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Abstract: This study develops a nonparametric regression model using the Likelihood-Based Threshold through the 

Adaptive Nadaraya-Watson Estimator to model rice productivity data in South Sulawesi in 2023. The issue of data 

variability can be addressed by simultaneously using bandwidth and threshold to improve estimation accuracy, 

compared to using only bandwidth. This problem is solved by integrating an adaptive threshold, which allows the 

estimator to adjust to the characteristics of the data. This method considers the distance between data points and the 

variation, enabling a more responsive estimation of changes in data patterns. This research aims to obtain the best 

nonparametric regression model to forecast rice productivity data. The best model is determined using the criterion of 

the minimum Mean Squared Error (MSE). The analysis results show that the optimal values are h=0.92 and δ=0.99, 

with the smallest MSE value of 0.075, it produces accurate predictions. 
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1. INTRODUCTION 

The primary objective of statistical analysis in observational or clinical research is to discover 
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and determine the characteristics of the relationship between predictor and response variables. 

Regression analysis, especially parametric regression, can be more effective under certain 

conditions, but it is limited due to strict assumptions and difficulty detecting nonlinear 

relationships [1]. On the other hand, non-parametric regression has become an essential tool 

because it does not rely on predefined assumptions about the functional form of the relationship, 

making it more flexible and allowing the data itself to find the appropriate relationship pattern [2]. 

Several estimators in non-parametric regression include spline [3], kernel [4], local polynomial [5], 

and Fourier series [6]. Each estimator has different parameters to obtain accurate estimation results. 

In the spline estimator, optimal knot points indicate where data patterns change [7]. The kernel 

estimator, specifically the Nadaraya-Watson estimator, depends on the bandwidth parameter, 

which determines the smoothness of the regression model [8]. This bandwidth parameter affects 

how much area around the observation point is used for estimation, focusing on approximations 

around the target point with weights varying by distance [9]. The estimation process for the local 

polynomial estimator depends on the degree of the polynomial chosen and the bandwidth used to 

determine the local area around each data point [5]. The Fourier series estimator, on the other hand, 

depends on the number of terms used in the Fourier series. This research uses a kernel approach 

in non-parametric regression, which requires the selection of appropriate bandwidth and kernel 

functions to control the smoothness of the estimated curve [10]. Incorrect bandwidth selection can 

lead to high bias or variance, making it essential to choose the optimal bandwidth, often measured 

using Mean Squared Error (MSE), to achieve the best estimation [4]. The kernel approach is more 

suitable for analyzing agricultural data with complex and variable characteristics [11].  

The Nadaraya-Watson estimator without threshold was used, taking advantage of the 

bandwidth parameter to account for variations caused by seasonal changes and geographical 

differences, resulting in more precise agricultural production estimates [8]. The proposed study 

focuses on the simultaneous use of bandwidth and threshold. Using both parameters in kernel 

regression aims to improve estimation accuracy by adjusting the estimator to the characteristics of 

the data [12]. This research will apply non-parametric regression using the kernel approach, 

specifically the Nadaraya-Watson estimator with a Gaussian function on rice productivity data in 

South Sulawesi. This method is considered highly suitable for agricultural data analysis due to its 

flexibility in handling nonlinear data and its ability to capture variations influenced by factors such 

as seasonal fluctuations and geographical differences. This method shows the potential for 

generating more responsive estimates compared to using bandwidth alone. 
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2. PRELIMINARIES 

1. Adaptive Nadaraya Watson Estimator 

 Nadaraya and Watson in 1994 defined the kernel regression estimator hence it is called the 

Nadaraya-Watson estimator. The general form of the Nadaraya-Watson estimator function is as 

follows. 

𝑚(𝑥) =
∑ (𝐾ℎ(𝑥−𝑥𝑖)

ℎ
)𝑦𝑖

𝑛
𝑖=1

∑ (𝐾ℎ(𝑥−𝑥𝑖)
ℎ

)𝑛
𝑗=1

 

 The Nadaraya-Watson kernel is one type of kernel function that applies a weighting concept 

to provide further influence on data points that are closer to the evaluation point �̂�. These weights 

are calculated using the kernel function, which decreases rapidly as the distance from its center 

increases [13]. Adding a threshold to kernel estimation is necessary when the data has a 

considerable variation or significant noise, such as unevenly distributed, dense, or sparse data 

clusters. The purpose of the threshold function is to help avoid overfitting or underfitting by 

ensuring that the selected bandwidth provides optimal results and does not merely adjust to noise 

in the data. If the general form of the Nadaraya-Watson estimator function is used without a 

threshold, there is a risk of overfitting in dense data clusters because nearby points will overly 

influence the estimation. Conversely, sparse data clusters may experience underfitting as the 

estimation becomes too smooth and fails to capture essential patterns [4]. Therefore, it is crucial 

to set the threshold parameter adaptively. The formula for the Adaptive Nadaraya-Watson 

Estimator with a Gaussian function is presented as follows: 

𝑚(𝑥) =  
∑ 𝑒𝑥𝑝 (−

(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 ) 𝑦𝑖
𝑛
𝑖=1

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 )𝑛
𝑖=1

 

In the adaptive estimator, the local bandwidth ℎ𝑖is adjusted based on the threshold 𝛿 to further 

improve estimation accuracy [4]. 

2. Likelihood-based threshold 

 A likelihood-based threshold is a threshold selection method based on a statistical model's 

likelihood or log-likelihood values. In the context of kernel regression, specifically the Nadaraya-

Watson Estimator, selecting the optimal bandwidth is crucial to maintaining a balance between 

bias and variance. If the bandwidth is too small, the model will suffer from overfitting, while a too 

large bandwidth leads to underfitting. Using a likelihood-based threshold, the threshold value for 
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bandwidth selection is adjusted according to the likelihood values produced by the model. 

Bandwidth selection is done by maximizing the log-likelihood, which means choosing the 

bandwidth with the highest likelihood value. It is then evaluated using the Mean Squared Error 

(MSE), indicating that the model with the smallest MSE is the best [12]. 

 The primary advantage of the likelihood-based threshold approach is its adaptive nature, as the 

threshold is determined based on the characteristics of the data being analyzed. This offers greater 

flexibility compared to universal or fixed thresholds, which use static values and do not account 

for variations in the data. This method is often used in model selection, where the threshold is 

adjusted to produce more accurate estimates [1]. 

3. Bandwidth 

Bandwidth is a parameter denoted by ℎ used in kernel regression that aims to smooth the 

shape of the curve obtained from the estimation. Optimal bandwidth selection helps control the 

balance between the smoothness of the function and fit to the data. According to Kerpicci et al. 

(2020), a bandwidth value that is too large will make the curve very smooth but is prone to losing 

data variability, while a bandwidth value that is too small will form a fluctuating and rough curve 

[14]. Therefore, bandwidth selection must be done carefully to obtain an optimal estimator. 

Fadillah (2022) suggests several methods commonly used to select bandwidth aside from the 

bandwidth rule of thumb formulae, such as unbiased cross-validation, biased cross-validation, 

complete cross, and trial and error [9]. The method used is trial and error, where the bandwidth 

value ℎ  is chosen randomly, with ℎ ∈ (0,1) , while the threshold 𝛿  is obtained based on that 

bandwidth value and depends on the data used. 

3. MAIN RESULTS 

1. Adaptive Nadaraya-Watson Kernel Model Estimation 

The predicted value �̂� is calculated as the ratio of the sum of the exponential weights of 𝑦𝑖 to 

the sum of the exponential weights. These weights are determined by the Gaussian kernel function, 

which considers the distance between 𝑥 and 𝑥𝑖, as well as the bandwidth parameter ℎ and the 

threshold 𝛿. Using the Gaussian kernel in Kernel Density Estimation (KDE) helps smooth the 

data and estimate the probability distribution of the observed data. By using the bandwidth ℎ and 

the threshold 𝛿, the model's sensitivity to the distance between data points can be adjusted. There 

is a threshold parameter 𝛿 that will be estimated using the Kernel Density Estimation (KDE) and 

Maximum Likelihood Estimation (MLE) methods. The Gaussian kernel is used in Kernel Density 
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Estimation (KDE) to smooth the data.  

The Gaussian kernel function is written as follows: 

𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝 (−

𝑢2

2
) 

with bandwidth ℎ and threshold 𝛿 be: 

𝐾ℎ.𝛿2 =
1

ℎ𝛿√2𝜋
𝑒𝑥𝑝 (−

𝑢2

2ℎ2𝛿2
) 

The Likelihood function estimates model parameters with the Maximum Likelihood Estimation 

(MLE) approach. The likelihood function 𝐿(ℎ) is used to estimate the bandwidth parameter ℎ 

and the threshold 𝛿. This likelihood function is calculated based on the error between the observed 

value 𝑦 and the estimated value 𝑓(𝑥). The likelihood function 𝐿(ℎ) is written as follows: 

𝐿(ℎ) = ∏
1

ℎ𝛿√2𝜋
𝑒𝑥𝑝 (−

𝑢2

2ℎ2𝛿2
)

𝑛

𝑖=1

 

with 𝑢 = 𝑦 − 𝑓(𝑥) being the residual or error between the observed value 𝑦 and estimate value 

𝑓(𝑥). 

𝐿(ℎ) = ∏
1

ℎ𝛿√2𝜋
𝑒𝑥𝑝 (−

(𝑦 − 𝑓(𝑥))
2

2ℎ2𝛿2
)

𝑛

𝑖=1

 

To simplify the calculation, the likelihood function is transformed into the natural logarithmic form: 

𝑙𝑛(𝑒) = 𝑙𝑛(2𝜋)−𝑛/2 + 𝑙𝑛(ℎ)−𝑛 +  𝑙𝑛(𝛿)−𝑛 + 𝑙𝑛 𝑒𝑥𝑝 (∑ −
(𝑦 − 𝑓(𝑥))2

2ℎ2𝛿2

𝑛

𝑖=1

) 

Through the estimation process using the MLE method, the threshold parameter 𝛿 is obtained as 

follows: 

𝛿 = √
1

𝑛ℎ2
∑ [𝑦𝑖 −

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2
) 𝑦𝑖

𝑛
𝑖=1

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2
)𝑛

𝑖=1

]

2
𝑛

𝑖=1

 

 

Next, after the threshold parameter has been estimated, the values obtained from that formula are 

presented in the adaptive Nadaraya-Watson estimation model as follows: 
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�̂� = �̂�(𝑥) =  
∑ 𝑒𝑥𝑝 (−

(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 ) 𝑦𝑖
𝑛
𝑖=1

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 )𝑛
𝑖=1

 

2. Application of the actual example 

Given the data on rice productivity in South Sulawesi Province for the year 2023, 𝑛 =

1,2,3, … ,24 with 𝑥 representing the land area in units of hectares, 𝑦 represents rice productivity 

in quintals per hectare. The likelihood-based threshold estimation on the Nadaraya-Watson 

estimator is called the Adaptive Nadaraya-Watson estimation. The selection of adaptive bandwidth 

depends on the threshold value. In the rice productivity data, Table 1 shows the obtained threshold 

values. Using the values of ℎ and 𝛿 from Table 1, the next step is to calculate the smallest Mean 

Squared Error (MSE) to obtain the optimum ℎ and 𝛿. In this discussion, the Adaptive Nadaraya-

Watson estimation model with the Gaussian kernel function and the addition of a threshold is used 

to obtain the estimated value �̂� or �̂�(𝒙). 

The following is the model for Adaptive Nadaraya-Watson estimation: 

�̂� = �̂�(𝑥) =  
∑ 𝑒𝑥𝑝 (−

(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 ) 𝑦𝑖
𝑛
𝑖=1

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2ℎ2𝛿2 )𝑛
𝑖=1

 

Table 1. Threshold Value 

ℎ 𝛿 

0.10 9.15 

0.70 1.31 

0.90 1.02 

0.91 1.01 

0.92 0.99 

0.93 0.98 

0.95 0.96 

0.97 0.94 

 

Previously, the value of 𝛿  was obtained from each predetermined value of ℎ . The optimal 

bandwidth and threshold are evaluated using MSE. In detail, the MSE values obtained are as 

follows: 
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Table 2. MSE Value 

ℎ 𝛿 MSE 

0.10 9.15 0.07532281 

0.70 1.31 0.07532281 

0.90 1.02 0.07532581 

0.91 1.01 0.07532893 

0.92 0.99 0.07531646 

0.93 0.98 0.07531737 

0.95 0.96 0.07531828 

0.97 0.94 0.07531798 

 

Based on the Table 2, the smallest MSE value is obtained with ℎ = 0.92 and 𝛿 = 0.99 with an 

MSE value of 0.075. Based on the previous equation, the estimated model for rice productivity 

data in South Sulawesi is as follows: 

�̂� = �̂�(𝑥) =  

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2(0.92)2(0.99)2) 𝑦𝑖
24
𝑖=1

∑ 𝑒𝑥𝑝 (−
(𝑥 − 𝑥𝑖)2

2(0.92)2(0.99)2)24
𝑖=1

 

or 

�̂� =

𝑒𝑥𝑝 [−
1

2(0.92)2(0.99)2 [(𝑥1 − 𝑥1)2𝑦1 + (𝑥1 − 𝑥2)2𝑦2 + ⋯ + (𝑥1 − 𝑥24)2𝑦24]]

𝑒𝑥𝑝 [−
1

2(0.92)2(0.99)2 [(𝑥1 − 𝑥1)2 + (𝑥1 − 𝑥2)2 + ⋯ + (𝑥1 − 𝑥24)2]]

 

 

Next, estimate the value of rice productivity in region-1 (Selayar) using standardization data 

(𝑥′, 𝑦′), so that �̂�1
∗ is obtained based on the estimation equation model as follows: 

�̂�1
∗ =

𝑒𝑥𝑝 [(
−(𝑥1 − 𝑥1)2

2ℎ2𝛿2 ) 𝑦1 + (
−(𝑥1 − 𝑥2)2

2ℎ2𝛿2 ) 𝑦2 + ⋯ + (
−(𝑥1 − 𝑥24)2

2ℎ2𝛿2 ) 𝑦24]

𝑒𝑥𝑝 [(
−(𝑥1 − 𝑥1)2

2ℎ2𝛿2 ) + (
−(𝑥1 − 𝑥2)2

2ℎ2𝛿2 ) + ⋯ + (
−(𝑥1 − 𝑥24)2

2ℎ2𝛿2 )]
 

�̂�1
∗ = 𝑚(𝑥1) = −0.204 

 

The �̂�∗ data that has been obtained is returned to the original data scale by inverting with the 

following formula: 
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�̂� = (�̂�∗. 𝜎𝑦) + �̅� 

For example, �̂�∗ = −0.204 in the Selayar area, the process of calculating the return to the original 

scale is as follows: 

�̂� = ((−0.204)(5.153)) + 49.087 

�̂� = −1.052 + 49.087 

�̂� = 48.033 

In the same way, the other �̂� values are obtained in the following Table 3. It is observed that the 

most enormous �̂� (predicted value) is 51.32 at the 14th observation (the 14th region in South 

Sulawesi is Sidrap). This indicates that the model predicts an increase in rice productivity by 51.32 

units from the average value. The positive value signifies an increase in productivity compared to 

the average condition. The �̂� is 48.033 at the 1st observation (the 1st region in South Sulawesi is 

Selayar). This suggests that for this observation, the model predicts a decrease in productivity of 

48.033 units compared to the average. Here is the plot of estimated rice productivity data in South 

Sulawesi, as shown in Figure 1. 

 

Table 3. �̂� Value 

No Region �̂� 𝑦𝑖 No Region �̂� 𝑦𝑖 

1 Selayar 48.033 40.71 13 Wajo 49.900 45.43 

2 Bulukumba 49.341 50.60 14 Sidrap 51.324 54.31 

3 Bantaeng 48.238 48.90 15 Pinrang 50.890 58.38 

4 Jeneponto 48.705 44.57 16 Enrekang 48.166 46.20 

5 Takalar 48.787 45.64 17 Luwu 49.709 56.69 

6 Gowa 49.582 47.71 18 Tana Toraja 48.399 45.76 

7 Sinjai 48.614 48.20 19 Luwu Utara 49.121 52.55 

8 Maros 49.149 48.19 20 Luwu Timur 49.222 57.77 

9 Pangkajene 48.742 42.99 21 Toraja Utara 48.533 43.40 

10 Barru 48.579 50.21 22 Makassar 48.055 52.15 

11 Bone 48.652 49.76 23 Parepare 48.019 40.08 

12 Soppeng 49.603 52.98 24 Palopo 48.066 54.93 
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Figure 1. Estimated Productivity Data Plot of South Sulawesi 

4. CONCLUSION 

The estimated 𝑦, with bandwidth h, equals 0.92 and threshold delta equals 0.99, provides 

useful insights into understanding the relationship between land area and rice productivity. The 

estimates generated by the Nadaraya-Watson model indicate variations in predicted rice 

productivity across different observations. Positive values, �̂� > 0 , indicate an increase in 

productivity compared to the average, while negative values, �̂� < 0, suggest a relative decrease 

in productivity. The model can capture variations in productivity across different observations with 

varying prediction values. In agriculture, it is often observed that productivity per unit area tends 

to decrease as the land area increases. This does not mean that larger land areas are unproductive 

but that the productivity increase rate is slower than smaller plots, which are typically managed 

more intensively. This estimation shows that larger land areas still provide stable productivity 

results, although there is a marginal decline in productivity growth per unit area. The model 

disregards minor fluctuations and focuses on significant trends, helping farmers understand how 

to maximize productivity through more efficient land management. These results help optimize 

agricultural strategies on larger land areas without losing potential yield. 
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