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Abstract: It is known that pollution can have significant consequences on the dynamics of the producer-consumer-

predator food chain, especially when predators have access to extra food sources due to the impact of pollution on 

environmental resources. Consequently, this paper proposes and investigates a novel mathematical model of the food 

chain that involves Producer-Consumer-Predator with extra food sources for a predator in a polluted environment. All 

the solution properties are discussed. The equilibrium points are determined along with their local stability conditions. 

Lyapunov functions are proposed to discuss the possibility of global stability. The concentrates at which the system 

undergoes persistence are found. Local bifurcation analysis is carried out to understand the influence of parameters 

on the dynamics of the system. A numerical simulation of the system is applied to confirm the analytic findings. 
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1. INTRODUCTION 

One of the traditional uses of biological mathematics is to examine the interactions among 

species using differential equation models because predator-prey interactions have a strong effect 

on the dynamical system, where predators play an important role in preserving the food chain 
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structure. Furthermore, the most fundamental concept in predator-prey interaction is the functional 

response, which determines the rate at which a predator attacks a prey. There are several sorts of 

functional responses, including Holling type I, Holling type II, Holling type III, ratio-dependent, 

see [1-3] and the references therein, and Sokol-Howell [4], which is an upgraded variant of Holling 

type III [5-6]. 

More than two species can be included in the prey-predator paradigm. Numerous research has 

integrated diverse ecosystem types and taken into consideration a variety of predator-prey 

interactions, making the model more sophisticated and realistic [7-8]. In a population system, there 

are often two types of predators: generalists, or predators like lions and leopards, and specialists, 

or consumers, like wild bulls and zebras. Specialist predators only rely on specific types of food 

(producing species) for their survival and well-being, but generalist predators must ingest a variety 

of food sources and attack ferociously on their favorite prey [9]. Over the years, the examination 

of ecosystems where the predator and primary prey are provided with distinct food sources has 

been the subject of much research due to its potential implications. This area of study has become 

increasingly important to biologists, theoretical and experimental ecologists, and mathematicians 

[10-11].  It has been demonstrated that increased food intake, in particular, reduces predation 

pressure on prey by diverting the predator's attention from the target [12]. 

Cooperation in hunting, which is seen as the antithesis of self-interest, is one of the procedures 

that necessitate the availability of several species. This has reduced the amount of time and effort 

required for a hunt and increased hunting success rates [13]. There are predators in ecological 

systems that hunt in packs. This cooperative hunting often causes anxiety in the prey group; in 

such cases, the prey tends to flee or hide in a specific area [14-15]. Consequently, hunting 

cooperation increases fear indirectly. 

One mechanism that reduces predation rates through evading or hiding from high-risk areas 

is assumed to be the prey's dread of becoming prey. Fear is an ecological component that rarely 

results in death, but it can stop prey from spreading since it makes it hide and reduces the likelihood 

that it will reproduce. The victim becomes afraid as a result of the predator's terror. On rare 

occasions, this effect may be about equal to the direct impact's magnitude [16-18]. Wang et al [14] 

presented a predator-prey model that takes into account the effect of anxiety on the growth of the 

prey. Similar to the predator-prey paradigm, fear could stabilize systems by preventing population 

fluctuations. The study discovered that, for particular parameter combinations, fear could have an 

impact on the stability of limit cycle oscillations. An effect not observed in conventional predator-
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prey models is the ability of fear to change population oscillation from supercritical to subcritical.   

Antipredator behavior is now very common. Predator and prey have both evolved to adapt in 

ways that lead to this behavior. When prey displays antipredator behavior, it can protect itself from 

potential predators. The prey-predator model's dynamics, including antipredator behavior, have 

been the subject of several studies [19-20]. Their findings in the subsequent study [21] added to 

our understanding of the mechanisms underlying natural selection, particularly as they relate to 

the effects of antipredator behavior. The predator has an easier time surviving since it is less 

susceptible to antipredator measures. To illustrate antipredator behavior, they used the Holing type 

II function 𝑓(𝑥, 𝑦) =
𝑐𝑥𝑦

1+𝑚𝑦
, where 𝑥 is the prey, 𝑦 is the predator, while 𝑚 and 𝑐 stand for 

two parameters that describe antipredator behavior.  

Pollution of the environment is a significant influencing factor when dealing with natural 

resources. Pollution, exploitation, and interdependence may decrease stocks, reduce production, 

and lead to species extinction. Effective resource management, including pollution control, is 

crucial for the ecosystem's survival and production. Numerous studies show the impact of 

exploitation and pollution on the prey-predator system [22-25]. For instance, the study presented 

by Zawka and Srinivasu [26] deals with equations describing prey-predator interactions in the 

context of prey harvesting and reducing pollution activities. They conclude that Pollutants from 

outside sources affect the growth rates of both species, lowering the value of the resource. 

Considering the aforementioned, despite the components' obvious presence in the condom, no 

research on an ecosystem has examined how the factors come together, which is the goal of this 

study. For example, some of these biological components have been included in certain earlier 

research. A mathematical model of the food chain focusing on the dynamics of prey, predator, and 

scavenger populations was proposed and examined by Satar and Naji [27]. In this model, toxicants 

have a direct impact on the growth of all prey, predator, and scavenging populations. According 

to the analysis, only external sources are responsible for the pollution releases. The dynamics and 

ideal harvesting of a prey-predator system in a polluted environment with scavengers and pollution 

control are the topics of Zawka and Melese [28]. They noticed that the environment is 

contaminated by toxicants that are emitted from outside sources and the dead corpses of predators 

and prey. This reduces the amount of money that can be made from harvesting because it hinders 

the growth of both predators and prey. A mathematical eco-epidemiological model comprising a 

prey-predator model with sickness in predators involving fear created owing to the intensity of 
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hunting cooperation and anti-predator property was proposed and researched by Sahi and Satar 

[29]. Conversely, Hadi and Bahlool [30] looked at and suggested a nutritional chain model that 

included alternate food sources and a prey shelter. They hypothesized a positive correlation 

between the quantity of mid-predators and the number of refuges. A mathematical model that 

mimics the connection between prey and predator in the event of an infectious disease spreading 

throughout the predator population and the creation of new food sources for the predator has 

recently been developed and studied in [31]. Presumably, the prey slows down its growth rate 

because it feels compelled by the predator's wrath to find a place where it will feel secure and 

afraid.  

Consequently, in this paper, a mathematical model of the food chain consisting of producer-

consumer-predator that involves fear, hunting cooperation, antipredator, and additional food has 

been proposed and formulated mathematically in the next section. The equilibria’s existence and 

local stability were discussed in section 3. Section 4 treats the determination of persistence 

requirements. The global stability analysis was the subject of section 5. Section 6, determines the 

local bifurcation of the system. A numerical simulation was applied to understand the system’s 

dynamics in section 7. Finally, Section 8 summarizes the conclusions of the study. 

2. THE MODEL FORMULATION 

This section formulates an ecological food chain model that considers fear, hunting 

cooperation, antipredator, and additional food. Throughout the formulation process the following 

assumptions are adopted: 

In the absence of the consumer, the producer grows logistically, whereas in the presence of 

the consumer, it decays due to feed-on employing a linear functional response. Fear is often 

induced in the consumer when predators hunt together. This disrupts the consumer’s feeding 

patterns and limits the amount of food obtained from the producer. The Sokol and Howell 

functional response will be appropriate for the predation mechanism since consumers are capable 

of cooperative defense and possibly killing the predator. Also, due to the availability of additional 

food for the predator, represented by the term 𝛼𝛽𝐴, a decrease in the rate of predation for the 

consumer will be observed. Moreover, the system is being operated in a polluted environment. 

External pollutants, such as industrial waste, can affect the populations of both consumer and 

predator species. As a result, the dynamics of such a system can be quantitatively simulated using 

the following first-order differential equations: 
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𝑑𝑋

𝑑𝑇
= 𝑟𝑋 (1 −

𝑋

𝑘
) −

𝑎0𝑋𝑌

1+𝑛𝑍
= 𝑋𝑓1(𝑋, 𝑌, 𝑍),                 

𝑑𝑌

𝑑𝑇
=

𝑎1𝑋𝑌

1+𝑛𝑍
−

(𝑎2+𝑐𝑍)𝑌𝑍

1+𝛼𝛽𝐴+𝑚0𝑌2
− 𝑞1𝑌

3 − 𝑑0𝑌 = 𝑌𝑓2(𝑋, 𝑌, 𝑍),    

𝑑𝑍

𝑑𝑇
=

𝑒(𝑎2+𝑐𝑍)(𝑌+𝛽𝐴)𝑍

1+𝛼𝛽𝐴+𝑚0𝑌2
−

𝑞0𝑌𝑍

1+𝑚1𝑍
− 𝑞2𝑍

2 − 𝑑1𝑍 = 𝑍𝑓3(𝑋, 𝑌, 𝑍),

                  (1) 

where 𝑋(0) ≥ 0, 𝑌(0) ≥ 0, and 𝑍(0) ≥ 0. Table 1 lists the variables and positive parameter 

descriptions. 

Table 1: Description of model variables and parameters: 

Symbols Description 

𝑿(𝑻) The density of producer population at time 𝑻. 

𝒀(𝑻) The density of consumer population at time 𝑻. 

𝒁(𝑻) The density of predator population at time 𝑻. 

𝒓 Intrinsic growth rate for the producer.  

𝒌 Carrying capacity of the producer. 

𝒂𝟎 The consumer attack rate against producers. 

𝒂𝟏 = 𝒆𝟎𝒂𝟎 
The rate at which the producer's biomass is converted to the consumer's 

biomass such that 𝒆𝟎 ∈ (𝟎, 𝟏). 

𝒂𝟐 The predator's attack rate against consumers. 

𝒎𝟎 Handling time constant. 

𝒄 The level of cooperation between predators when hunting. 

𝒏 Consumers' level of fear of predators. 

𝒒𝟎 The level of antipredator in the consumer. 

𝒎𝟏 
Predator efficiency to avoid the anti-predator capability in the 

consumer 

𝒅𝟎, 𝒅𝟏 Natural death rates for the consumer and the predator, respectively. 

𝒆 ∈ (𝟎, 𝟏) 
The rate at which the consumer's biomass is converted to the predator's 

biomass. 

𝒒𝟏 Toxicity coefficient for consumers. 

𝒒𝟐 Toxicity coefficient for predators. 

𝜶 The quality of additional food. 

𝜷𝑨 The effective additional food-level term. 
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To simplify the system (1), the dimensionless parameters and variables mentioned below will be 

utilized: 

 

𝑥 =
 𝑋 

𝑘
, 𝑦 =

𝑎0𝑌

𝑟
, 𝑧 = 𝑛𝑍, 𝑡 = 𝑟𝑇,

𝜇1 =
𝑎1𝑘

𝑟
, 𝜇2 =

𝑎2

𝑟𝑛
, 𝜇3 =

𝑐

𝑛𝑎2
, 𝜇4 = 𝛼𝛽𝐴, 𝜇5 =

𝑚0𝑟
2

𝑎0
2 , 𝜇6 =

𝑞1𝑟

𝑎0
2 ,

 𝜇7 =
𝑑0

𝑟
, 𝜇8 =

𝑒𝑎2

𝑎0
, 𝜇9 =

𝑞0

𝑎0
, 𝜇10 =

𝑚1

𝑛
, 𝜇11 =

𝑞2

𝑛𝑟
, 𝜇12 =

𝑑1

𝑟
, 𝜇13 =

𝛽𝐴𝑎0

𝑟
.

 

The dimensionless system can be expressed as follows: 

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 −

𝑦

1+𝑧
) = 𝑥𝑓1(𝑥, 𝑦, 𝑧),                      

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝜇1𝑥

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4+𝜇5𝑦2
− 𝜇6𝑦

2 − 𝜇7) = 𝑦𝑓2(𝑥, 𝑦, 𝑧),       

𝑑𝑧

𝑑𝑡
= 𝑧 (

𝜇8(1+𝜇3𝑧)(𝑦+𝜇13)

1+𝜇4+𝜇5𝑦2
−

𝜇9𝑦

1+𝜇10𝑧
− 𝜇11𝑧 − 𝜇12) = 𝑧𝑓3(𝑥, 𝑦, 𝑧).

       (2) 

The interaction functions of the system (2) are defined on ℝ+
3 = {(𝑥, 𝑦, 𝑧): 𝑥(0) ≥ 0, 𝑦(0) ≥

0, 𝑧(0) ≥ 0} . The functions 𝑓1, 𝑓2 , and 𝑓3  on the right-hand side of the system (2) have 

continuous partial derivatives and thus are said to be continuous. Therefore, these functions satisfy 

Lipschitz's criterion. Given the initial conditions 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, and 𝑧(0) ≥ 0, the solution 

exists and is unique, according to the fundamental theorem of existence and uniqueness. 

Theorem 1. For all 𝑡 ≥ 0, System (2) is positively invariant for all positive initial values. 

Proof. Define 𝛺 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}. Applying the initial conditions 𝑥(0) >

0 , 𝑦(0) > 0 , and 𝑧(0) > 0  to the mathematical equations of system (2) yields the following 

result:  

𝑥(𝑡) = 𝑥(0)𝑒
∫ [1−𝑥(𝑠)−

𝑦(𝑠)
1+𝑧(𝑠)

]𝑑𝑠
𝑡
0  

𝑦(𝑡) = 𝑦(0)𝑒
∫ [

𝜇1𝑥(𝑠)
1+𝑧(𝑠)

−
𝜇2(1+𝜇3𝑧(𝑠))𝑧(𝑠)

1+𝜇4+𝜇5(𝑦(𝑠))
2 −𝜇6(𝑦(𝑠))

2
−𝜇7]𝑑𝑠

𝑡
0

 

𝑧(𝑡) = 𝑧(0)𝑒
∫ [
𝜇8(1+𝜇3𝑧(𝑠))(𝑦(𝑠)+𝜇13)

1+𝜇4+𝜇5(𝑦(𝑠))
2 −

𝜇9𝑦(𝑠)
1+𝜇10𝑧(𝑠)

−𝜇11𝑧(𝑠)−𝜇12]𝑑𝑠
𝑡
0

 

The exponential function defines that all solutions in 𝛺 with positive initial conditions remain in 

the first octant. Hence, the proof is done.          ■ 

In theoretical ecology, the system's boundedness indicates that it is biologically well-behaved. 

Because the solutions are bounded, none of the species that interact will grow fast or exponentially 

over time, due to a shortage of supplies, any species' population is limited. 
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Theorem 2. In the region, 

 Ψ = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 0 < 𝑥(𝑡) < 1, 0 < 𝑥(𝑡) +

1

𝜇1
𝑦(𝑡) +

𝜇2

𝜇1𝜇8
𝑧(𝑡) ≤

2

𝛽
 }. 

All solutions of the system (2), which initiates in ℝ+
3  are uniformly bounded  if the following 

sufficient condition is met. 

 𝜇8𝜇13 < min {𝜇12(1 + 𝜇4),
𝜇11 (1+𝜇4)

𝜇3
 }.                       (3) 

Proof. Consider the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))  of the system (2). Then the first equation in 

system (2) indicates that 
𝑑𝑥

𝑑𝑡
≤ 𝑥 − 𝑥2. By using lemma (2.2) [32], this inequality's solution is 

provided by 𝑥(𝑡) ≤
𝑥0

𝑒−𝑡(1−𝑥0)−𝑥0
, where 𝑥0 is the initial value s.t. 𝑥0 = 𝑥(0). As 𝑡 approaches 

∞, the solution 𝑥(𝑡) ensures that 𝑥 ≤ 1. 

Now, define the function 𝐻(𝑡) = 𝑥(𝑡) +
1

𝜇1
𝑦(𝑡) +

𝜇2

𝜇1𝜇8
𝑧(𝑡). Differentiating 𝐻(𝑡) gives: 

 

𝑑𝐻

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝑥𝑦

1+𝑧
+

1

𝜇1
(
𝜇1𝑥𝑦

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑦𝑧

1+𝜇4+𝜇5𝑦2
− 𝜇6𝑦

3 − 𝜇7𝑦)

+
𝜇2

𝜇1𝜇8
(
𝜇8(1+𝜇3𝑧)(𝑦+𝜇13)𝑧

1+𝜇4+𝜇5𝑦2
−

𝜇9𝑦𝑧

1+𝜇10𝑧
− 𝜇11𝑧

2 − 𝜇12𝑧)
. 

Direct computation leads to: 

𝑑𝐻

𝑑𝑡
≤ 𝑥 −

1

𝜇1
𝜇7𝑦 −

𝜇2

𝜇1𝜇8
[𝜇12 −

𝜇8𝜇13

1+𝜇4
] 𝑧 −

𝜇2

𝜇1
[
𝜇11

𝜇8
−
𝜇3𝜇13

1+𝜇4
] 𝑧2. 

Furthermore, using the sufficient condition it is obtained that 

 
𝑑𝐻

𝑑𝑡
≤ 2 − 𝛽𝐻, 

where 𝛽 = min {1, 𝜇7 , 𝜇12 −
𝜇8𝜇13

1+𝜇4
}. 

Using lemma (2.1) [32], it is found that 𝐻(𝑡) ≤
2

𝛽
 as 𝑡 approaches ∞. Thus, the solutions of 

system (2) in the region Ψ  are uniformly bounded with the initial point being non-negative. 

Hence, the proof is done.         ■ 

It is commonly understood that an ecological system is dissipative if the environment equally limits 

each population. Consequently, system (2) has dissipative properties. 

3. EXISTENCE AND LOCAL STABILITY OF EQUILIBRIUM POINTS 

The presence of non-negative equilibria is examined, and the stability requirements around 

these equilibria are established. The non-negative equilibrium points are defined as follows: 
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• The trivial point denoted by 𝑒0 = (0,0,0) is always exists. 

• The first axial point denoted by 𝑒1 = (1,0,0) is always exists. 

• The second axial point denoted by 𝑒2 = (0,0, �̃�), where �̃� =
𝜇8𝜇13−(1+𝜇4)𝜇12

(1+𝜇4)𝜇11−𝜇3𝜇8𝜇13
, which exists 

provided that one of the following conditions holds: 

(1 + 𝜇4)𝜇12 < 𝜇8𝜇13 <
(1+𝜇4)𝜇11

𝜇3
𝑜𝑟

(1+𝜇4)𝜇11

𝜇3
< 𝜇8𝜇13 < (1 + 𝜇4)𝜇12

} .             (4) 

• The first planar point denoted by 𝑒3 = (1,0, �̃�) which is exists under the condition (4) too. 

• The second planar point 𝑒4 = (�̂�, �̂�, 0), where �̂� = 1 − �̂�, while �̂� is a positive root of the 

second-order polynomial −𝜇6𝑦
2 − 𝜇1𝑦 + 𝜇1 − 𝜇7 = 0 . This polynomial has a unique 

positive root written by �̂� = −
𝜇1

2𝜇6
+
√𝜇12+4𝜇6(𝜇1−𝜇7)

2𝜇6
, provided that: 

𝜇7 < 𝜇1.                      (5) 

Accordingly, the point 𝑒4 will exist uniquely when a positive root �̂� satisfies: 

�̂� < 1.                    (6) 

• The positive point denoted by 𝑒5 = (�̅�, �̅�, 𝑧̅) , where �̅� =
1−�̅�+�̅�

1+�̅�
 while the (�̅�, 𝑧̅)  is the 

positive intersection point of the isoclines: 

ℎ1(𝑦, 𝑧) =
(1−𝑦+𝑧)𝜇1

1+𝑧
− 𝑧𝜇2 − 𝑧

2𝜇2 − 𝑧
2𝜇2𝜇3 − 𝑧

3𝜇2𝜇3 +
(1−𝑦+𝑧)𝜇1𝜇4

1+𝑧

+
𝑦2(1−𝑦+𝑧)𝜇1𝜇5

1+𝑧
− 𝑦2𝜇6 − 𝑦

2𝑧𝜇6 − 𝑦
2𝜇4𝜇6 − 𝑦

2𝑧𝜇4𝜇6 − 𝑦
4𝜇5𝜇6

−𝑦4𝑧𝜇5𝜇6 − 𝜇7 − 𝑧𝜇7 − 𝜇4𝜇7 − 𝑧𝜇4𝜇7 − 𝑦
2𝜇5𝜇7 − 𝑦

2𝑧𝜇5𝜇7 = 0.

. 

 

ℎ2(𝑦, 𝑧) = −𝑦𝜇8 − 𝑦𝑧𝜇3𝜇8 + 𝑦𝜇9 + 𝑦𝜇4𝜇9 + 𝑦
3𝜇5𝜇9 − 𝑦𝑧𝜇8𝜇10            

−𝑦𝑧2𝜇3𝜇8𝜇10 + 𝑧𝜇11 + 𝑧𝜇4𝜇11 + 𝑦
2𝑧𝜇5𝜇11 + 𝑧

2𝜇10𝜇11 + 𝑧
2𝜇4𝜇10𝜇11

+𝑦2𝑧2𝜇5𝜇10𝜇11 + 𝜇12 + 𝜇4𝜇12 + 𝑦
2𝜇5𝜇12 + 𝑧𝜇10𝜇12 + 𝑧𝜇4𝜇10𝜇12

+𝑦2𝑧𝜇5𝜇10𝜇12 − 𝜇8𝜇13 − 𝑧𝜇3𝜇8𝜇13 − 𝑧𝜇8𝜇10𝜇13 − 𝑧
2𝜇3𝜇8𝜇10𝜇13 = 0.

. 

It is easy to verify that as 𝑧 → 0 the above two isoclines become 

ℎ1(𝑦, 0) = −𝜇5𝜇6𝑦
4 − 𝜇1𝜇5𝑦

3 + (𝜇1𝜇5 − 𝜇6 − 𝜇4𝜇6 − 𝜇5𝜇7)𝑦
2

−(𝜇1 + 𝜇1𝜇4)𝑦 + 𝜇1 + 𝜇1𝜇4 − 𝜇7 − 𝜇4𝜇7 = 0
. 

ℎ2(𝑦, 0) = 𝜇5𝜇9𝑦
3 + 𝜇5𝜇12𝑦

2 + (−𝜇8 + 𝜇9 + 𝜇4𝜇9)𝑦
+𝜇12 + 𝜇4𝜇12 − 𝜇8𝜇13 = 0

. 

Direct computation shows that the first isocline has a unique positive root for 𝑦 denoted by 

𝑦1 if the following condition holds 
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𝜇7 < 𝜇1 <
𝜇6(1+𝜇4)

𝜇5
+ 𝜇7.                  (7) 

While the second isocline has a unique positive root for 𝑦 denoted by 𝑦2 if the following 

condition holds 

𝜇12(1 + 𝜇4) < 𝜇8𝜇13.                  (8) 

Consequently, the above two isoclines have a unique intersection positive point denoted by 

(�̅�, 𝑧̅) if the following sufficient conditions hold: 

𝑦1 < 𝑦2                      
𝑑𝑧

𝑑𝑦
= −

(𝜕ℎ1 𝜕𝑦⁄ )

(𝜕ℎ1 𝜕𝑧⁄ )
> 0

𝑑𝑧

𝑑𝑦
= −

(𝜕ℎ2 𝜕𝑦⁄ )

(𝜕ℎ2 𝜕𝑧⁄ )
< 0}

 

 

.                         (9) 

Finally, the positive equilibrium point exists uniquely if the following condition is met in 

addition to the above set of sufficient conditions.  

�̅� < 1 + 𝑧̅.                                       (10) 

In the next steps, the linearization technique is used to analyze the system's local stability 

around the previously discussed equilibrium points. Now the basic Jacobian matrix of system (2) 

is determined as follows: 

 𝐽(𝑥, 𝑦, 𝑧) =

(

 
 

𝑥
𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥
𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦
𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧
𝜕𝑓3

𝜕𝑦
𝑧
𝜕𝑓3

𝜕𝑧
+ 𝑓3)

 
 
= (𝑎𝑖𝑗)3×3 ,              (11) 

where: 

 𝑎11 = −𝑥 + [1 − 𝑥 −
𝑦

1+𝑧
], 𝑎12 = −

𝑥

1+𝑧
, 𝑎13 =

𝑥𝑦

 (1+𝑧)2
, 

 𝑎21 =
𝜇1𝑦

1+𝑧
, 𝑎22 =

2𝜇2𝜇5(1+𝜇3𝑧)𝑦
2𝑧

(1+𝜇4+𝜇5𝑦2)2
− 2𝜇6𝑦

2 + [
𝜇1𝑥

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4+𝜇5𝑦2
− 𝜇6𝑦

2 − 𝜇7], 

 𝑎23 = −(
𝜇1𝑥

(1+𝑧)2
+
𝜇2(1+2𝜇3𝑧)

1+𝜇4+𝜇5𝑦2
) 𝑦, 𝑎31 = 0, 

 𝑎32 = (
𝜇8(1+𝜇3𝑧)

1+𝜇4+𝜇5𝑦2
−

𝜇9

1+𝜇10𝑧
−
2𝜇5𝜇8(1+𝜇3𝑧)(𝑦+𝜇13)𝑦

(1+𝜇4+𝜇5𝑦2)2
) 𝑧, 

 𝑎33 =
𝜇3𝜇8(𝑦+𝜇13)𝑧

1+𝜇4+𝜇5𝑦2
+

𝜇9𝜇10𝑦𝑧

(1+𝜇10𝑧)2
− 𝜇11𝑧 + [

𝜇8(1+𝜇3𝑧)(𝑦+𝜇13)

1+𝜇4+𝜇5𝑦2
−

𝜇9𝑦

1+𝜇10𝑧
− 𝜇11𝑧 − 𝜇12]. 

So, at the trivial point 𝑒0, matrix (11) yields: 

 𝐽(𝑒0) = (

1 0 0
0 −𝜇7 0

0 0
𝜇8𝜇13

1+𝜇4
− 𝜇12

).                     (12) 
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Thus, 𝐽(𝑒0)  has the following eigenvalues: 𝜆01 = 1 , 𝜆02 = −𝜇7 , and 𝜆03 =
𝜇8𝜇13

1+𝜇4
− 𝜇12 . 

Therefore, 𝑒0 is a saddle point. 

Also, at the first axial point 𝑒1, matrix (11) yields: 

 𝐽(𝑒1) = (

−1 −1 0
0 𝜇1 − 𝜇7 0

0 0
𝜇8𝜇13

1+𝜇4
− 𝜇12

 )                       (13) 

The eigenvalues of 𝐽(𝑒1) are 𝜆11 = −1, 𝜆12 = 𝜇1 − 𝜇7, and 𝜆13 =
𝜇8𝜇13

1+𝜇4
− 𝜇12. Therefore, 𝑒1 

is locally asymptotically stable, assuming that the following conditions hold: 

 𝜇1 < 𝜇7.                           (14) 

 𝜇8𝜇13 < 𝜇12(1 + 𝜇4).                               (15) 

At the second axial point 𝑒2, matrix (11) yields:  

𝐽(𝑒2) =

(

 

1 0 0

0 −
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7 0

0 (
𝜇8(1+𝜇3𝑧)

1+𝜇4
−

𝜇9

1+𝜇10𝑧
) �̃� (

𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃�)

 .       (16) 

Thus, 𝐽(𝑒2)  has the following eigenvalues: 𝜆21 = 1 , 𝜆22 = −
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7 , and 𝜆23 =

(
𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃�. Therefore, 𝑒2 is a saddle point. 

At the first planar point 𝑒3, matrix (11) yields:  

𝐽(𝑒3) =

(

 
 

−1 −
1

1+𝑧
0

0
𝜇1

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7 0

0 (
𝜇8(1+𝜇3𝑧)

1+𝜇4
−

𝜇9

1+𝜇10𝑧
) �̃� (

𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃�)

 
 

.                  (17) 

Thus, 𝐽(𝑒3) has the following eigenvalues: 𝜆31 = −1, 𝜆32 =
𝜇1

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7, and 𝜆33 =

(
𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃� . Therefore, 𝑒3  is locally asymptotically stable, assuming that the following 

conditions hold:  

 
𝜇1

1+𝑧
<

𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
+ 𝜇7.                      (18) 

 𝜇8𝜇13 <
𝜇11(1+𝜇4)

𝜇3
.                        (19) 

Moreover, at the second planar point, the matrix (11) yields: 
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 𝐽(𝑒4) =

(

 
 

−�̂� −�̂� �̂��̂�

𝜇1�̂� −2𝜇6�̂�
2 −𝜇1�̂��̂� −

𝜇2�̂�

1+𝜇4+𝜇5�̂�2

0 0
𝜇8(�̂�+𝜇13)

1+𝜇4+𝜇5�̂�2
− 𝜇9�̂� − 𝜇12

 

)

 
 
= (�̂�𝑖𝑗).             (20) 

The eigenvalues of 𝐽(𝑒4 ) are 𝜆41,42 =
�̂�11+�̂�22

2
±
√(�̂�11+�̂�22)2−4(�̂�11�̂�22−�̂�12�̂�21)

2
, and 𝜆43 = �̂�33. 

Since �̂�11�̂�22 − �̂�12�̂�21 = 2𝜇6�̂��̂�
2 + 𝜇1�̂��̂� > 0 , and �̂�11 + �̂�22 < 0 , hence 𝜆41  and 𝜆42  are 

negative real parts eigenvalues. Thus, 𝑒4 is locally asymptotically stable, provided the following 

condition holds: 

𝜇8(�̂�+𝜇13)

1+𝜇4+𝜇5�̂�2
< 𝜇9�̂� + 𝜇12.                         (21) 

Additionally, the matrix (11) at the positive point 𝑒5 is as follows: 

 𝐽(𝑒5) = (
�̅�11 �̅�12 �̅�13
�̅�21 �̅�22 �̅�23
0 �̅�32 �̅�33

)                       (22) 

where: 

 �̅�11 = −�̅�, �̅�12 = −
�̅�

1+�̅�
, �̅�13 =

�̅��̅�

 (1+�̅�)2
, �̅�21 =

𝜇1�̅�

1+�̅�
, �̅�22 =

2𝜇2𝜇5(1+𝜇3�̅�)�̅�
2�̅�

(1+𝜇4+𝜇5�̅�2)2
− 2𝜇6�̅�

2, 

 �̅�23 = −�̅� (
𝜇1�̅�

(1+�̅�)2
+
𝜇2(1+2𝜇3�̅�)

1+𝜇4+𝜇5�̅�2
),  

 �̅�32 = 𝑧̅ (
𝜇8(1+𝜇3�̅�)

1+𝜇4+𝜇5�̅�2
−
2𝜇5𝜇8(1+𝜇3�̅�)(�̅�+𝜇13)�̅�

(1+𝜇4+𝜇5�̅�2)2
−

𝜇9

1+𝜇10�̅�
), 

 �̅�33 =
𝜇3𝜇8(�̅�+𝜇13)�̅�

1+𝜇4+𝜇5�̅�2
+

𝜇9𝜇10�̅��̅�

(1+𝜇10�̅�)2
− 𝜇11𝑧̅. 

As a result, the characteristic equation of 𝐽(𝑒5) can be expressed as follows: 

 𝜆3
3 + 𝛼1𝜆3

2 + 𝛼2𝜆3 + 𝛼3 = 0,                      (23) 

where: 

 𝛼1 = −(�̅�11 + �̅�22 + �̅�33), 

 𝛼2 = �̅�11�̅�22 + �̅�11�̅�33 + �̅�22�̅�33 − �̅�12�̅�21 − �̅�23�̅�32, 

 𝛼3 = −�̅�33(�̅�11�̅�22 − �̅�12�̅�21) + �̅�32(�̅�11�̅�23 − �̅�21�̅�13), 

with 

 
𝛼1𝛼2 − 𝛼3 = −(�̅�11 + �̅�22)[�̅�11�̅�22 − �̅�12�̅�21] − (�̅�22 + �̅�33)[�̅�22�̅�33 − �̅�23�̅�32]

−�̅�11�̅�33(�̅�11 + 2�̅�22 + �̅�33) + �̅�13�̅�21�̅�32.
 

According to the Routh-Hurwitz criterion, 𝑒5 = (�̅�, �̅�, 𝑧̅)  is locally asymptotically stable 

provided 𝛼1 > 0, 𝛼3 > 0 and 𝛼1𝛼2 > 𝛼3, which is true if and only if the following conditions 

are satisfied: 
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𝜇3𝜇8(�̅�+𝜇13)

1+𝜇4+𝜇5�̅�2
+

𝜇9𝜇10�̅�

(1+𝜇10�̅�)2
< 𝜇11,                     (24) 

 
𝜇2𝜇5(1+𝜇3�̅�)�̅�

(1+𝜇4+𝜇5�̅�2)2
< 𝜇6,                  (25) 

 
2𝜇5𝜇8(1+𝜇3�̅�)(�̅�+𝜇13)�̅�

(1+𝜇4+𝜇5�̅�2)2
+

𝜇9

1+𝜇10�̅�
<

𝜇8(1+𝜇3�̅�)

1+𝜇4+𝜇5�̅�2
,                 (26) 

 
𝜇1�̅�

 (1+�̅�)3
<

𝜇2(1+2𝜇3�̅�)

1+𝜇4+𝜇5�̅�2
+

𝜇1�̅�

(1+�̅�)2
 .               (27) 

Consequently, the next theorem is verified. 

Theorem 3. In system (2), the positive point is locally asymptotically stable if the conditions (24-

27) are met. 

4. PERSISTENCE 

 A system is said to be persistent if and only if all species survive. Mathematically, this means 

that with a positive initial condition of the system (2), if the solution does not have an omega limit 

set placed at the boundary of its domain, the system is said to persist. 

The following expressions can be used to represent the possible subsystems located in the positive 

quadrant of the 𝑥𝑧-plane and 𝑥𝑦-plane of the system (2) respectively: 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) = 𝛽1(𝑥, 𝑧),                 

𝑑𝑧

𝑑𝑡
= 𝑧 (

𝜇8(1+𝜇3𝑧)𝜇13

1+𝜇4
− 𝜇11𝑧 − 𝜇12) = 𝛽2(𝑥, 𝑧).

                         (28) 

And 

𝑑𝑥

𝑑𝑡
= 𝑥[1 − 𝑥 − 𝑦] = 𝛽3(𝑥, 𝑦),      

𝑑𝑦

𝑑𝑡
= 𝑦[𝜇1𝑥 − 𝜇6𝑦

2 − 𝜇7] = 𝛽4(𝑥, 𝑦).
.             (29) 

The subsystems (28)-(29) in ℝ+
2   have a positive equilibrium point that corresponds to 𝑒3 =

(1,0, �̃�) and 𝑒4 = (�̂�, �̂�, 0) of the system (2) respectively. To verify whether periodic dynamics 

exist near the interior positive point of the subsystems (28)-(29), the Dulac function approach [33] 

is used. 

Let 𝑔1(𝑥, 𝑧) =
1

𝑥𝑧,
 and 𝑔2(𝑥, 𝑦) =

1

𝑥𝑦
 are continuously differentiable functions that are defined 

for every (𝑥, 𝑧), (𝑥, 𝑦) ∈ ℝ+
2  and are located in the interior of the positive quadrant of the 𝑥𝑧-

plane and 𝑥𝑦 -plane, and 𝑔1(𝑥, 𝑧) > 0  and 𝑔2(𝑥, 𝑦) > 0 . Furthermore, the straightforward 

calculation yields that: 

 ∆1(𝑥, 𝑧) =
𝜕

𝜕𝑥
(𝑔1. 𝛽1) +

𝜕

𝜕𝑧
(𝑔1. 𝛽2) = −

1

𝑧
−

1

𝑥
(𝜇11 −

𝜇3𝜇8𝜇13

(1+𝜇4)
). 
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 ∆2(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝑔2. 𝛽3) +

𝜕

𝜕𝑦
(𝑔2. 𝛽4) = −

1

𝑦
−
2𝜇6𝑦

𝑥
. 

Then ∆1(𝑥, 𝑧) < 0 due to the first existence condition (4), and ∆2(𝑥, 𝑦) < 0 for any value of 

(𝑥, 𝑦). Consequently, there are no periodic dynamics in the interior of the positive quadrants of the 

𝑥𝑧-plane and 𝑥𝑦-plane. 

Theorem 4. System (2) is uniformly persistent if the following conditions are met: 

𝜇7 < 𝜇1,                   (30) 

𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
+ 𝜇7 <

𝜇1

1+𝑧
.                (31) 

𝜇9�̂� + 𝜇12 <
𝜇8(�̂�+𝜇13)

1+𝜇4+𝜇5�̂�2
.                      (32) 

Proof. Define the function Φ(𝑥, 𝑦, 𝑧) = 𝑥𝜌1𝑦𝜌2𝑧𝜌3 , where 𝜌1, 𝜌2, 𝜌3  are arbitrary positive 

constants, and Φ(𝑥, 𝑦, 𝑧) > 0  for all (𝑥, 𝑦, 𝑧) ∈ ℝ+
3   with Φ(𝑥, 𝑦, 𝑧) → 0  if either  𝑥, 𝑦  or 𝑧 

goes to zero. Now, let 

Ψ(𝑥, 𝑦, 𝑧) =
Φ′(𝑥,𝑦,𝑧)

Φ(𝑥,𝑦,𝑧)
= 𝜌1𝑓1 + 𝜌2𝑓2 + 𝜌3𝑓3. 

The functions 𝑓1, 𝑓2, and 𝑓3 are defined in system (2).  

The average Lyapunov approach requires demonstrating that the function Ψ(𝑥, 𝑦, 𝑧) > 0 at all 

boundary equilibrium points [34]. Thus, 

 
Ψ(𝑥, 𝑦, 𝑧) = 𝜌1 [1 − 𝑥 −

𝑦

1+𝑧
] + 𝜌2 [

𝜇1𝑥

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4+𝜇5𝑦2
− 𝜇6𝑦

2 − 𝜇7]

+𝜌3 [
𝜇8(1+𝜇3𝑧)(𝑦+𝜇13)

1+𝜇4+𝜇5𝑦2
−

𝜇9𝑦

1+𝜇10𝑧
− 𝜇11𝑧 − 𝜇12]

. 

That implies 

 Ψ(𝑒0) = 𝜌1[1] + 𝜌2[−𝜇7] + 𝜌3 [
𝜇8𝜇13

1+𝜇4
− 𝜇12]. 

Clearly, by allowing the arbitrary positive constant 𝜌1 to be sufficiently greater than the positive 

constants 𝜌2 and 𝜌3, Ψ(𝑒0) > 0 is obtained. 

 Ψ(𝑒1) = 𝜌2[𝜇1 − 𝜇7] + 𝜌3 [
𝜇8𝜇13

1+𝜇4
− 𝜇12]. 

According to condition (30), if the positive constant 𝜌2 is sufficiently greater than the positive 

constant 𝜌3, then Ψ(𝑒1) > 0 is obtained. 

 Ψ(𝑒2) = 𝜌1[1] + 𝜌2 [−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7]. 

Hence, allowing the arbitrary positive constant 𝜌1  to be sufficiently greater than the positive 

constants 𝜌2, it obtained Ψ(𝑒2) > 0. 
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 Ψ(𝑒3) = 𝜌2 [
𝜇1

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
− 𝜇7]. 

Hence, due to condition (31), it is obtained that Ψ(𝑒3) > 0 . Finally, at this point 𝑒4 , direct 

calculation shows that: 

   Ψ(𝑒4) = 𝜌3 [
𝜇8(�̂�+𝜇13)

1+𝜇4+𝜇5�̂�2
− 𝜇9�̂� − 𝜇12]. 

It is obtained that Ψ(𝑒3) > 0 under condition (32). Thus, the system (2) is uniformly persistent, 

therefore the proof is done.        ■ 

5. GLOBAL STABILITY ANALYSIS 

In this part, appropriate Lyapunov functions are used to explore the global stability within the 

bounded region Ψ  of the system's (2) locally asymptotically stable equilibrium points, as 

demonstrated in the following theorems. 

Theorem 5. The first axial point 𝑒1 of the system (2) is globally asymptotically stable whenever 

it is locally asymptotically stable. 

Proof. Define the real-valued function 𝐺1(𝑥, 𝑦, 𝑧) = (𝑥 − 1 − ln 𝑥) +
1

𝜇1
𝑦 +

𝜇2

𝜇1𝜇8
𝑧, which is a 

positive definite function since 𝐺1(𝑒1) = 0  and 𝐺1(𝑥, 𝑦, 𝑧) > 0  for all {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 >

0, 𝑦 ≥ 0, 𝑧 ≥ 0}, and (𝑥, 𝑦, 𝑧) ≠ 𝑒1. Furthermore, some direct computation yields: 

 
𝑑𝐺1

𝑑𝑡
≤ −(𝑥 − 1)2 − [

𝜇7

𝜇1
− 1] 𝑦 −

𝜇2

𝜇1
[
𝜇11

𝜇8
−

𝜇3𝜇13

(1+𝜇4)
] 𝑧2 −

𝜇2

𝜇1
[
𝜇12

𝜇8
−

𝜇13

(1+𝜇4)
] 𝑧. 

Consequently, 
𝑑𝐺1

𝑑𝑡
  is a negatively definite function under the local stability conditions in the 

bounded region Ψ. Hence 𝑒1 is globally asymptotically stable.            ■ 

Theorem 6. If the first planar point 𝑒3  is locally asymptotically stable, it is globally 

asymptotically stable, provided that the following condition is met. 

 𝜇1 +
𝜇2𝜇9

𝜇8
�̃� < 𝜇7.                 (33) 

Proof. Consider the following a real-valued function 

 𝐺2(𝑥, 𝑦, 𝑧) = (𝑥 − 1 − ln 𝑥) +
1

𝜇1
𝑦 +

𝜇2

𝜇1𝜇8
(𝑧 − �̃� − �̃� ln (

𝑧

𝑧
)).  

It is a positive definite function since 𝐺2( 𝑒3) = 0  and 𝐺2(𝑥, 𝑦, 𝑧) > 0 , for all {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0}, and (𝑥, 𝑦, 𝑧) ≠ (1,0, �̃�). Furthermore, some direct computation yields: 
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𝑑𝐺2

𝑑𝑡
= −(𝑥 − 1)2 +

𝑦

1+𝑧
−
𝜇6

𝜇1
𝑦3 −

𝜇7

𝜇1
𝑦 −

𝜇2

𝜇1

(1+𝜇3𝑧)𝑦𝑧

(1+𝜇4+𝜇5𝑦2)
+
𝜇2

𝜇1

𝜇3𝜇13(𝑧−𝑧)
2

(1+𝜇4+𝜇5𝑦2)

−
𝜇2

𝜇1

𝜇13𝜇5(1+𝜇3𝑧)𝑦
2𝑧

(1+𝜇4+𝜇5𝑦2)(1+𝜇4)
+
𝜇2

𝜇1

𝜇13𝜇5(1+𝜇3𝑧)𝑦
2𝑧

(1+𝜇4+𝜇5𝑦2)(1+𝜇4)

−
𝜇2

𝜇1𝜇8

𝜇9𝑦𝑧

1+𝜇10𝑧
+

𝜇2

𝜇1𝜇8

𝜇9𝑦𝑧

1+𝜇10𝑧
−
𝜇2𝜇11

𝜇1𝜇8
(𝑧 − �̃�)2.

 

Therefore, it is obtained that: 

 

𝑑𝐺2

𝑑𝑡
≤ −(𝑥 − 1)2 − [

𝜇7𝜇8−𝜇1𝜇8−𝜇2𝜇9𝑧

𝜇1𝜇8
] 𝑦 +

𝜇2

𝜇1

𝜇13𝜇5(1+𝜇3𝑧)�̃�

(1+𝜇4)2
𝑦2

−
𝜇2

𝜇1
[
𝜇11

𝜇8
−

𝜇3𝜇13

(1+𝜇4)
] (𝑧 − �̃�)2.

 

Consequently, 
𝑑𝐺2

𝑑𝑡
 is a negatively definite function under the condition (33) along with the local 

stability condition and the logistic function form of 𝑦. Hence 𝑒3 is globally asymptotically stable.    

Theorem 7. The second planar point 𝑒4 is globally asymptotically stable, provided the following 

conditions hold. 

 
𝜇1�̂�

𝜇2
+
(�̂�+𝜇13)

(1+𝜇4)
<

𝜇12

𝜇8
.                 (34) 

 
𝜇3(�̂�+𝜇13)

(1+𝜇4)
<

𝜇11

𝜇8
.                          (35) 

Proof. Define 𝐺3(𝑥, 𝑦, 𝑧) = (𝑥 − �̂� − �̂� ln
𝑥

�̂�
) +

1

𝜇1
(𝑦 − �̂� − �̂� ln

𝑦

�̂�
) +

𝜇2

𝜇1𝜇8
𝑧 , which is real-

valued function. It is a positive definite function since 𝐺3( 𝑒4) = 0 and 𝐺3(𝑥, 𝑦, 𝑧) > 0, for all 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0} , and (𝑥, 𝑦, 𝑧) ≠ (�̂�, �̂�, 0) . Furthermore, some direct 

computation yields: 

 

𝑑𝐺3

𝑑𝑡
≤ −(𝑥 − �̂�)2 −

𝜇6

𝜇1
(𝑦 + �̂�)(𝑦 − �̂�)2 −

𝜇2

𝜇1
[
𝜇11

𝜇8
−
𝜇3(�̂�+𝜇13)

(1+𝜇4)
] 𝑧2

−
𝜇2

𝜇1
[
𝜇12

𝜇8
−
𝜇1�̂�

𝜇2
−
(�̂�+𝜇13)

(1+𝜇4)
] 𝑧.

 

Consequently, 
𝑑𝐺3

𝑑𝑡
 is a negatively definite function under the conditions (34)-(35). Hence 𝑒4 is 

globally asymptotically stable.      

Theorem 8. The positive equilibrium point 𝑒5 has a basin of attraction in the interior of Ψ that 

satisfies the following conditions. 

𝜇2𝜇5�̅�(1+𝜇3�̅�)

(1+𝜇4)�̅�2
< 𝜇6,                 (36) 

 
𝜇8𝜇3(1+𝜇4)(�̅�+𝜇13)

(1+𝜇4)�̅�2
+
𝜇3𝜇5𝜇8�̅�

2(𝑦𝑚𝑎𝑥+𝜇13)

(1+𝜇4)�̅�2
+
𝜇9𝜇10�̅�

�̅�3
< 𝜇11,              (37) 

 𝑀13
2 < 2𝑀33,                   (38) 
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 𝑀23
2 < 2𝑀22𝑀33,                (39) 

where the new symbols are defined in the proof. 

Proof. Consider the following real-valued function 

 𝐺4(𝑥, 𝑦, 𝑧) = (𝑥 − �̅� − �̅� ln
𝑥

�̅�
) +

1

𝜇1
(𝑦 − �̅� − �̅� ln

𝑦

�̅�
) + (𝑧 − 𝑧̅ − 𝑧̅ ln

𝑧

�̅�
). 

It is a positive definite function since 𝐺4( 𝑒5) = 0  and 𝐺4(𝑥, 𝑦, 𝑧) > 0 , for all {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}, and (𝑥, 𝑦, 𝑧) ≠ 𝑒5. Furthermore, some direct computation yields: 

 

𝑑𝐺4

𝑑𝑡
= −(𝑥 − �̅�)2 +

�̅�

𝐵1�̅�1
(𝑥 − �̅�)(𝑧 − 𝑧̅) −

1

𝜇1
[𝜇6 −

𝜇2𝜇5�̅�(1+𝜇3�̅�)

𝐵2�̅�2
] (𝑦 + �̅�)(𝑦 − �̅�)2

−[𝜇11 −
𝜇8𝜇3(1+𝜇4)(�̅�+𝜇13)

𝐵2�̅�2
−
𝜇3𝜇5𝜇8�̅�

2(𝑦+𝜇13)

𝐵2�̅�2
−
𝜇9𝜇10�̅�

𝐵3�̅�3
] (𝑧 − 𝑧̅)2

− [
�̅�

𝐵1�̅�1
+
𝜇2(1+𝜇3𝑧+𝜇3�̅�)

𝜇1𝐵2
+
𝜇8𝜇5(𝑦�̅�+𝜇13(𝑦+�̅�))(1+𝜇3�̅�)

𝐵2�̅�2
+
𝜇9

𝐵3

−
𝜇8(1+𝜇4)(1+𝜇3𝑧)

𝐵2�̅�2
] (𝑦 − �̅�)(𝑧 − 𝑧̅) = −(𝑥 − �̅�)2 +𝑀13(𝑥 − �̅�)(𝑧 − 𝑧̅)

−𝑀22(𝑦 − �̅�)
2 −𝑀33(𝑧 − 𝑧̅)

2 −𝑀23(𝑦 − �̅�)(𝑧 − 𝑧̅),

 

where 𝐵1 = (1 + 𝑧), �̅�1 = (1 + 𝑧̅) , 𝐵2 = (1 + 𝜇4 + 𝜇5𝑦
2), �̅�2 = (1 + 𝜇4 + 𝜇5�̅�

2) , 𝐵3 = (1 +

𝜇10𝑧), and �̅�3 = (1 + 𝜇10𝑧̅). While 𝑦𝑚𝑎𝑥 is the upper bound of 𝑦 within Ψ. 

Therefore, according to the conditions (36)-(39) the derivative 
𝑑𝐺4

𝑑𝑡
 becomes negative definite. 

Hence, 𝑒5 is an asymptotically stable point for any trajectory starting in the region that satisfies 

the given condition. Hence the proof is complete.            ■ 

6. LOCAL BIFURCATION ANALYSIS 

This section employs the Sotomayor theorem [33] for local bifurcation to investigate how 

changing parameters impact the system's (2) qualitative dynamics close to non-hyperbolic points. 

Rewrite system (2) using the vector norm: 

 
𝑑𝐗

𝑑𝑡
= 𝐅(𝐗, 𝜇), 𝐗 = (𝑥, 𝑦, 𝑧)𝑇, 𝐅 = (𝑥𝑓1(𝐗, 𝜇), 𝑦𝑓2(𝐗, 𝜇), 𝑧𝑓3(𝐗, 𝜇))

𝑇
, 

where the system (2) specifies 𝑓𝑖(𝐗, 𝜇), ∀𝑖 = 1,2,3. The potential bifurcation parameter 𝜇 ∈ ℝ is 

also specified. Direct computation of the second and third derivatives of vector 𝐅  yields the 

following: 

    𝐷2𝐅(𝐗, 𝜇). (𝐕, 𝐕) = (𝑐𝑖1)3×1,                  (40) 

where 𝐕 = (𝑣1, 𝑣2, 𝑣3)
𝑇 be any vector and  

 𝑐11 = −2𝑣1
2 −

2

(1+𝑧)
𝑣1𝑣2 +

2𝑦

(1+𝑧)2
𝑣1𝑣3 +

2𝑥

(1+𝑧)2
𝑣2𝑣3 −

2𝑥𝑦

(1+𝑧)3
𝑣3
2 , 
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𝑐21 = 2
𝜇1(1+𝑧)𝑣1𝑣2−𝜇1𝑦𝑣1𝑣3

(1+𝑧)2
− 2(

𝜇1𝑥

(1+𝑧)2
+
𝜇2(1+2𝜇3𝑧)(1+𝜇4−𝜇5𝑦

2)

(1+𝜇4+𝑦2𝜇5)2
) 𝑣2𝑣3           

+2 (
𝜇1𝑥

(1+𝑧)3
−

𝜇2𝜇3

1+𝜇4+𝜇5𝑦2
) 𝑦𝑣3

2 + 2(
𝑧𝜇2𝜇5(1+𝜇3𝑧)(3+3𝜇4−𝜇5𝑦

2)

(1+𝜇4+𝜇5𝑦2)3
− 3𝜇6) 𝑦𝑣2

2
. 

𝑐31 = 2
𝜇5𝜇8[−3𝑦(1+𝜇4)+𝜇5𝑦

3−𝜇13(1+𝜇4−3𝜇5𝑦
2)](1+𝜇3𝑧)𝑧

(1+𝜇4+𝜇5𝑦2)3
𝑣2
2

+2(
𝜇9𝜇10𝑦

(1+𝜇10𝑧)3
− 𝜇11 +

𝜇3𝜇8(𝑦+𝜇13)

1+𝜇4+𝜇5𝑦2
) 𝑣3

2

+2(−
𝜇9

(1+𝜇10𝑧)2
+
(1+2𝜇3𝑧)𝜇8(1+𝜇4−𝜇5𝑦(𝑦+2𝜇13))

(1+𝜇4+𝜇5𝑦2)2
) 𝑣2𝑣3

. 

Furthermore, 

 𝐷3𝐅(𝐗, 𝜇). (𝐕, 𝐕, 𝐕) = (𝑑𝑖1)3×1,              (41) 

where: 

 𝑑11 =
6(1+𝑧)2

(1+𝑧)4
𝑣1𝑣2𝑣3 −

6𝑥(1+𝑧)

(1+𝑧)4
𝑣2𝑣3

2 −
6(1+𝑧)𝑦

(1+𝑧)4
𝑣1𝑣3

2 +
6𝑥𝑦

(1+𝑧)4
𝑣3

3 

 

𝑑21 = −
6𝜇1𝑥𝑦

(1+𝑧)4
𝑣3
3 −

6𝜇1(1+𝑧)

(1+𝑧)3
𝑣1𝑣2𝑣3 +

6𝜇1𝑦

(1+𝑧)3
𝑣1𝑣3

2 +
6𝜇2𝜇5𝑦(1+2𝜇3𝑧)(3+3𝜇4−𝜇5𝑦

2)

(1+𝜇4+𝜇5𝑦2)3
𝑣2
2𝑣3

+
6𝜇1𝑥

(1+𝑧)3
𝑣2𝑣3

2 − 6
𝜇2𝜇3(1+𝜇4−𝜇5𝑦

2)

(1+𝜇4+𝜇5𝑦2)2
𝑣2𝑣3

2

+6𝑣2
3 (

𝑧𝜇2(1+𝑧𝜇3)𝜇5((1+𝜇4)
2−6𝑦2(1+𝜇4)𝜇5+𝑦

4𝜇5
2)

(1+𝜇4+𝑦2𝜇5)4
− 𝜇6)

.  

 

𝑑31 = −
6𝑦𝜇9𝜇10

2

(1+𝑧𝜇10)4
𝑣3
3 +

6(1+2𝑧𝜇3)𝜇5𝜇8(−3𝑦(1+𝜇4)+𝑦
3𝜇5−(1+𝜇4−3𝑦

2𝜇5)𝜇13)

(1+𝜇4+𝑦2𝜇5)3
𝑣2
2𝑣3

+6(
𝜇9𝜇10

(1+𝑧𝜇10)3
+
𝜇3𝜇8(1+𝜇4−𝑦𝜇5(𝑦+2𝜇13))

(1+𝜇4+𝑦2𝜇5)2
) 𝑣2𝑣3

2

−
6𝑧(1+𝑧𝜇3)𝜇5𝜇8[1+𝜇4

2+𝜇4(2−2𝑦𝜇5(3𝑦+2𝜇13))+𝑦𝜇5(−6𝑦−4𝜇13+𝑦
2𝜇5(𝑦+4𝜇13))]

(1+𝜇4+𝑦2𝜇5)4
𝑣2
3

. 

Theorem 9: Near the first axial point, the system (2) experiences a transcritical bifurcation when 

the parameter 𝜇1
  passes through the value 𝜇1

∗ = 𝜇7. 

Proof: The matrix (13) at (𝑒1, 𝜇1
∗) yields: 

 𝐽1 = 𝐽(𝑒1, 𝜇1
∗) = (

−1 −1 0
0 0 0

0 0
𝜇8𝜇13

1+𝜇4
− 𝜇12

 ). 

The eigenvalues of 𝐽1  are as follows: 𝜆11 = −1 , 𝜆12 = 0 , and 𝜆13 =
𝜇8𝜇13

1+𝜇4
− 𝜇12 , which 

implies that 𝑒1 non-hyperbolic point. Let V1 = (𝑣11, 𝑣21, 𝑣31)
𝑇, and W1 = (𝑤11, 𝑤21, 𝑤31)

𝑇 be 

the eigenvectors corresponding 𝜆12 = 0  of 𝐽1  and 𝐽1
𝑇  respectively. The straightforward 

computation yields that V1 = (−1,1,0)
𝑇 , W1 = (0,1,0)𝑇 . Moreover, equation (40) is used to 

provide the following: 

 𝐅𝜇1 = (0,
𝑥𝑦

1+𝑧
, 0)

𝑇

 ⟹ 𝐅𝜇1 (𝑒1, 𝜇1
∗) = (0,0,0)𝑇 ⟹ 𝐖1

𝑇𝐅𝜇1 (𝑒1, 𝜇1
∗) = 0. 
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 𝐖1
𝑇[𝐷𝐅𝜇1 (𝑒1, 𝜇1

∗). 𝐕1] = (0,1,0) (
0
1
0
) = 1 ≠ 0. 

 𝐷2𝐅(𝑒1, 𝜇1
∗). (𝐕1, 𝐕1) = (0, −2𝜇1

∗, 0)𝑇 ⟹ 𝐖1
𝑇[𝐷2𝐅(𝑒1, 𝜇1

∗)(𝐕1, 𝐕1)] = −2𝜇7 ≠ 0. 

Hence, when 𝜇1
∗ = 𝜇7, system (2) experiences a transcritical bifurcation at the equilibrium point 

𝑒1. Thus, the proof is completed.            ■ 

Theorem 10: Near the first planer point 𝑒3 , system (2) experiences a transcritical bifurcation 

when the parameter 𝜇7
  passes through the positive value 𝜇7

∗ =
𝜇1

1+𝑧
−
𝜇2(1+𝜇3𝑧)𝑧

1+𝜇4
 if the following 

condition holds: 

 2
𝜇1

(1+𝑧)
𝜃1 − 2

𝜇1

(1+�̃�)2
𝜃2 − 2

𝜇2(1+2𝜇3𝑧)

(1+𝜇4)
𝜃2 ≠ 0,          (42) 

where 𝜃1  and 𝜃2  are given in the proof. Otherwise, pitchfork bifurcation occurs when the 

following condition holds: 

 −
6𝜇1

(1+𝑧)2
𝜃1𝜃2 +

6𝜇1

(1+𝑧)3
𝜃2
2 − 6

𝜇2𝜇3

(1+𝜇4)
𝜃2
2 + 6(

𝜇2𝜇5(1+𝜇3𝑧)𝑧

(1+𝜇4)2
− 𝜇6) ≠ 0.          (43) 

Proof: The matrix (17) at (𝑒3, 𝜇7
∗) yields: 

 𝐽2 = 𝐽(𝑒3, 𝜇7
∗) = (

−1 −
1

1+𝑧
0

0 0 0

0 (
𝜇8(1+𝜇3𝑧)

1+𝜇4
−

𝜇9

1+𝜇10𝑧
) �̃� (

𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃�

 ). 

The eigenvalues of 𝐽2 are as follows: 𝜆31 = −1, 𝜆32 = 0 and 𝜆33 = (
𝜇3𝜇8𝜇13

1+𝜇4
− 𝜇11) �̃�. Hence 

a non-hyperbolic point 𝑒3  has been obtained. Let 𝐕2 = (𝑣12, 𝑣22, 𝑣32)
𝑇  and 𝐖2 =

(𝑤12, 𝑤22, 𝑤32)
𝑇  be the eigenvectors corresponding 𝜆32 = 0  of 𝐽2  and 𝐽2

𝑇  respectively. The 

straightforward computation yields that 𝐕2 = (𝜃1, 1, 𝜃3)
𝑇 , and 𝐖2 = (0,1,0)𝑇 , where 𝜃1 =

−
1

1+𝑧
  and 𝜃3 = −

𝜇8(1+𝜇3𝑧)(1+𝜇10𝑧)−𝜇9(1+𝜇4)

(1+𝜇10𝑧)[𝜇3𝜇8𝜇13−𝜇11(1+𝜇4)]
  . Moreover, equation (40) is used to provide the 

following: 

 𝐅𝜇7 = (0,−𝑦, 0)𝑇 ⟹ 𝐅𝜇7 (𝑒3, 𝜇7
∗) = (0,0,0)𝑇 ⟹ 𝐖2

𝑇𝐅𝜇7 (𝑒3, 𝜇7
∗) = 0. 

 𝐖2
𝑇[𝐷𝐅𝜇7 (𝑒3, 𝜇7

∗). 𝐕2] = (0,1,0) (
0
−1
0
) = −1 ≠ 0. 

 𝐷2𝐅(𝑒3, 𝜇7
∗). (𝐕2, 𝐕2) = (

𝑞1
𝑞2
𝑞3
)

𝑇

, 
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where: 

𝑞1 = −2𝜃1
2 −

2

(1+𝑧)
𝜃1 +

2

(1+𝑧)2
𝜃2 , 

𝑞2 = 2
𝜇1

(1+𝑧)
𝜃1 − 2

𝜇1

(1+𝑧)2
𝜃2 − 2

𝜇2(1+2𝜇3𝑧)

(1+𝜇4)
𝜃2. 

𝑞3 = −2
𝜇5𝜇8𝜇13(1+𝜇3𝑧)𝑧

(1+𝜇4)2
+ 2(−𝜇11 +

𝜇3𝜇8𝜇13

1+𝜇4
) 𝜃2

2 + 2(−
𝜇9

(1+𝜇10𝑧)2
+
(1+2𝜇3𝑧)𝜇8

(1+𝜇4)
) 𝜃2. 

Thus 

  𝐖2
𝑇[𝐷2𝐅(𝑒3, 𝜇7

∗). (𝐕2, 𝐕2)] = 𝑞2. 

Hence, when 𝜇7
 = 𝜇7

∗ , the system (2) experiences a transcritical bifurcation at the equilibrium 

point 𝑒3 when the condition (42) holds. However, when condition (42) fails to be met, equation 

(41) yields the following result: 

 𝐷3𝐅(𝑒3, 𝜇7
∗). (𝐕2, 𝐕2, 𝐕2) = (

𝑟1
𝑟2
𝑟3
)

𝑇

, 

where: 

 𝑟1 =
6

(1+𝑧)2
𝜃1𝜃2 −

6

(1+𝑧)3
𝜃2
2 

 𝑟2 = −
6𝜇1

(1+𝑧)2
𝜃1𝜃2 +

6𝜇1

(1+𝑧)3
𝜃2
2 − 6

𝜇2𝜇3

(1+𝜇4)
𝜃2
2 + 6(

𝜇2𝜇5(1+𝜇3𝑧)𝑧

(1+𝜇4)2
− 𝜇6).  

 𝑟3 = −
6(1+2𝜇3𝑧)𝜇5𝜇8𝜇13

(1+𝜇4)2
𝜃2 + 6(

𝜇9𝜇10

(1+𝜇10𝑧)3
+

𝜇3𝜇8

(1+𝜇4)
) 𝜃2

2 −
6𝜇5𝜇8(1+𝜇3𝑧)𝑧

(1+𝜇4)2
. 

Hence 

 𝐖2
𝑇[𝐷3𝐅(𝑒3, 𝜇7

∗). (𝐕2, 𝐕2, 𝐕2)] = 𝑟2. 

Thus, the proof proceeds and the pitchfork bifurcation occurs under the condition (43).        ■ 

Theorem 11: Near the second planar equilibrium point, system (2) experiences a transcritical 

bifurcation when the parameter 𝜇12
  passes through the positive value 𝜇12

∗ =
𝜇8(�̂�+𝜇13)

1+𝜇4+𝜇5�̂�2
− 𝜇9�̂� if 

the following condition holds: 

 −
4𝜇5𝜇8𝛽2(�̂�+𝜇13)�̂�

(1+𝜇4+𝜇5�̂�2)2
+
2𝜇8(𝛽2+𝜇3(𝑦+𝜇13))

1+𝜇4+𝜇5�̂�2
− 2𝜇9(𝛽2 − 𝜇10�̂�) − 2𝜇11 ≠ 0,     (44) 

where 𝛽2  is given in the proof. Otherwise, pitchfork bifurcation occurs when the following 

condition holds: 

 
24𝜇8𝜇5

2𝛽2
2�̂�3

(1+𝜇4+𝜇5�̂�2)3
−
6𝜇8𝜇5(3𝛽2�̂�+2𝜇3�̂�

2)𝛽2

(1+𝜇4+𝜇5�̂�2)2
+

6𝜇8𝜇3𝛽2

1+𝜇4+𝜇5�̂�2
+ 6𝜇9𝜇10(𝛽2 − 𝜇10�̂�) ≠ 0.        (45) 

Proof: The matrix (20) at (𝑒4, 𝜇12
∗ ) yields: 
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 𝐽3 = 𝐽(𝑒4, 𝜇12
∗ ) = (

−�̂� −�̂� �̂��̂�

𝜇1�̂� −2𝜇6�̂�
2 −𝜇1�̂��̂� −

𝜇2�̂�

1+𝜇4+𝜇5�̂�2

0 0 0

 ). 

The eigenvalues of 𝐽3  are as follows: 𝜆41,42 = −𝜇6�̂�
2 −

�̂�

2
±
√(2𝜇6�̂�2+�̂�)2−4(2𝜇6�̂��̂�2+𝜇1�̂��̂�)

2
 , and 

𝜆43 = 0 . This causes a non-hyperbolic point 𝑒4  to be obtained. Let 𝐕3 = (𝑣13, 𝑣23, 𝑣33)
𝑇  and 

𝐖3 = (𝑤13, 𝑤23, 𝑤33)
𝑇 be the eigenvectors corresponding 𝜆43 = 0 of 𝐽3 and 𝐽3

𝑇 respectively. 

The straightforward computation yields that 𝐕3 = (𝛽1, 𝛽2, 1)
𝑇, and 𝐖3 = (0,0,1)

𝑇, where 𝛽1 =

�̂� −
𝜇1(�̂�−�̂�)

2𝜇6�̂�+𝜇1
+

𝜇2

(2𝜇6�̂�+𝜇1)(1+𝜇4+𝜇5�̂�2)
  and 𝛽2 =

𝜇1(�̂�−�̂�)

2𝜇6�̂�+𝜇1
−

𝜇2

(2𝜇6�̂�+𝜇1)(1+𝜇4+𝜇5�̂�2)
  . Moreover, 

equation (40) is used to provide the following: 

 𝐅𝜇12 = (0,0, −𝑧)𝑇 ⟹ 𝐅𝜇12 (𝑒4, 𝜇12
∗ ) = (0,0,0)𝑇 ⟹ 𝐖3

𝑇𝐅𝜇12 (𝑒4, 𝜇12
∗ ) = 0. 

 𝐖3
𝑇[𝐷𝐅𝜇12 (𝑒4, 𝜇12

∗ ). 𝐕3] = (0,0,1)(
0
0
−1
) = −1 ≠ 0. 

 𝐷2𝐅(𝑒4, 𝜇12
∗ ). (𝐕3, 𝐕3) = (

𝑠1
𝑠2
𝑠3
)

𝑇

, 

where: 

 𝑠1 = −2𝛽1
2 − 2𝛽1𝛽2 + 2𝛽1�̂� + 2𝛽2�̂� − 2�̂��̂� , 

 𝑠2 = 2𝜇1(𝛽1 − �̂�)(𝛽2 − �̂�) +
4𝜇2𝜇5𝛽2�̂�

2

(1+𝜇4+𝜇5�̂�2)2
−
2𝜇2(𝛽2+𝜇3�̂�)

1+𝜇4+𝜇5�̂�2
− 6𝜇6𝛽2

2�̂�, 

 𝑠3 = −
4𝜇5𝜇8𝛽2(�̂�+𝜇13)�̂�

(1+𝜇4+𝜇5�̂�2)2
+
2𝜇8(𝛽2+𝜇3(𝑦+𝜇13))

1+𝜇4+𝜇5�̂�2
− 2𝜇9(𝛽2 − 𝜇10�̂�) − 2𝜇11. 

Thus 

  𝐖3
𝑇[𝐷2𝐅(𝑒4, 𝜇12

∗ ). (𝐕3, 𝐕3)] = 𝑠3. 

Hence, when 𝜇12
 = 𝜇12

∗ , system (2) experiences a transcritical bifurcation at the equilibrium point 

𝑒4 if the condition (44) holds. When the condition (44) fails to be met, equation (41) yields the 

following result: 

 𝐷3𝐅(𝑒4, 𝜇12
∗ ). (𝐕3, 𝐕3, 𝐕3) = (

𝑢1
𝑢2
𝑢3
)

𝑇

, 

where: 

 𝑢1 = 6(𝛽1 − �̂�)(𝛽2 − �̂�), 



21 

POLLUTION ON THE PRODUCER-CONSUMER-PREDATOR FOOD CHAIN 

 
𝑢2 = −

24𝜇2𝜇5
2𝛽2

2�̂�3

(1+𝜇4+𝜇5�̂�2)3
+
6𝜇2𝜇5(3𝜇3𝛽2�̂�+2𝜇3�̂�

2)𝛽2

(1+𝜇4+𝜇5�̂�2)2
−

6𝜇2𝜇3𝛽2

1+𝜇4+𝜇5�̂�2

−6𝜇1(𝛽1 − �̂�)(𝛽2 − �̂�) − 6𝜇6𝛽2
3

, 

 
𝑢3 =

24𝜇8𝜇5
2𝛽2

2(�̂�+𝜇13)�̂�
2

(1+𝜇4+𝜇5�̂�2)3
−
6𝜇5𝜇8((3�̂�+𝜇13)𝛽2+2𝜇3(�̂�+𝜇13)�̂�)𝛽2

(1+𝜇4+𝜇5�̂�2)2
+

6𝜇8𝜇3𝛽2

1+𝜇4+𝜇5�̂�2

+6𝜇9𝜇10(𝛽2 − 𝜇10�̂�)
. 

Hence 

 𝐖3
𝑇[𝐷3𝐅(𝑒4, 𝜇12

∗ ). (𝐕3, 𝐕3, 𝐕3)] = 𝑢3. 

Thus, the proof proceeds and the pitchfork bifurcation occur under the condition (45).        ■ 

Theorem 12: Assuming the conditions (24)-(26) hold, as the parameter 𝜇11 reaches the value 

𝜇11
∗ =

𝜇3𝜇8(�̅�+𝜇13)

1+𝜇4+𝜇5�̅�2
+

𝜇9𝜇10�̅�

(1+𝜇10�̅�)2
−
�̅�32(�̅�11�̅�23−�̅�21�̅�13)

�̅�(�̅�11�̅�22−�̅�12�̅�21)
 , system (2) experiences a saddle-node 

bifurcation around the positive point if the following condition holds: 

 𝑤13𝑐11
∗ + 𝑤23𝑐21

∗ + 𝑐31
∗ ≠ 0,                            (46) 

where the definition of each new symbol is represented in the proof. 

Proof: The matrix (22) at (𝑒5, 𝜇11
∗ ) yields: 

 𝐽4 = 𝐽(𝑒5, 𝜇11
∗ ) = (

�̅�11 �̅�12 �̅�13
�̅�21
 �̅�22 �̅�23

 

0 �̅�32 �̅�33
∗
), 

where �̅�33
∗ = �̅�33

∗ (𝜇11
∗ ). 

Simple computations show that the determinant of 𝐽4, represented by 𝛼3 in equation (23), is zero. 

Therefore, 𝐽4 will have a zero eigenvalue (𝜆3
∗ = 0) and two additional eigenvalues of negative 

real parts. Thus, the point 𝑒5  becomes a non-hyperbolic point. Let 𝐕4 = (𝑣14, 𝑣24, 𝑣34)
𝑇  and 

𝐖4 = (𝑤14, 𝑤24, 𝑤34)
𝑇 be the eigenvectors corresponding 𝜆3

∗ = 0 of 𝐽4 and 𝐽4
𝑇 respectively. 

Then straightforward computation yields that:  

 𝐕4 =

(

 

�̅�12�̅�23
 −�̅�13�̅�22

�̅�11�̅�22−�̅�12�̅�21
 

−
�̅�11�̅�23

 −�̅�13�̅�21
 

�̅�11�̅�22−�̅�12�̅�21
 

1 )

 = (
𝑣14
𝑣24
1
),  𝐖4 =

(

 

�̅�21
 �̅�32

 

�̅�11�̅�22−�̅�12�̅�21
 

−
�̅�11�̅�32

 

�̅�11�̅�22−�̅�12�̅�21
 

1 )

 = (
𝑤14
𝑤24
1
).  

Moreover, equation (40) is used to provide the following: 

 
𝐅𝜇11 = (0,0, −𝑧2)𝑇 ⟹ 𝐅𝜇11 (𝑒5, 𝜇11

∗ ) = (0,0, −𝑧̅2)𝑇

⟹𝐖4
𝑇𝐅𝜇11 (𝑒5, 𝜇11

∗ ) = 𝑧̅2 ≠ 0
. 

In addition, it is obtained that: 
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 𝐷2𝐅(𝑒5, 𝜇11
∗ ). (𝐕4, 𝐕4) = (

𝑐11
∗

𝑐21
∗

𝑐31
∗
)

𝑇

, 

where 𝑐11
∗ = 𝑐11(𝑒5, 𝜇11

∗ , 𝐕4) , 𝑐21
∗ = 𝑐21(𝑒5, 𝜇11

∗ , 𝐕4) , and 𝑐31
∗ = 𝑐31(𝑒5, 𝜇11

∗ , 𝐕4) . Hence, due to 

condition (46), it is obtained that: 

  𝐖4
𝑇[𝐷2𝐅(𝑒5, 𝜇11

∗ ). (𝐕4, 𝐕4)] = 𝑤14𝑐11
∗ + 𝑤24𝑐21

∗ + 𝑐31
∗ ≠ 0 

Hence, when 𝜇11 = 𝜇11
∗  , system (2) experiences a Saddle-node bifurcation at the equilibrium 

point 𝑒5. Thus, the proof is completed.                      ■ 

7. NUMERICAL SIMULATION 

This section investigates many aspects of system (2) dynamics. The main objective is to learn 

how the system responds when its parameters are changed and verify the validity of the previously 

offered hypotheses and their results, by choosing biologically acceptable values for the parameters 

{𝜇𝑖: 1 ≤ 𝑖 ≤ 13}𝑖∈ℕ. System (2) will be solved numerically, and the numerical solutions will be 

presented in different forms using MATLAB R2023b. The set S represents the set of parameters 

that are utilized to demonstrate the numerical trajectory shown in Fig. 1, using multiple initial 

points that are specified as 𝐼1 = (0.75,0.75,0.75), 𝐼2 = (0.1,0.25,0.9), 𝐼3 = (0.9,0.1,0.9), 𝐼4 =

(1,0.5,0.2), 𝐼5 = (1,1,0.5), 𝐼6 = (0.5,0.25,0.75), 𝐼7 = (0.25,0.5,0.1), 𝐼8 = (0.5,0.5,0.5), 𝐼9 =

(0.02,0.02,0.02) and 𝐼10 = (0.2,0.01,0.01). 

 
𝑆 = {𝜇1 = 0.75, 𝜇2 = 1.5, 𝜇3 = 0.05, 𝜇4 = 0.1, 𝜇5 = 5, 𝜇6 = 0.1, 𝜇7 = 0.1,

 𝜇8 = 0.8, 𝜇9 = 0.1, 𝜇10 = 5, 𝜇11 = 0.1, 𝜇12 = 0.1, 𝜇13 = 0.1}
        (47) 

Note that, the red dots in the following phase portraits represent the approaching equilibrium points, 

while the blue dots refer to the starting points.  

 

 

 

 

 



23 

POLLUTION ON THE PRODUCER-CONSUMER-PREDATOR FOOD CHAIN 

 

 

Figure 1. The trajectory of the system (2) using the set of parameters (47) shows a bi-stable 

behavior for system (2) between 𝑒4 = (0.21,0.78,0) and 𝑒5 = (0.93,0.09,0.32). (a) 3D phase 

portrait of the system (2) and its time series that is given in (b). (c) The projection of the phase 

portrait on the 𝑥𝑦 -plane. (d) The projection of the phase portrait on the 𝑦𝑧 -plane. (e) The 

projection of the phase portrait on the 𝑥𝑧-plane. 

 

According to Fig. 1, system (2) approaches to the positive point 𝑒5  for the initial points 

𝐼1, … , 𝐼8, and to the second planar point 𝑒4 for the initial points 𝐼9 and 𝐼10, which suggests that 

the system exhibits bi-stable behavior.   Moreover, the set of data (47) does not satisfy all the 

persistence conditions given in Theorem 4, and hence there is no guarantee for the persistence of 

the system.  

Now, the changing of the parameter 𝜇1 and its effect on the system (2) appear to indicate that 

when 𝜇1 ≤ 0.1, the system approaches the first axial point 𝑒1, the positive point 𝑒5 will be the 

approaching point when 0.1 < 𝜇1 < 0.66  that indicates satisfying the persistence and global 

stability conditions, while the system (2) undergoes a bi-stable behavior between 𝑒4 and 𝑒5 for 
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the range 0.66 ≤ 𝜇1 ≤ 1.21 as in Fig. 1. Moreover, when 𝜇1 > 1.21 the system approaches 𝑒4, 

see Fig. 2. 

 

 

Figure 2. The bi-stable behavior of the system (2) with the set of parameters (47). (a) 3D phase 

portrait approaches 𝑒1 = (1,0,0)  when 𝜇1 = 0.1 . (b) 3D phase portrait approaches 𝑒5 =

(0.93,0.07,0.21)  when 𝜇1 = 0.5 . (c) 3D phase portrait approaches 𝑒4 = (0.11,0.88,0)  when 

𝜇1 = 1.5. 

 

The effect of changing the parameter 𝜇2 on the dynamic behavior of the system (2) is only a 

quantitative impact so that the system still has a bi-stable behavior between the points 𝑒4 and 𝑒5 

with an increase in the magnitude of the basin of attraction of the point 𝑒4 for values in the range 

𝜇2 > 4.7, see Fig. 3. 
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Figure 3. The bi-stable behavior of the system (2) with the set of parameters (47). (a) 3D phase 

portrait approaches 𝑒4 = (0.21,0.78,0) and 𝑒5 = (0.93,0.08,0.25) when 𝜇2 = 2. (b) The time 

series with 𝜇2 = 2 . (c) 3D phase portrait approaches 𝑒4 = (0.21,0.78,0)  and 𝑒5 =

(0.94,0.06,0.11) when 𝜇2 = 5. (d) The time series with 𝜇2 = 5. 

 

For the values of 𝜇3 < 1, it is noted that the system (2) has a bi-stable behavior between 𝑒4 

and 𝑒5, while it has a bi-stable behavior between 𝑒4 and 3D periodic attractor for 1 < 𝜇3 ≤ 1.71. 

However, system (2) has a bi-stable behavior between 𝑒3 and 𝑒4 when 𝜇3 > 1.71, See Fig. 4. 
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Figure 4. System (2) trajectories using the set of parameters (47). (a) 3D phase portrait shows bi-

stable behavior between 𝑒4  and 𝑒5  when 𝜇3 = 0.5 . (b) 3D phase portrait shows bi-stable 

behavior between 𝑒4 and 3D periodic attracter when 𝜇3 = 1.15. (c) 3D phase portrait shows bi-

stable behavior between 𝑒3 = (1,0,2.4) and 𝑒4 when 𝜇3 = 2.  

 

Changing the parameter 𝜇6 and its effect on the system's (2) dynamic reveals that when 𝜇6 <

0.17 , the system has a bi-stable behavior between 𝑒4  and 𝑒5 . However, for 𝜇6 ≥ 0.17 , it 

approaches asymptotically from different initial points to the positive point 𝑒5, it is observed all 

the conditions of persistence of the system are satisfied in this range. See Fig. 5.  
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Figure 5. Using the data set (47) with different values of 𝜇6 shows that: (a) 3D phase portrait 

shows bi-stable behavior between 𝑒4 = (0.14,0.85,0)  and 𝑒5 = (0.93,0.09,0.32)  when 𝜇6 =

0.01 . (b) 3D phase portrait shows approaching 𝑒5 = (0.93,0.09,0.32)  using different initial 

points when 𝜇6 = 1. 

 

The system's (2) dynamic is affected by varying the parameter 𝜇7, and the results indicate that 

when 𝜇7 < 0.14 the system has a bi-stable behavior between 𝑒4 and 𝑒5. While, for the range 

0.14 ≤ 𝜇7 < 0.75  it approaches asymptotically the positive point 𝑒5  starting from different 

initial points. Finally, when 𝜇7 ≥ 0.75, system (2) approaches asymptotically to the first axial 

point 𝑒1. See Fig. 6.  
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Figure 6. Using the data set (47) with different values of 𝜇7 shows that:  (a) 3D phase portrait 

shows bi-stable behavior between 𝑒4 = (0.11,0.88,0)  and 𝑒5 = (0.92,0.09,0.37)  when 𝜇7 =

0.01. (b) 3D phase portrait shows approaching 𝑒5 = (0.94,0.05,0.1) using different initial points 

when 𝜇7 = 0.5 . (c) 3D phase portrait shows approaching 𝑒1 = (1,0,0)  using different initial 

points when 𝜇7 = 1. 

 

Now, adjusting the value of 𝜇8 affects the dynamics of the system (2). When 𝜇8 < 0.75 the 

system approaches 𝑒4. For 0.75 ≤ 𝜇8 < 0.85 it has a bi-stable between 𝑒4 and 𝑒5 as shown in 

Fig. 1. For the range 0.85 ≤ 𝜇8 < 1.5, the system approaches asymptotically the positive point 

𝑒5, it is observed all the conditions of persistence of the system (2) are satisfied in this range. 

Finally, when 𝜇8 ≥ 1.5, the system's persistence is lost due to the failure to achieve condition (30), 

and approaches asymptotically to the first planar point 𝑒3. See Fig. 7.  
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Figure 7. Using the data set (47) with different values of 𝜇8 shows that: (a) 3D phase portrait 

approaching 𝑒4 = (0.21,0.78,0)  using different initial points when 𝜇8 = 0.5 . (b) 3D phase 

portrait approaching 𝑒5 = (0.94,0.07,0.32) when 𝜇8 = 0.85. (c) 3D phase portrait approaching 

𝑒3 = (1,0,0.39) when 𝜇8 = 1.5. 

 

It is observed from Fig. 7 that, increases in the value of 𝜇8 lead to reduce in the magnitude 

of the basin of attraction of 𝑒4 and an increase in the magnitude of the basin of attraction of the 

point 𝑒5 for the range 𝜇8 < 1.5. However, for 𝜇8 > 1.5, the system loses its persistence. 

The effect of varying the parameter 𝜇11 on the system's (2) dynamic shows that when 𝜇11 ≤

0.01, the system undergoes a bi-stable behavior between 𝑒4 and a 3D periodic attracter. However, 

for the range 0.01 < 𝜇11 ≤ 0.22, the system (2) undergoes a bi-stable behavior between 𝑒4 and 

𝑒5, as in Fig. 1. Moreover, the system approaches asymptotically to 𝑒4 when 𝜇11 > 0.22, which 

means losing the persistence, see Fig. 8. 
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Figure 8. Using the data set (47) with different values of 𝜇11 shows that: (a) 3D phase portrait 

shows bi-stable behavior between 𝑒4 = (0.21,0.78,0)  and 3D periodic attracter when 𝜇11 =

0.01. (b) 3D phase portrait approaches 𝑒4 when 𝜇11 = 0.5. 

 

Now, the effect of changing the parameter 𝜇12 on the system's (2) dynamic shows that when 

𝜇12 < 0.05 , the system approaches the first planar point 𝑒3 . In the range 0.05 ≤ 𝜇12 ≤ 0.09 , 

system (2) satisfies the persistence conditions and approaches asymptotically to the positive point 

𝑒5 . Moreover, when 0.09 < 𝜇12 ≤ 0.11  the system (2) loses its persistence and the bi-stable 

behavior will take place as shown in Fig. 1. Furthermore, when 𝜇12 > 0.11  the system 

approaches the second planar point 𝑒4 that means losing the persistence, see Fig. 9. 
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Figure 9. Using the data set (47) with different values of 𝜇12 shows that: (a) 3D phase portrait 

approaches 𝑒3 = (1,0,0.65)  when 𝜇12 = 0.01 .  (b) The phase portrait approaches 𝑒5 =

(0.99,0.01,0.33) when 𝜇12 = 0.05. (c) 3D phase portrait approaches 𝑒4 = (0.21,0.78,0) when 

𝜇12 = 0.5. 

 

For the parameter 𝜇13  in the range of 𝜇13 ≤ 0.03  the system (2) has bi-stable behavior 

between the second planar point 𝑒4 and the 3D periodic attracter. However, for the range 0.03 <

𝜇13 ≤ 0.17, the system approaches asymptotically to the positive point 𝑒5 from different initial 

points. Furthermore, the system approaches 𝑒3 when 0.17 < 𝜇13, see Fig. 10. 
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Figure 10. Using the data set (47) with different values of 𝜇13 shows that: (a) 3D phase portrait 

explains bi-stable behavior between 𝑒4 and 3D periodic attracter when 𝜇13 = 0.03. (b) 3D phase 

portrait approaches 𝑒5 = (0.97,0.03,0.32) when 𝜇13 = 0.15. (c) 3D phase portrait approaches 

𝑒3 = (1,0,9.1) when 𝜇13 = 1. 

 

Finally, it is observed that the impact of parameters 𝜇4, 𝜇5 , and 𝜇9  on the system’s (2) 

dynamic is similar to the impact of 𝜇2. It means that they have a quantitative effect on the system 

(2) dynamic so that the system (2) has a bi-stable behavior between points 𝑒4 and 𝑒5, with an 

increase in the magnitude of the basin of attraction of point 𝑒4 and a decrease in the magnitude 

of the basin of attraction for 𝑒5. On the other hand, although the parameter 𝜇10 has a similar 

impact as that of 𝜇2 on the system’s (2) dynamic, the magnitude of the basin of attraction of point 

𝑒5 increases, and the magnitude of the basin of attraction for 𝑒4 decreases. 
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8. DISCUSSION AND CONCLUSIONS 

An ecological food chain model including producer-consumer-predator was proposed. The 

influence of fear of predators, hunting cooperation, consumer's anti-predator capability, and 

availability of additional food for predators was investigated. The domain of the system's solution 

was specified. There are at most six equilibrium points, the origin, two axial points, two planar 

points, and the positive one. The linearization technique was used to investigate the local stability. 

Lyapunov functions were utilized to investigate the global dynamics. The average Lyapunov 

method was used to determine the persistence conditions. Local bifurcation analysis was carried 

out to specify the control set of parameters. Finally, numerical simulation was applied using an 

estimated set of biologically feasible parameters to confirm the analytical finding and understand 

the influence of varying the parameters. It is observed numerically that the system is rich in its 

dynamics including stable point, bi-stable between two equilibria, and bi-stable between 

equilibrium point and 3D periodic dynamics.  

The parameter set is divided into different compartments regarding its impacts on the dynamic 

behavior of the proposed food chain. The stabilizing compartment contains the parameter 𝜇6 =

𝑞1𝑟

𝑎0
2 , which is proportional to the stability at the positive equilibrium point and keeps the system 

persists. Accordingly, increasing the Toxicity coefficient for consumers or decreasing the consumer 

attack rate against producers has stabilizing impact on the system. The bi-stable compartment 

contains the parameters 𝜇2 =
𝑎2

𝑟𝑛
 , 𝜇3 =

𝑐

𝑛𝑎2
 , 𝜇4 = 𝛼𝛽𝐴 , 𝜇5 =

𝑚0𝑟
2

𝑎0
2  , 𝜇9 =

𝑞0

𝑎0
 , and 𝜇10 =

𝑚1

𝑛
 , 

which has a quantitative impact of the dynamics of the system (2) but not qualitative, so that it 

does not satisfy the persistence conditions and does not affect them. Accordingly, the fear, 

additional food, hunting cooperation level, and the anti-predator coefficients have complicated and 

non-persistence impacts on the dynamic of the system. The extinction compartment contains the 

parameters 𝜇1 =
𝑎1𝑘

𝑟
 , 𝜇7 =

𝑑0

𝑟
 , 𝜇8 =

𝑒𝑎2

𝑎0
 , 𝜇11 =

𝑞2

𝑛𝑟
 , 𝜇12 =

𝑑1

𝑟
 , and 𝜇13 =

𝛽𝐴𝑎0

𝑟
 , which 

proportional to extinction in at least one of the consumer and predator. Therefore, the 

environment's carrying capacity, the natural death rates, the Toxicity coefficient for predators, and 

the effective additional food-level term have an extinction role in the food chain model. 
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