I, clearly that  system (1)  is stable at 𝐸0 and 𝐸1 for 𝑥0 < 0.21 and for 0.21 ≤ 𝑥0 < 0.53 

as  in the fig. I(c-d) respectively. While system (1)  has been stable at 𝐸4  for 0.53 ≤ 𝑥0 < 0.84  

as  in the fig. I(c), finally the system oscillatory around 𝐸4 for 𝑥0 ≥ 0.84  as  in the fig. I(d). 

Until we can study the effect of nutrient deficiencies 𝑑1 with  parameters as in Eq. (16), we have 

seen an acceptable result on the dynamical behavior of  model (1)  as in fig. II (a-d).  
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fig. II: Time series of model (1) with data as in Eq. (16) with varying of 𝑑1 as shown in a,b,c and d respectively.               

 

For fig. II, clearly that system (1) is stable at 𝐸1  for 𝑑1 ≤ 0.16  as shown in the fig. II(a) while for 

0.16 <  𝑑1 < 0.23 the system is stable at 𝐸2 as shown in the fig. II(b) . Finally, the system is stable 

at 𝐸4 and 𝐸3 for 0.23 ≤   𝑑1 < 0.26 and 𝑑1 ≥ 0.26 as shown in the fig. II(c-d) respectively.  

Until  we can study the effect of  maximum  nutrition  ∝ with  parameters as in Eq. (16), we have 

seen an acceptable result on the dynamical behavior of  model (1)  as in fig. III (a-c)  
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 fig. III:  Time series of model (1) with data as in Eq. (16) with varying of 𝛼 as shown in a,b and c respectively. 

 

Noticeably, ∝ when it decreases then the system is stable at 𝐸0 for 𝛼 ≤ 0.22 as shown in the fig. 

III(a), while the system  has stable at 𝐸1 for 0.22 < 𝛼 ≤ 0.26   as shown in the fig. III(b),  finally 

for 0.26 < 𝛼  the system  has stable at  𝐸4 as shown in the fig. III(c). 

With certain values of the coefficient of competition 𝛾1 of the first predator 𝑧 with  parameters as 

in Eq. (16), we have seen an acceptable result on the dynamical behavior of  model (1)  as in fig. 

IV (a-c)  



17 

THE EFFECT OF COMPETING PREDATORS IN AN ECOSYSTEM 

 

  fig. IV:  Time series of model (1) with data as in Eq. (16) with varying of 𝛾1as shown in a,b and c respectively. 

 

Clearly,  as 𝛾1 when it decreases then the system is stable at 𝐸2 for 𝛾1 ≤ 0.0124 as shown in the 

fig. IV(a), while the system  has stable at 𝐸4 for 0.0124 < 𝛾1 < 0.0133   as shown in the fig. IV(b),  

finally for 0.0133 ≤ 𝛾1 the system is stable at  𝐸3 as shown in the fig. IV(c). 

Finally, with certain values of the coefficient of competition 𝛾2  of the secnd predator 𝑤 with  

parameters as in Eq. (16), we have seen an acceptable result on the dynamical behavior of model 

(1)  as in fig. V (a-c)  
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fig. V:  Time series of model (1) with data as in Eq. (16) with varying of 𝛾2as shown in a,b and c respectively. 

 

Clearly,  as 𝛾2 when it decreases then the system is stable at 𝐸3 for 𝛾2 ≤ 0.017 as shown in the fig. 

V(a), while the system  has stable at 𝐸4 for 0.017 < 𝛾2 < 0.02   as shown in the fig. V(b),  finally 

for 0.02 ≤ 𝛾2 the system is stable at  𝐸3 as shown in the fig. V(c). 

7. DISSCUTION  

      In order to know the influence of increasing & decreasing the concentration of nutrients found 

in nature on the growth rate of organisms that feed on these nutrients, as well as studying the effect 

of competition between two predators competing to feed on those organisms for an ecosystem 

consisting of nutrients, organisms and two predators compete to feed on those organisms.We have 

studied the dynamical behavior of model (1) theoretically by finding local stability conditions of 

the five points, finding conditions for the global stability of the positive point, and also finding 

conditions for the bifurcation of the positive point. 
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After the numerical study that we studied in part (6) , we obtained acceptable results when any 

change occurred in some parameters, shown as follows: 

Regarding the effect of changing the rate of concentration of nutrients in nature, with all parameters 

remaining the same in Eq. (16) we note the time series of model (1) approaches to 𝐸0 and 𝐸1 for 

𝑥0 < 0.21 and for 0.21 ≤ 𝑥0 < 0.53  respectively. While the system  has been stable at 𝐸4 for 

0.53 ≤ 𝑥0 < 0.84, finally the system oscillatory around 𝐸4 and still stable for 𝑥0 ≥ 0.84 

The influence of the rate of decrease in nutrients  𝑑1 on system dynamics with  parameters as in 

(16), it is witnessed  the system has the presence of nutrients only  for 𝑑1 ≤ 0.16, while for 0.16 <

 𝑑1 < 0.23 the system has the presence of nutrients with the presence of living organisms, while 

for 0.23 ≤   𝑑1 < 0.26 , the system has the presence of nutrients with the presence of living 

organisms as well as the presence of predators. Finally, the system loses one of its predators and 

approaches to the 𝐸3 for 𝑑1 ≥ 0.26. 

For  the influence of varying the maximum nutrition  ∝ on system dynamics with parameters as  

in (16) it is witnessed the system has the presence of nutrients only for 𝛼 ≤ 0.22, while for 0.22 <

𝛼 ≤ 0.26 the system has the presence of nutrients with the presence of living organisms, finally 

for 0.26 < 𝛼 the system has the presence of nutrients with the presence of living organisms as well 

as the presence of predators. 

for the influence of varying of  𝛾1 on system dynamics with parameters as in  (16) it is witnessed 

the system loses the presence of the second predator and approaches to 𝐸2 for 𝛾1 ≤ 0.0124, while 

for 0.0124 < 𝛾1 < 0.0133,  the system has the presence of nutrients with the presence of living 

organisms as well as the presence of predators, finally once again, the system loses one of the 

predators, but this time it loses the first predator, and the system approaches to 𝐸3 for 0.0133 ≤

𝛾1. 

Finally, for the influence of varying 𝛾2  on system dynamics with parameters as in (16) it is 

witnessed the system loses the presence of the first predator and approaches to 𝐸3 for 𝛾2 ≤ 0.017, 

while for 0.017 < 𝛾2 < 0.02,  the system has the presence of nutrients with the presence of living 
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organisms as well as the presence of predators, finally once again, the system loses one of the 

predators, but this time it loses the second predator, and the system approaches to 𝐸2 for 0.02 ≤

𝛾2. 
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