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Abstract. In this paper, we suggest a fractional epidemic model SIQR (Susceptible-Infectious-Quarantined-

Recovered) specifically designed for two strains, Omicron and Delta Mutations. We first formulate the model

and show that is well-posed. We then perform global stability to identify the conditions in which the endemic and

disease-free equilibria are stable by using suitable Lyapunov functionals and applying LaSalle’s invariance princi-

ple. Finally we conduct numerical simulations to verify our theoretical conclusions and to illustrate the impact of

various parameters on the dynamics of the epidemic.

Keywords: SIQR epidemic model; fractional order differential equations; basic reproduction number; global

asymptotic stability.
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1. INTRODUCTION

The coronavirus strain identified as severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the source of COVID-19. 2019 novel coronavirus (2019-nCoV) was the temporary

name given to the virus previously, it has also been referred to human coronavirus 2019 (HCoV-

19 or hCoV-19). The first determination was in the city of Wuhan, Hubei, China, the World

Health Organization (WHO) designated the outbreak a public health emergency of international
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concern from January 30, 2020, to May 5, 2023. It has resulted in more than 6.8 million deaths

and over 760 million cases worldwide as of early 2024[1]. The shape of coronaviruses is similar

to a crown, with spike proteins sticking out of their surfaces, these spike proteins attach to cell

surface receptors to help the virus enter human cells. After getting into the cell, the virus uses

its machinery to multiply and create new viral particles that can spread to other cells around it

[21]. A wide family of coronaviruses is capable of infecting humans as well as animals.

FIGURE 1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Mutations, or small DNA changes can happen when a virus multiplies to create more of itself

due to errors during RNA replication, genetic recombination, and selective pressures. These

changes frequently have no discernible impact on the virus neither positive nor negative. We

may even be able to follow the global spread of viruses thanks to these modifications. For exam-

ple, the RNA-dependent RNA polymerase enzyme is used in the replication of the SARS-CoV-2

virus, which causes COVID-19. Because this enzyme does not have proofreading abilities, er-

rors occur often, leading to frequent mutations. Genetic recombination can happen when a host

cell is simultaneously infected by different strains, like the Alpha and Delta variants of SARS-

CoV-2 combine to create a hybrid variant. Furthermore selective pressures, such as immune

responses and antiviral treatments, further drive viral evolution. For example the creation of
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the Beta variant, which has mutations in the spike protein that help it avoid antibodies. The

Omicron variant also shows how selective pressures can occur to a virus with numerous muta-

tions, resulting in higher transmissibility and partial resistance to existing immunity from prior

infections or vaccinations [2, 3].

Since they provide a profound knowledge of the transmission and control of infectious dis-

eases, mathematical models are extremely useful in epidemiology. These models provide math-

ematical models for diverse biological interactions, allowing scientists to determine the devel-

opment of a disease and evaluate the impact of various strategies for intervention. They offer a

systematic approach to comprehending the effects of various factors such as immunity levels,

transmission rates, and public health measures [4, 5, 6, 7].

The current study highlights mathematical model incorporating fractional calculus to capture

the complex dynamics of Alpha and Omicron mutations of SARS-CoV-2 [8]. By utilizing

fractional differential equations, our model effectively describes the unexpected diffusion and

memory effects noticed in the transmission of these two significant strains. Furthermore we

choose to work with the Caputo fractional derivative, among the several definitions available for

fractional derivatives, because it allows for the use of initial conditions in a way close to classical

differential equations, the Caputo fractional derivative is especially useful for modeling real-

world phenomena, making it more intuitive and applicable in practical scenarios [17, 18, 19, 20].

By using the Caputo fractional derivative, our model benefits from the flexibility and increased

accuracy provided by fractional calculus, in order to understanding the spread of COVID-19

variants like Alpha and Omicron.

The following is the structure of the paper: In section 2, we have described some fundamen-

tal properties of the Mittag-Leffler function and the Caputo fractional derivative operator. In

section 3, we present the fractional-order SIDIOQDQOR epidemic model . In section 4, to make

sure that the model is mathematically and physiologically feasible, we examine the existence,

uniqueness, non-negativity, and boundedness of the solutions. In section 5, we determine the

basic reproduction number R0 through the next-generation matrix approach [16], this critical pa-

rameter indicates whether the infectious disease will persist or eventually die out. Furthermore,

we identify the model’s two equilibrium points: the disease-free equilibrium and the endemic
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equilibrium. In section 6, we employ LaSalle’s invariance principle and Lyapunov functions to

conduct a rigorous stability analysis, confirming the global stability of the equilibria. In section

7, we validate the analytical results by performing a range of numerical simulations. These sim-

ulations help to confirm the theoretical predictions, offering empirical support for the proposed

model and demonstrating its practical relevance and effectiveness in various scenarios.

2. PRELIMINARIES

The Caputo fractional-order derivative is defined in this section, along with certain important

lemmas for the next analysis.

The fractional integral of order κ for an integrable function Θ(t) is defined as

Iκ
Θ(t) =

1
Γ(κ)

∫ t

0
(t− r)κ−1

Θ(r)dr, t ≥ 0.

where κ > 0, Γ(·) is the gamma function and Γ(κ) =
∫

∞

0 sκ−1e−s ds.

The fractional derivative in the sens of Caputo of order κ for the function Θ(t)∈C n([0,∞),R)

is provided by

cDκ
t Θ(t) =

1
Γ(n−κ)

∫ t

0

Θ(n)(r)
(t− r)κ−n+1 dr.

where t ≥ 0, and n is a positive integer such that n−1≤ κ < n. Furthermore, when 0 < κ < 1,

cDκ
t Θ(t) =

1
Γ(1−κ)

∫ t

0

Θ′(r)
(t− r)κ

dr.

The function of Mittag-Leffler type with one parameter is defined as follows [9]

Eκ(z) =
∞

∑
n=0

zn

Γ(nκ +1)
, κ > 0, z ∈ C.

Now, we declare the existence result for fractional differential equations as follows.

Lemma 1. ([14].) Let κ ∈ (0,1], Ω⊂Rn a domain and consider the following fractional order

equation

(1)

 cDκ
t Θ(t) = ϒ(t,Θ(t)) t > τ0,

Θ(τ0) = Θ0 ∈Ω.

Suppose that ϒ satisfies the conditions listed below:

1.: ϒ(Θ) and ∂ϒ

∂Θ
are continuous for all Θ ∈ Rn;



FRACTIONAL EPIDEMIOLOGICAL SIQR MODEL WITH TWO STRAINS 5

2.: ‖ϒ(Θ)‖ ≤ ω +λ‖Θ‖ ∀Θ ∈ Rn, with ω and λ are positive constants.

Then, system (1) admits a unique solution on [0,+∞).

Lemma 2. ([15]) Let κ ∈ (0,1] and consider a continuous function Θ : [τ0,∞)×Ω→ R satis-

fying the conditions listed below

cDκ
t Θ(t)+µΘ(t)≤ ν , t > τ0, µ,ν ∈ R, µ 6= 0.

And then there is the inequality.

Θ(t)≤
(

Θ(τ0)−
ν

µ

)
Eκ(−µ(t− τ0)

κ)+
ν

µ
, ∀t ≥ τ0.

3. MODEL FORMULATION

3.1. The classical SIDIOQDQOR model. This model is constructed with six compartments so

that, at time t ≥ 0, the whole population N(t) is split into the following classes: S(t) Individ-

uals who are at risk of contracting the virus. Upon exposure, they can become infected with

either the Delta strain ID(t) or the Omicron strain IO(t), infected individuals may be quaran-

tined, with Delta-infected individuals moving to the Quarantined Delta QD(t) compartment and

Omicron-infected individuals moving to the Quarantined Omicron QO(t) compartment. In the

end, individuals who have recovered from the disease are indicated by the R(t) compartment

independent of the strain, and are immunized to infection. The following is an expression for

the model :

(2)



dS
dt = AN− β1SID

N − β2SIO
N −µS(t)

dID
dt = β1SID

N − (µ + γ1)ID(t)

dIO
dt = β2SIO

N − (µ + γ2)IO(t)

dQD
dt = γ1ID(t)− (µ +δ1)QD(t)

dQI
dt = γ2IO(t)− (µ +δ2)QO(t)

dR
dt = δ1QD(t)+δ2QO(t)−µR(t)

The following parameters of system (2) are positive and described as follows
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TABLE 1. Biological description of model parameters

Parameters Description

AN Recruitment rate (The rate at which new people join the susceptible population).

µ The rate at which people die naturally, or as a result of natural causes, within the population.

β1,2 The transmission rates of the Delta (β1) and Omicron (β2) variants, indicating how effectively

the infected individuals (ID) and (IO) infect susceptible individuals (S).

γ1,2 The rates at which Delta-infected and Omicron-infected individuals are moving

from the (ID) and (IO) compartments to the (QD) and (QO) compartments, respectively.

δ1,2 The recovery rates at which quarantined Delta-infected and Omicron-infected

move to the recovered compartment (R).

3.2. The fractional SIDIOQDQOR model. Motivated by the classical epidemic system (2), we

introduce the following fractional SIDIOQDQOR epidemic model

(3)



cDα
t S(t) = Aα

N−
β α

1 SID
N − β α

2 SIO
N −µαS(t)

cDα
t ID(t) =

β α
1 SID
N − (µα + γα

1 )ID(t)

cDα
t IO(t) =

β α
2 SIO
N − (µα + γα

2 )IO(t)

cDα
t QD(t) = γα

1 ID(t)− (µα +δ α
1 )QD(t)

cDα
t QO(t) = γα

2 IO(t)− (µα +δ α
2 )QO(t)

cDα
t R(t) = δ α

1 QD +δ α
2 QO−µαR(t)

The initial conditions for system (3) are as follows:

S(0) = S0 ≥ 0 ; ID(0) = ID0 ≥ 0 ; IO(0) = IO0 ≥ 0 ; QD(0) = QD0 ≥ 0 ;(4)

QO(0) = QO0 ≥ 0 ; R(0) = R0 ≥ 0.(5)

and

N(t) = S(t)+ ID(t)+ IO(t)+QD(t)+QO(t)+R(t).

where cDα
t is the fractional Caputo derivative having order 0 < α ≤ 1 to be able to de-

scribe the memory effects in the suggested epidemic model. We assume that the functions

S, ID, IO, QD, QO, R and their Caputo fractional derivatives of order 0 < α ≤ 1 are continuous

functions.
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FIGURE 2. Flowchart of SIDIOQDQOR Epidemic model.

4. EXISTENCE, UNIQUENESS, POSITIVITY AND BOUNDARY OF THE SOLUTION

proposition 1. For any non-negative initial values (S0, ID0 , IO0,QD0 ,QO0,R0), system (3) has a

unique solution in R6
+ for all t ≥ 0.

Proof. The following fractional-order system can be examined using the Caputo sense

cDα
t w(t) = Φ(t,w(t)), for all t ≥ 0, w(0) = w0 = (S0, ID0, IO0,QD0,QO0,R0) ∈ R6

+,(6)

Where
Φ : R+×R6 −→ R6

(t,w(t))−→Φ(t,w(t)).(7)

and the vector w(t) = (S(t), ID(t), IO(t),QD(t),QO(t),R(t)) satisfies the first condition of lemma

(1).

Hence

Φ(t,w(t)) = A0 +
β1SID

N
A1 +

β2SIO

N
A2 +A3w(t),(8)
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A0 =



Aα
N

0

0

0

0

0


A1 =



0 −1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


A2 =



0 0 −1 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



and A3 =



−µα 0 0 0 0 0

0 −(µα + γα
1 ) 0 0 0 0

0 0 −(µα + γα
2 ) 0 0 0

0 γα
1 0 −(µα +δ α

1 ) 0 0

0 0 γα
2 0 −(µα +δ α

2 ) 0

0 0 0 δ α
1 δ α

2 −µα


�

Thus

cDα
t w(t) = A0 +

β1SID

N
A1 +

β2SIO

N
A2 +A3w(t),

‖cDα
t w(t)‖=

∥∥∥∥A0 +
β1S
N

A1w(t)+
β2S
N

A2w(t)+A3w(t)
∥∥∥∥ ,

≤ ‖A0‖+
(∥∥∥∥β1S

N
A1 +

β2S
N

A2 +A3

∥∥∥∥)‖w(t)‖ ,
≤ ‖A0‖+

(∥∥∥∥β1

N

∥∥∥∥‖S‖‖A1‖+
∥∥∥∥β2

N

∥∥∥∥‖S‖‖A2‖+‖A3‖
)
‖w(t)‖ ,

≤ λ1 +λ2 ‖w(t)‖ .

Such that λ1 = ‖A0‖ and λ2 =
∥∥∥β1

N

∥∥∥‖S‖‖A1‖+
∥∥∥β2

N

∥∥∥‖S‖‖A2‖+‖A3‖, which they are bounded

and positive. So by Lemma 1 system (3) has a unique solution.

The positivity of the solution is then shown with

cDα
t S(t)|S=0 = Aα

N ≥ 0,

cDα
t ID(t)|ID=0 = 0≥ 0,

cDα
t IO(t)|IO=0 = 0≥ 0,
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cDα
t QD(t)|QD=0 = γ

α
1 ID(t)≥ 0,

cDα
t QO(t)|QO=0 = γ

α
2 IO(t)≥ 0,

cDα
t R(t)|R=0 = δ

α
1 QD +δ

α
2 QO ≥ 0.

Our objective is to prove that for all t ≥ 0 the solution belongs to (R+
0 )

6. To produce a

contradiction, we suppose that there is a certain moment in time that

t∗ := in f{t > 0 | (S(t), ID(t), IQ(t),QD(t),QO(t),R(t)) /∈ (R+
0 )

6}.

Thus, (S(t∗), ID(t∗), IQ(t∗),QD(t∗),QO(t∗),R(t∗)) ∈ (R+
0 )

6 when there is zero in one of the

variables. We Suppose that S(t∗) = 0, while cDα
t S(t∗) = Aα

N > 0 and by the continuity of
cDα

t S(t∗), we determine that for ε > 0, cDα
t S([t∗, t∗+ ε[) ⊆ R+

0 . Hence from [[11], Theorem

1], S([t∗, t∗+ ε[)⊆ R+
0 consequently S is nonnegative.

In a similar manner, we can demonstrate the positivity of the remaining functions

ID, IO,QD,QO and R, and obtaining a contradiction. Finally for all t ≥ 0 the solution be-

longs to (R+
0 )

6 . Which is achieving the desired result.

Finally, we establish the bounds of the solution

proposition 2. The set

Θ = {(S, ID, IO,QD,QO,R) ∈ R6
+ : 0 < S+ ID + IO +QD +QO +R≤ Aα

µα
}

is a positively invariant and attraction region for system (3).

Proof. We have

N(t) = S(t)+ ID(t)+ IO(t)+QD(t)+QO(t)+R(t).

Consequently, adding system(3) equations results in

cDα
t N(t) = Aα

N−µ
αN(t).(9)

Applying the Laplace transform to equation (9), we obtain

pα N̂(p)− pα−1N(0) =
Aα

N
p
−µ

α N̂(t).
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Hence

N̂(p) = Aα
N

pα−(1+α)

pα +µα
+N(0)

pα−1

pα +µα
.

In consequence, we have

N(t) = Aα
NtαEα,α+1(−µ

αtα)+N(0)Eα,1(−µ
αtα),

=
Aα

N
µα
−

Aα
N

µα
Eα,1(−µ

αtα)+N(0)Eα,1(−µ
αtα).

Since 0≤ Eα,1(−µαtα)≤ 1 holds and N(0)≤ Aα
N

µα , then N(t)≤ Aα
N

µα .

Thus, Θ is a positively invariant set, and all initial solutions belong to Θ remain in Θ for all

t > 0.

That is what we aimed to demonstrate. �

5. EQUILIBRIUM

5.1. Disease free equilibrium (DFE). For ID = IO =QD =QO =R= 0, the system (3) clearly

has a unique disease-free equilibrium point, given by

P0 =

(
Aα

N
µα

,0,0,0,0,0
)
.(10)

5.2. The basic reproduction number R0. In a typical compartmental disease transmission

model, described by a system of ordinary differential equations, the basic reproduction number

R0 has an important purpose. Specifically, it has been demonstrated that when R0 < 1, the

disease-free equilibrium is locally asymptotically stable, indicating the final extinction of the

disease , whereas if R0 > 1, then it is unstable. Therefore, R0 serves as a crucial threshold

parameter in determining the model’s behavior.

In this section, we determine the basic reproduction number R0 by employing the next-

generation matrix method described in [12].

The basic reproduction rate is the spectral radius of the matrix FV−1 . where F and V giving by

F =

β1Aα
N

µα N 0

0 β2Aα
N

µα N

 , V =

µα + γα
1 0

0 µα + γα
2

 ,
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we obtain :

R0 = ρ(FV−1) = max{R1
0,R

2
0}.(11)

Where

R1
0 =

β1Aα
N

µαN(µα + γα
1 )

and R2
0 =

β2Aα
N

µαN(µα + γα
2 )

.

5.3. Endemic Equilibrium. The endemic equilibrium in an epidemic model represents a sta-

ble state where the disease continues to exist within the population at a constant level during

an extended period. This is in contrast to the disease-free equilibrium, where no individuals are

infected.

theorem 1. The system (3) has three endemic equilibria P∗1 , P∗2 and P∗3 . Furthermore, we have

• The strain 1 endemic equilibrium P∗1 exists when R1
0 > 1.

• The strain 2 endemic equilibrium P∗2 exists when R2
0 > 1.

• The third endemic equilibrium P∗3 exists when R1
0 > 1 and R2

0 > 1.

Proof. To identify the endemic equilibrium points, the following equations hold

Aα
N−

β α
1 S∗I∗D

N
−

β α
2 S∗I∗O

N
−µ

αS∗ = 0,

β α
1 S∗I∗D

N
− (µα + γ

α
1 )I
∗
D = 0,

β α
2 S∗I∗O

N
− (µα + γ

α
2 )I
∗
O = 0,

γ
α
1 I∗D− (µα +δ

α
1 )Q∗D = 0,

γ
α
2 I∗O− (µα +δ

α
2 )Q∗O = 0,

δ
α
1 Q∗D +δ

α
2 Q∗O−µ

αR∗ = 0.

Case 1: When I∗D 6= 0 and I∗O = 0, We identify the endemic equilibrium for strain 1, defined as

follows:

P∗1 = (S∗1, I
∗
D1
,0,Q∗D1

,0,R∗1).(12)
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Where

S∗1 =
N(µα + γα

1 )

β α
1

; I∗D1
=

Aα
N

µα + γα
1

(
R1

0−1
R1

0

)
; Q∗D1

=
γα

1 Aα
N

(µα + γα
1 )(µ

α +δ α
1 )

(
R1

0−1
R1

0

)
;

R∗1 =
δ α

1 γα
1 Aα

N
µα(µα + γα

1 )(µ
α +δ α

1 )

(
R1

0−1
R1

0

)
.(13)

Case 2: When I∗D = 0 and I∗O 6= 0. In a similare way if R2
0 > 1, we find the unique strain 2

endemic equilibrium defined as follows

P∗2 = (S∗2,0, I
∗
O2
,0,Q∗O2

,R∗2).(14)

Where

S∗2 =
N(µα + γα

2 )

β α
2

; I∗O2
=

Aα
N

µα + γα
2

(
R2

0−1
R2

0

)
; Q∗O2

=
γα

2 Aα
N

(µα + γα
2 )(µ

α +δ α
2 )

(
R2

0−1
R2

0

)
;

R∗2 =
δ α

2 γα
2 Aα

N
µα(µα + γα

2 )(µ
α +δ α

2 )

(
R2

0−1
R2

0

)
.(15)

Case 3: When I∗D 6= 0 and I∗O 6= 0. The third endemic equilibrium can be identified and

described as follows:

P∗3 = (S∗3, I
∗
D3
, I∗O3

,Q∗D3
,Q∗O3

,R∗3).(16)

Where

S∗3 =
N(µα + γα

1 )

β α
1

=
N(µα + γα

2 )

β α
2

; I∗O3
=

Aα
N

(µα + γα
2 )
− µαN

β α
2
−

(µα + γα
1 )

(µα + γα
2 )

I∗D3
;(17)

Q∗D3
=

γα
1

(µα +δ α
1 )

I∗D3
;Q∗O3

=
γα

2
(µα +δ α

2 )
I∗O3

; R∗3 =
1

µα
(δ α

1 Q∗D3
+δ

α
2 Q∗O3

).

�

6. GLOBAL STABILITY

6.1. Global Stability of Disease-Free Equilibrium P0. In this section, we examine the global

stability of the disease-free equilibrium P0 and the endemic equilibrium P∗ for system (3), by

constructing appropriate Lyapunov functions.

We propose a function ϖ : R+→ R+ such that

ϖ(ξ (t)) = ξ (t)−ξ
∗−ξ

∗ln
ξ (t)
ξ ∗

, f or all t ≥ 0.
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It is important to note that ϖ(ξ ) is a non-negative function for any ξ > 0, reaching its global

minimum at ξ = 1.

theorem 2. The disease-free equilibrium P0 of system (3) is globally asymptotically stable on

Ω if R0 ≤ 1. Conversely, P0 becomes unstable when R0 > 1.

Proof. The expression of a Lyapunov function is as follows:

V1(t) = ϖ(S(t))+ ID(t)+ IO(t).

The function V1 attains a global minimum since it is non-negative with respect to the disease-

free steady state P0. Applying the Caputo fractional derivative, we obtain

cDα
t V1(t) = cDα

t ϖ(S(t))+ cDα
t ID(t)+ cDα

t IO(t),

≤
(

1− S0

S

)
cDα

t S(t)+ cDα
t ID(t)+ cDα

t IO(t),

≤
(

1− S0

S

)(
Aα

N−
β α

1 SID

N
−

β α
2 SIO

N
−µ

αS(t)
)
+

(
β α

1 SID

N
− (µα + γ

α
1 )ID(t)

)
+

(
β α

2 SIO

N
− (µα + γ

α
2 )IO(t)

)
,

Considering that S0 =
Aα

N
µα , we get

cDα
t V1(t)≤−

µα(S−S0)
2

S
−
(

1− S0

S

)
β α

1 SID

N
+

β α
1 SID

N
−
(

1− S0

S

)
β α

2 SIO

N
+

β α
2 SIO

N

− (µα + γ
α
1 )ID(t)− (µα + γ

α
2 )I0,

≤−µα(S−S0)
2

S
− ID(µ

α + γ
α
1 )

(
1−

β α
1 Aα

N

µαN(µα + γα
1 )

)
− IO(µ

α + γ
α
2 )

(
1−

β α
2 Aα

N

µαN(µα + γα
2 )

)
,

≤−µα(S−S0)
2

S
− ID(µ

α + γ
α
1 )
(
1−R1

0
)
− IO(µ

α + γ
α
2 )
(
1−R2

0
)
.

As a result, R0 ≤ 1 confirms that cDα
t V1(t)≤ 0.

Additionally, it can be easily verified that cDα
t V1(t) = 0 if and only if S(t) = S0, ID = 0 and

I0 = 0. Hence we deduce that {P0} is the largest invariant set where cDα
t V1(t)= 0, and according

to LaSalle’s invariance principle[13], it follows that {P0} is globally asymptotically stable.

�



14 BABRHOU YASSINE, EL BOUKARI BRAHIM, KAJOUNI AHMED

6.2. Global Stability of Endemic Equilibrium P∗.

theorem 3. The endemic equilibrium point P∗ of system (3) is globally asymptotically stable on

Ω when R0 > 1. Conversely, it becomes unstable.

Proof. We define a non-negative and continuous Lyapunov function V2 as follows:

V2(t) = ϖ(S(t))+ϖ(ID(t))+ϖ(IO(t)) for all t ≥ 0.

By applying the Caputo fractional derivative, we obtain

cDα
t V2(t) = cDα

t ϖ(S(t))+ cDα
t ϖ(ID(t))+ cDα

t ϖ(IO(t)),

≤
(

1− S∗

S

)(
Aα

N−
β α

1 SID

N
−

β α
2 SIO

N
−µ

αS(t)
)
+

(
1− I∗D

ID

)(
β α

1 SID

N
− (µα + γ

α
1 )ID(t)

)
+

(
1−

I∗O
IO

)(
β α

2 SIO

N
− (µα + γ

α
2 )IO(t)

)
,

We use the endemic condition : Aα
N =

β α
1 S∗I∗D

N +
β α

2 S∗I∗O
N +µαS∗, we get

cDα
t V2(t)≤−

µα(S−S∗)2

S
+

β α
1 S∗I∗D

N
+

β α
2 S∗I∗O

N
−

β α
1 SID

N
−

β α
2 SIO

N
−

β α
1 I∗D(S

∗)2

NS
−

β α
2 I∗O(S

∗)2

NS

+
β α

1 S∗ID

N
+

β α
2 S∗IO

N
+

β α
1 SID

N
− (µα + γ

α
1 )ID−

β α
1 SI∗D
N

+(µα + γ
α
1 )I
∗
D +

β α
2 SIO

N

− (µα + γ
α
2 )IO−

β α
2 SI∗O
N

+(µα + γ
α
2 )I
∗
O,

Taking into account that (µα + γα
1 )I
∗
D=

β α
1 S∗I∗D

N

(µα + γα
2 )I
∗
O=

β α
2 S∗I∗O

N

;

 (µα + γα
1 )ID=

β α
1 S∗ID

N

(µα + γα
2 )IO=

β α
2 S∗IO

N

and after performing some adjustments, we arrive at

cDα
t V2(t)≤−

µα(S−S∗)2

S
+

β α
1 S∗I∗D

N

(
2− S∗

S
− S

S∗

)
+

β α
2 S∗I∗O

N

(
2− S∗

S
− S

S∗

)
.

Given that the arithmetic mean of non-negative real numbers is greater than the geometric mean

t1 + t2 + t3 + ...+ tn ≥ n n
√

t1t2...tn, For t1, t2, t3, ..., tn ≥ 0.(18)

We get (
2− S∗

S
− S

S∗

)
≤ 0.
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As a result, cDα
t V2(t)≤ 0. Additionally, cDα

t V2(t)= 0 if and only if S= S∗, ID = I∗D, and IO = I∗O.

Therefore, the largest compact invariant set contained in {(S, ID, IO,QD,QO,R)|cDα
t V2(t) = 0}

is the singleton set {P∗}. Hence according to the Lasalle invariance principle , P∗ is globally

asymptotically stable for R0 > 1. �

7. NUMERICAL SIMULATIONS

To validate the theoretical results discussed in the earlier sections, we introduce a numerical

simulation of our model incorporating fractional derivatives of different orders to analyze how

varying memory effects influence transmission dynamics. Additionally, we explore the impact

of the basic reproduction number on the epidemic’s spread and the behavior of the endemic

equilibrium. By adjusting the reproduction number, we evaluate how the system transitions

between disease-free and endemic equilibrium.

First, we illustrate the the Disease-Free Equilibrium (DFE) along with the following parame-

ter values: Aα
N = 10, β α

1 = 0.0005, β α
2 = 0.005, δ α

1 = 0.05, δ α
2 = 0.005, γα

1 = 0.12, γα
2 = 0.06,

µα = 0.03.

FIGURE 3. The dynamic behavior of compartments S, ID, IO, QD, QO and R

presenting the stability of the system 3 at the disease-free equilibrium for α =

0.5, α = 0.6, α = 0.7, α = 0.8, α = 0.9 and α = 1 .
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The used parameters in figure 3 show that the basic reproduction number for both strains

is less than one (max{R1
0,R

2
0} = 0.1008 < 1), where both strains (ID and IO) die out. Which,

concerning the stability of the disease-free equilibrium, is in good agreement with the theoret-

ical results. We have observed that while increasing the value of parameter α (e.g., 1) we get

more rapid convergence to the DFE. In contrast, lower α value (e.g., 0.5) has enhanced mem-

ory effects, resulting in a more gradual response to changes and potentially slower stabilization

toward the Disease-Free Equilibrium (DFE).

Further, we use the following parameter values to illustrate the Endemic Equilibrium (EE)

Aα
N = 10, β α

1 = 0.06, β α
2 = 0.18, δ α

1 = 0.05, δ α
2 = 0.005, γα

1 = 0.02, γα
2 = 0.06, µα = 0.001.

FIGURE 4. The dynamic behavior of compartments S, ID, IO, QD, QO and R

presenting the stability of the system 3 at the endemic equilibrium for α = 0.5,

α = 0.6, α = 0.7, α = 0.8, α = 0.9 and α = 1 .

Fig.(4) shows a situation in which both strains persist, with the basic reproduction numbers

for each strain being greater than one (max{R1
0,R

2
0}= 7.340> 1). The system approaches a sta-

ble endemic state which confirms our theoretical results on the stability of endemic equilibrium.
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However, we notice again a similar effect of the fractional order α on the rate of convergence

to the equilibrium state.

8. CONCLUSION

The rapid spread of COVID-19 and its mutations, particularly the Delta and Omicron vari-

ants, illustrates the urgent need for an immediate epidemiological analysis to enhance awareness

and lead effective intervention strategies. In this context, fractional-order derivatives offer an es-

sential role in modeling the disease dynamics. This study has explored the impact of fractional

calculus on the behavior of the two viral strains, showing that changes in the fractional order α

affects both the rate of convergence and the stability of the system. Higher α values encourage

faster stabilization, while lower values slow the adjustment process due to stronger memory

effects. These insights highlight the importance of fractional calculus in comprehending and

controlling the propagation of complex viral mutations.
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