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Abstract: This paper proposes and studies a food web model consisting of three species: two prey and one predator. 

The model takes into consideration the impact of fear, refuge for the first prey, which is dependent on the predator, 

and nonlinear harvesting of each prey. Further, the predator consumes the prey according to a Holling-type 

interaction. The model's boundedness is investigated. The conditions for all points of equilibrium that are 

biologically possible and local stability have been studied. The global stability of the model was examined using 

suitable Lyapunove functions. At last, the model is solved using numerical simulation for a variety of parameter 

values, and the results are shown graphically to confirm the analytical results.   
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1. INTRODUCTION 

  Biomathematics, which mixes mathematics and biology, uses mathematical methods to study 

complicated biological problems. This field includes a variety of topics, such as ecology, 

epidemiology, bioinformatics, pharmacokinetics, genetics, and more. Biomathematics employs 

mathematics to solve complicated biological problems and generate model predications of 
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biological system dynamics. Mathematical models utilise differential equations, difference 

equations, and stochastic processes to understand and evaluate biological processes and systems. 

A large proportion of biomathematics scholars have researched the predator-prey model, which 

is important to scientific paradigms, human conversation, and environmental health. See [1-10]. 

Different biological processes, such as predation, fear, cannibalism, diseases, and migration, 

have the capability to affect the dynamical behavior of a model [11-13]. 

Studying the relationship between a predator and prey is crucial because the prey typically hides 

to prevent the predator from catching or attacking it. Ecologists refer to this type of action as 

refuge. The number of predators and prey in certain natural systems may influence prey refuge; 

for this reason, many research studies have used a predator–prey model in which the prey refuge 

depends on both species. For example, Haque et al. [14] deal with a prey–predator model with 

prey refuge in proportion to both species. Naji et al. [15] proposed a prey-predator model 

involving predator–dependent refuge in the prey population. In [16], Pratama discussed the 

dynamics of prey refuge in a diseased predator-prey model. Rahman et al. [17] investigated the 

effect of prey refuge with the Holling type IV functional response dependent prey-predator 

model. 

Additionally, the predator's eating of prey is important. The amount of prey each predator 

consumes in a unit of time is called the functional response. Several scientists are studying 

functional responses in the prey-predator model, such as Khajanchi [18] analysed a 

stage-structure predator-prey model using Monod-Halane type response function. Lu et al. [19] 

investigated the periodic solution of a stage-structure predator-prey model with a 

Growley-Martin type functional response. Fordjour et al. [20] studied the dynamics of a 

predator-prey model with generalised Holling-type functional response and mutual interference. 

Chen and Young [21] discussed the impact of nonlinear harvesting and delay on predator-prey 

model using Beddington-De Angelis functional response.  

Furthermore, it is important to consider species harvesting in a predator-prey model. Different 

harvesting techniques have been used. These include nonlinear, linear, and constant harvesting. 

Nonlinear harvesting is considered to be more appropriate than others from an economic and 

biological perspective [22-26]. 

Despite the previous studies, this work proposes and analyses a two prey-one predator model 

with fear, refuge dependent on the predator, and nonlinear harvesting. So, this work is structured 

as follows: Section 2 presents the formulation for the model. The Boundedness of the solution 
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are studied in Section 3. Section 4 addresses the existence of all feasible points of equilibrium. In 

Section, local stability conditions are determined at every point of equilibrium. The Laypunove 

function utilized for verifying the global stability of the suggested model in Section 6. Section 7 

confirms the completion of the numerical simulation of the theoretical results. The discussion 

and conclusion were in the last section. 

2. MATHEMATICAL MODEL FORMULATION 

 This section searches for a scenario involving two prey, 𝑥 and 𝑦, in which 𝑥 is vulnerable 

and takes predator-dependent refuge, while both prey undergo nonlinear harvesting and 

predation by the same predator 𝑧. The model understudy is described as follows, with first prey, 

second prey, and predator density at time denoted by 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) respectively: 

1- Both prey populations grow logistically without a predator or fear; however, a predator's 

fear of these populations can have multiple effects. The fear functions 
1

1+𝑓1𝑧
 and 

1

1+𝑓2𝑧
 

influence the growth of the first and second prey, with 𝑓1, 𝑓2  representing their 

respective fear parameters. 

2- When a predator is present, the prey feels fear of predation. As a result, a proportional 

amount of the first prey population needs refuge, depending on the predator. On the other 

hand, the functional response of the first prey and predator is Holling type 2, while the 

functional response of the second prey is Holling type 4 where, 𝛼1, 𝛼2, 𝛽 𝑎𝑛𝑑 𝛾 > 0,

0 < 𝑛1 < 1 and 0 ≤ 1 − 𝑛1𝑧 ≤ 1. 

3- Assume that the prey species experience nonlinear harvesting.  

4- Supposed that there was interspecies competition. 

Using the previous assumptions, the model is described as follows: 

𝑑𝑥

𝑑𝑡
=

𝑟𝑥

1+𝑓1𝑧
− 𝑎𝑥2 −

𝛼1(1−𝑛1𝑧)𝑥𝑧

𝛽+(1−𝑛1𝑧)𝑥
−

𝑞1𝐸1𝑥

𝑚1𝐸1+𝑚2𝑥
  ,

𝑑𝑦

𝑑𝑡
=

𝑠𝑦

1+𝑓2𝑧
− 𝑏𝑦2 −

𝛼2𝑦𝑧

1+𝛾𝑦2
−

𝑞2𝐸2𝑦

𝑚3𝐸2+𝑚4𝑦
 ,

𝑑𝑧

𝑑𝑡
=

𝑐1𝛼1(1−𝑛1𝑧)𝑥𝑧

𝛽+(1−𝑛1𝑧)𝑥
+
𝑐2𝛼2𝑦𝑧

1+𝛾𝑦2
−𝑚𝑧2 − 𝑑𝑧 .

                              (1) 

The initial condition (𝑋(0), 𝑌(0), 𝑍(0))  should be in the first quadrant on a biological basis. 

Table 1 below shows the parameters set for model (1), which were assumed to have positive 

value: 
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Table 1- parameters Description. 

Parameter  Description 

𝑟 The birth rate of first prey. 

𝑠 The birth rate of second prey. 

𝑎 The interspecies competition of the first prey. 

𝑏 The interspecies competition of the second prey. 

𝑚 The interspecies competition of the predator. 

𝑓1 The fear rate of first prey of predator. 

𝑓2 The fear rate of second prey of predator. 

𝛼1 The attack rate of predator of the first prey.  

𝛼2 The attack rate of predator of the second prey. 

𝑐1 Coefficient of transformation from first prey towards predator.   

𝑐2 Coefficient of transformation from second prey towards predator.   

𝛽 The half-saturation constant. 

𝛾 Level of defense.  

𝑑 The natural death rate of the predator.  

𝑛1 Coefficient of first prey refuge.  

𝑞𝑖 , 𝑖 = 1,2 Catch-ability coefficient of first, second prey. 

𝐸𝑖 , 𝑖 = 1,2 Effort of harvesting for the species. 

𝑚𝑖 , 𝑖 = 1,2,3,4 Suitable positive constants. 

 

3. BOUNDEDNESS OF THE MODEL 

 The model domain is ℝ+
3 = {(𝑥, 𝑦, 𝑧) ∈  ℝ3, 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0}, and it is assumed 

that for ∀𝑡 ≥ 0, the functions 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) with the derivatives of these functions are 

continuous, which implies that all of them are Lipschizain in ℝ+
3  , and there is a unique solution 

to model (1). The following theorem shows the bounds for this model (1) solution in ℝ+
3 . 

Theorem (3.1):- The of model (1) solutions, which starting in ℝ+
3  are uniformly bounded. 

Proof: - Applying the first equation in model (1), the following is concluded: 

  
𝑑𝑥

𝑑𝑡
≤ 𝑟𝑥 [1 −

𝑥

𝑟 𝑎⁄
], 

due to it solved the differential inequality above: 
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  𝑥(𝑡) ≤
𝑟

𝑎
. 

In the same way, the second equation leads to: 

𝑦(𝑡) ≤  
𝑠

𝑏
. 

Next, let 𝑀(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡),  

therefore, by calculating it is derivative with respect to time, we obtain: 

𝑑𝑀

𝑑𝑡
≤

𝑟𝑥

1 + 𝑓1𝑧
− 𝑎𝑥2 +

𝑠𝑦

1 + 𝑓2𝑧
− 𝑏𝑦2 −

𝑞1𝐸1𝑥

𝑚1𝐸1 +𝑚2𝑥
−

𝑞2𝐸2𝑦

𝑚3𝐸2 +𝑚4𝑦
− 𝑑𝑧,

𝑑𝑀

𝑑𝑡
≤
𝑟

𝑎
+
𝑠

𝑏
− 𝐿(𝑥 + 𝑦 + 𝑧).

 

Then 
𝑑𝑀

𝑑𝑡
≤ 𝐽 − 𝐿𝑀 , 

where 𝐽 =
𝑟

𝑎
+

𝑠

𝑏
 ; and 𝐿 = min{𝑞1𝐸1, 𝑞2𝐸2, 𝑑},  

so as 𝑡 → ∞,𝑀(𝑡) ≤
𝐽

𝐿
 , hence the proof completed. 

 

4. EXISTENCE OF POINTS OF EQUILIBRIUM 

 At maximum, the model (1) includes seven nonnegative points of equilibrium, 𝑃𝑖 , 𝑖 =

0,1,2, … ,6, whose forms and conditions for existing are listed below: 

▪ A trivial point of equilibrium (TPE), 𝑃0 = (0,0,0), always presents. 

▪ The first axial point of equilibrium (FAPE), 𝑃1 = (�̅�, 0,0), where �̅� is a +ve root for 

2nd-order equation that follows: 

𝐵1
[1]
�̅�2 + 𝐵2

[1]
�̅� + 𝐵3

[1]
= 0,                                           (2.a) 

  Which 

𝐵1
[1] = −𝑎𝑚1 < 0

𝐵2
[1] = 𝑟𝑚2 − 𝑎𝑚1𝐸1

𝐵3
[1] = 𝐸1(𝑟𝑚1 − 𝑞1)

}.                                 (2.b)                                                                

As a result of the sign discarding rule, equation (2.a) has at least one positive root if 

the following condition are met: 

𝑟𝑚1 > 𝑞1,                                                  (2.c) 

▪ The second axial point of equilibrium (SAPE), 𝑃2 = (0, �̌�, 0), where �̌�  is a +ve root 

for 2nd-order equation that follows: 
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𝐵1
[2]
�̌�2 + 𝐵2

[2]
�̌� + 𝐵3

[2]
= 0,                                          (3.a) 

         which 

𝐵1
[2] = −𝑏𝑚4 < 0

𝐵2
[2] = 𝑠𝑚4 − 𝑏𝑚3𝐸2

𝐵3
[2] = 𝐸2(𝑠𝑚3 − 𝑞2)

}.                              (3.b) 

As a result of the sign discarding rule, equation (3.a) has at least one positive root if   

the following condition are met: 

  𝑠𝑚3 > 𝑞2 ,                                 (3.c) 

▪ The free predator point of equilibrium (PDFPE), 𝑃3 = (�̿�, �̿�, 0), where �̿� is a +ve root 

for 2nd-order equation that follows: 

𝐵1
[1]�̿�2 + 𝐵2

[1]�̿� + 𝐵3
[1] = 0,                                 (4.a) 

�̌�  is a +ve root for 2nd-order equation that follows: 

𝐵1
[2]
�̿�2 + 𝐵2

[2]
�̿� + 𝐵3

[2]
= 0,                                   (4.b) 

where    𝐵1
[1],    𝐵2

[1],    𝐵3
[1],    𝐵1

[2],    𝐵2
[2], and    𝐵3

[2]
 is it the same in (2.b) and (3.b) such 

that PDFPE exist if the conditions (2.c) and (3.c) are met. 

▪ Second prey free point of equilibrium (SPFPE), 𝑃4 = (�̃�, 0, �̃�), as  

�̃� =
−𝛽(𝑑+𝑚𝑧)

(1−𝑛1𝑧)(𝑑−𝑐1𝛼1+𝑚𝑧)
 ,                                      (5.a)                       

while �̃�  is a +ve root for 9th-order equation that follows: 

𝐵1
[3]
�̃�8 +   𝐵2

[3]
�̃�7 +   𝐵3

[3]
�̃�6 +   𝐵4

[3]
�̃�5 +   𝐵5

[3]
�̃�4 +   𝐵6

[3]
�̃�3

+𝐵7
[3]
�̃�2 +   𝐵8

[3]
�̃� +   𝐵9

[3]
= 0

,               (5.b)  

where    𝐵𝑖
[3]
, 𝑖 = 1,… ,9 are calculated using MATLAB program and it will not give 

here due to their huge and complicated forms. 

Then, if any one of the following conditions is satisfied, equation (5.b) has at least one 

positive root due to the sign discarding rule: 
                          

   𝐵1
[3] > 0 𝑎𝑛𝑑 𝐵𝑖

[3] < 0,   𝑖 = 2,… ,9
𝑜𝑟

   𝐵1
[3] < 0 𝑎𝑛𝑑 𝐵𝑖

[3] > 0,   𝑖 = 2,… ,9 

  }.                                  (5.c) 
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Assuming that there just one positive root of equation (5.b) represented by �̃�, then 

SPFPE exist if provided that:   

𝑐1𝛼1 > 𝑑 +𝑚�̃�  .                                    (5.d) 

▪ First prey free point of equilibrium (FPFPE), 𝑃5 = (0, �̂�, �̂�), as 

 �̂� =
𝑐2𝛼2�̂�−𝑑[𝛾�̂�

2+1]

𝑚(1+𝛾�̂�2)
,                                                  (6.a) 

while �̂� is a +ve root for 9nd-order equation that follows:: 

𝐵1
[4]
�̂�8 +   𝐵2

[4]
�̂�7 +   𝐵3

[4]
�̂�6 +   𝐵4

[4]
�̂�5 +   𝐵5

[4]
�̂�4 +   𝐵6

[4]
�̂�3

+  𝐵7
[4]
�̂�2 +   𝐵8

[4]
�̂� +   𝐵9

[4]
= 0,

              (6.b) 

where 

𝐵1
[4]
= −𝑏𝑔1𝛾

3𝑚𝑚4, 

𝐵2
[4]
= 𝛾3𝑚2𝑚4𝑠 − 𝑏𝑚(𝑔1𝑔3𝛾

3 + 𝑔2𝛾
2𝑚4), 

𝐵3
[4]
= 𝑔3𝛾

3𝑚2𝑠 − 𝑏𝑚(𝑔2𝑔3𝛾
2 + 3𝑔1𝛾

2𝑚4) − 𝐸2𝑔1𝛾
3𝑚𝑞2, 

𝐵4
[4] = 𝑔1𝑔5𝛾

2𝑚4 − 𝑏𝑚(3𝑔1𝑔3𝛾
2 + 2𝑔2𝛾𝑚4) + 3𝑚4𝛾

2𝑚2𝑠 − 𝐸2𝑔2𝛾
2𝑚𝑞2,  

𝐵5
[4]
= 𝑔5𝛾(𝑔2 +𝑚4 + 𝑔1𝑔3𝛾) − 𝑏𝑚(2𝑔2𝑔3𝛾 + 3𝑔1𝛾𝑚4) − 𝑔1𝑔4𝛾𝑚4 + 3𝑔3𝛾

2𝑚2𝑠

          −3𝐸2𝑔1𝛾
2𝑚𝑞2,

     

𝐵6
[4] = 𝑔5𝛾(𝑔2𝑔3 + 𝑔1𝑚4) − 𝑏𝑚(𝑔2𝑚4 + 3𝑔1𝑔3𝛾) − 𝑔4(𝑔2𝑚4 + 𝑔1𝑔3𝛾) + 𝑔1𝑔3𝛾𝑚4

          +3𝛾𝑚2𝑚4𝑠 − 2𝐸2𝑔2𝛾𝑚𝑞2,
     

𝐵7
[4] = 𝑔5(𝑔2𝑔3 + 𝑔1𝑚4) − 𝑔4(𝑔2𝑔3 + 𝑔1𝑚4) − 𝑏𝑚(𝑔2𝑔3 + 𝑔1𝑚4) + 𝑔1𝑔3𝑔5𝛾

          +3𝛾𝑚2𝑔3𝑠 − 3𝐸2𝑔1𝛾𝑚𝑞2,
    

𝐵8
[4] = 𝑔5(𝑔2𝑔3 + 𝑔1𝑚4) + 𝑚

2𝑚4𝑠 − 𝑔1𝑔3𝑔4 − 𝐸2𝑔2𝑚𝑞2 − 𝑏𝑔1𝑔3𝑚, 

𝐵9
[4] = 𝑚2𝑔3𝑠 + 𝑔1𝑔3𝑔5 − 𝐸2𝑔1𝑚𝑞2 . 

Such that, 

𝑔1 = 𝑚 − 𝑓2𝑑 ,   𝑔2 = 𝑓2𝑐2𝛼2 ,   𝑔3 = 𝐸2𝑚3 ,   𝑔4 = 𝑐2𝛼2
2 ,   𝑔5 = 𝛼2𝑑. 

Then, if any one of the following conditions is satisfied, equation (6.b) has at least one 

positive root due to the sign discarding rule: 
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   𝐵1
[4] > 0 𝑎𝑛𝑑 𝐵𝑖

[4] < 0,   𝑖 = 2,… ,9
𝑜𝑟

   𝐵1
[4] < 0 𝑎𝑛𝑑 𝐵𝑖

[4] > 0,   𝑖 = 2,… ,9 

  }.                               (6.c) 

Assuming that there just one positive root of equation (6.b) represented by �̂� then 

FPFPE exist if provided that:   

𝑐2𝛼2�̂� > [1 + 𝛾�̂�2]𝑑.                                     (6.d)  

▪ The positive point of equilibrium (PPE), 𝑃6 = (𝑥
∗, 𝑦∗, 𝑧∗), as  

𝑥∗ =
𝑐2𝛼2𝛽𝑦

∗−(1+𝛾𝑦∗
2
)(𝑑𝛽+𝑚𝛽𝑧∗)

(1−𝑛1𝑧∗)[(1+𝛾𝑦∗
2)(𝑑+𝑚𝑧∗−𝑐1𝛼1)−𝑐2𝛼2𝑦∗]

 ,                          (7.a) 

and (𝑥∗, 𝑦∗) displays the point at which the isoclines obtained from model (1) positively   

intersect the following two isoclines when setting the first two equations equal to zero 

after substituting the value of 𝑥∗ given in eq. (7.a): 

𝑓(𝑦, 𝑧) = (𝑢1𝑦
6 + 𝑢2𝑦

4 + 𝑢3𝑦
2 + 𝑢4)𝑧

8 + (𝑢5𝑦
6 + 𝑢6𝑦

5 + 𝑢7𝑦
4

           

         𝑢8𝑦
3 + 𝑢9𝑦

2 + 𝑢10𝑦 + 𝑢11)𝑧
7 + (𝑢12𝑦

6 + 𝑢13𝑦
5 + 𝑢14𝑦

4 + 𝑢15𝑦
3 

     +𝑢16𝑦
2 + 𝑢17𝑦 + 𝑢18)𝑧

6 + ( 𝑢19𝑦
6 + 𝑢20𝑦

5 + 𝑢21𝑦
4  

     

+𝑢22𝑦
3 + 𝑢23𝑦

2 + 𝑢24𝑦 + 𝑢25)𝑧
5 + (𝑢26𝑦

6 + 𝑢27𝑦
5

+𝑢28𝑦
4 + 𝑢29𝑦

3 + 𝑢30𝑦
2 + 𝑢31𝑦 + 𝑢32)𝑧

4 + (𝑢33𝑦
6

+𝑢34𝑦
5 + 𝑢35𝑦

4 + 𝑢36𝑦
3 + 𝑢37𝑦

2 + 𝑢38𝑦 + 𝑢39)𝑧
3

+(𝑢40𝑦
6 + 𝑢41𝑦

5 + 𝑢42𝑦
4 + 𝑢43𝑦

3 + 𝑢44𝑦
2 + 𝑢45𝑦 + 𝑢46)𝑧

2

+(𝑢47𝑦
6 + 𝑢48𝑦

5 + 𝑢49𝑦
4 + 𝑢50𝑦

3 + 𝑢51𝑦
2 + 𝑢52𝑦 + 𝑢53)𝑧  

+(𝑢54𝑦
6 + 𝑢55𝑦

5 + 𝑢56𝑦
4 + 𝑢57𝑦

3 + 𝑢58𝑦
2 + 𝑢59𝑦 + 𝑢60) 

             

𝑔(𝑦, 𝑧) = (𝑘1𝑧 + 𝑘2)𝑦
4 + (𝑘3𝑧 + 𝑘4)𝑦

3  +  (𝑘5𝑧 + 𝑘6)𝑦
2 + (𝑘7𝑧

2

                  +𝑘8𝑧 + 𝑘9)𝑦 + (𝑘10𝑧
2 + 𝑘11𝑧 + 𝑘12) }

 
 
 
 
 
 

 
 
 
 
 
 

 , (7.b) 

where  𝑢𝑖 and  𝑘𝑗  ∀ 𝑖 = 0,1, … ,60 , 𝑗 = 0,1, … ,12 were determined using MATLAB 

program, that will not give them here since they are huge and complicated forms. 

When  𝑧 → 0 , direct computation implies that: 

𝑢54𝑦
6 + 𝑢55𝑦

5 + 𝑢56𝑦
4 + 𝑢57𝑦

3 + 𝑢58𝑦
2 + 𝑢59𝑦 + 𝑢60 = 0

𝑘2𝑦
4 + 𝑘4𝑦

3 + 𝑘6𝑦
2 + 𝑘9𝑦 + 𝑘12 = 0

}.               (7.c) 

Under the discarding rule of signs, all equation in (7.c) may has a unique positive root for 

the isocline given by  �̅�1  and �̅�2  respectively, where the leading and free coefficients 

have sign opposite. 

Then system (7.b) has unique intersection point denoted as (𝑦∗, 𝑧∗) with the given 

conditions:                   
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                         𝑐2𝛼2𝛽𝑦
∗ > (1 + 𝛾𝑦∗2)(𝑑𝛽 +𝑚𝛽𝑧∗)

(1 + 𝛾𝑦∗2)(𝑑 + 𝑚𝑧∗) > (1 + 𝛾𝑦∗2)𝑐1𝛼1 + 𝑐2𝛼2𝑦
∗
 }  ,               (7.d) 

𝑦1
∗ < 𝑦2

∗ ,                                           (7.e) 

𝜕𝑓

𝜕𝑦
> 0 𝑎𝑛𝑑  

𝜕𝑓

𝜕𝑧
< 0

𝑜𝑟 
𝜕𝑓

𝜕𝑦
< 0 𝑎𝑛𝑑 

𝜕𝑓

𝜕𝑧
> 0

} ,                                       (7.f) 

𝜕𝑔

𝜕𝑦
> 0 𝑎𝑛𝑑  

𝜕𝑔

𝜕𝑧
> 0

𝑜𝑟 
𝜕𝑔

𝜕𝑦
< 0 𝑎𝑛𝑑 

𝜕𝑔

𝜕𝑧
< 0

} .                               (7.g)                      

Therefore, only the (PPE) exists in the ℝ+
3 . 

 

5. LOCAL STABILITY ANALYSIS 

  The linearization method is used in this section to study the local stability of the model (1) .the 

Jacobian matrix (J.M) of the model (1) at (𝑥, 𝑦, 𝑧) is: 

𝐽𝑖 = [
𝑎11 0 𝑎13
0 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] ,                                                    (8) 

where  

    𝑎11 =
𝑟

1+𝑓1𝑧
− 2𝑎𝑥 −

𝛽𝛼1𝑧(1−𝑛1𝑧)

(𝛽+(1−𝑛1𝑧)𝑥)2
−

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2𝑥)2
, 

     𝑎13 = −(
𝑟𝑥𝑓1

(1+𝑓1𝑧)2
+
𝛽𝛼1𝑥(1−2𝑛1𝑧)+𝛼1𝑥

2(1−𝑛1𝑧)
2

(𝛽+(1−𝑛1𝑧)𝑥)2
), 

    𝑎22 =
𝑠

1+𝑓2𝑧
− 2𝑏𝑦 −

𝛼2𝑧−𝛾𝛼2𝑦
2𝑧

(1+𝛾𝑦2)2
−

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4𝑦)2
, 

    𝑎23 = −(
𝑠𝑦𝑓2

(1+𝑓2𝑧)2
+

𝛼2𝑦

1+𝛾𝑦2
), 

    𝑎31 =
𝛽𝑐1𝛼1𝑧(1−𝑛1𝑧)

(𝛽+(1−𝑛1𝑧)𝑥)2
, 

    𝑎32 =
𝑐2𝛼2𝑧−𝛾𝛼2𝑐2𝑧𝑦

2

(1+𝛾𝑦2)2
, 

    𝑎33 =
𝑐1𝛽𝛼1𝑥(1−2𝑛1𝑧)+𝑐1𝛼1𝑥

2(1−𝑛1𝑧)
2

(𝛽+(1−𝑛1𝑧)𝑥)2
+

𝑐2𝛼2𝑦

1+𝛾𝑦2
− 2𝑚𝑧 − 𝑑. 

If each of the (J.M) eigenvalues has a negative sign, then a point of equilibrium is local 

asymptotically stable (LAS). Therefore, the next theorem provides the local stability conditions 

at each equilibrium point.   
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Theorem (5.1): The TPE  is LAS if the below conditions are met:  

𝑟 <
𝑞1

𝑚1
  

𝑠 <
𝑞2

𝑚3

} .                                                        (9) 

  Proof: At TPE, the J.M is written as: 

𝐽0 = [

𝑟 −
𝑞1

𝑚1
0 0

0 𝑠 −
𝑞2

𝑚3
0

0 0 −𝑑

]. 

Hence, the 𝐽0eigenvalues are: 

  𝜆1 = 𝑟 −
𝑞1

𝑚1
,       𝜆2 = 𝑠 −

𝑞2

𝑚3
,            𝜆3 = −𝑑. 

When condition (9) holds, TPE is LAS. 

Theorem (5.2): The FAPE is LAS if the following conditions satisfied: 

         𝑟 < 2𝑎�̅� +
𝑚1𝑞1𝐸1

2

(𝑚1𝐸1+𝑚2�̅�)2
 

          𝑠 <
𝑞2

𝑚3

 
𝑐1𝛼1�̅�

𝛽+�̅�
 < 𝑑 

 

}
 
 

 
 

.                                        (10) 

  Proof: At FAPE, the J.M can be written as: 

𝐽1 =

[
 
 
 
 𝑟 − 2𝑎�̅� −

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2�̅�)2
0 −(𝑟𝑓1�̅� +

𝛼1�̅�

(𝛽+�̅�)2
)

0 𝑠 −
𝑞2

𝑚3
0

0 0
𝑐1𝛼2�̅�

𝛽+�̅�
  − 𝑑 ]

 
 
 
 

 .                   

 So 𝐽1 is an upper triangular matrix with three eigenvalues: 

    𝜆1 = 𝑟 − 2𝑎�̅� −
𝑚1𝑞1𝐸1

2

(𝑚1𝐸1+𝑚2�̅�)2
,     𝜆2 = 𝑠 −

𝑞2

𝑚3
,    𝜆3 =

𝑐1𝛼2�̅�

𝛽+�̅�
  − 𝑑. 

The real part of 𝜆1, 𝜆2𝑎𝑛𝑑 𝜆3 is negative only if condition (10) is met, and saddle point 

otherwise.  

Theorem (5.3): The SAPE is LAS if below conditions holds: 

       𝑠 < 2𝑏�̌� +
𝑚3𝑞2𝐸2

2

(𝑚3𝐸2+𝑚4�̌�)2
  

        𝑟 <
𝑞1

𝑚1

 
𝑐2𝛼2�̌�

1+𝛾�̌�2
< 𝑑 }

 
 

 
 

.                                           (11) 
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Proof: At SAPE, the J.M is written as follows: 

𝐽2 =

[
 
 
 
 𝑟 −

𝑞1

𝑚1
0 0

0 𝑠 − (2𝑏�̌� +
𝑚3𝑞2𝐸2

2

(𝑚3𝐸2+𝑚4�̌�)2
) −(𝑠𝑓2�̌� +

𝛼2�̌�

1+𝛾�̌�2
)

0 0
𝑐2𝛼2�̌�

1+𝛾�̌�2
  − 𝑑 ]

 
 
 
 

  . 

𝐽2 is an upper triangular matrix with three eigenvalues: 

   𝜆1 = 𝑟 −
𝑞1

𝑚1
,     𝜆2 = 𝑠 − (2𝑏�̌� +

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4�̌�)2
),    𝜆3 =

𝑐2𝛼2�̌�

1+𝛾�̌�2
− 𝑑. 

The real part of 𝜆1, 𝜆2𝑎𝑛𝑑 𝜆3 is negative only if condition (11) is satisfied, and saddle point 

otherwise. 

Theorem (5.4): The PDFPE is LAS if the following conditions are met: 

 

                     𝑟 <  2𝑎�̿� +
𝑚1𝑞1𝐸1

2

(𝑚1𝐸1+𝑚2�̿�)2
   

                      𝑠 < 2𝑏�̿� +
𝑚3𝑞2𝐸2

2

(𝑚3𝐸2+𝑚4�̿�)2

       
𝑐1𝛼1�̿�

𝛽+�̿�
+

𝑐2𝛼2�̿�

1+𝛾�̿�2
 < 𝑑 }

 
 

 
 

.                                (12) 

Proof: At PDFPE, the J.M is written as follow:  

𝐽3 =

[
 
 
 
 
 𝑟 − (2𝑎�̿� +

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2�̿�)2
) 0 −(𝑟𝑓1�̿� +

𝛼1�̿�

(𝛽+�̿�)2
)

0 𝑠 − (2𝑏�̿� +
𝑚3𝑞2𝐸2

2

(𝑚3𝐸2+𝑚4�̿�)2
) −(𝑠𝑓2�̿� +

𝛼2�̿�

1+𝛾�̿�2
)

0 0 (
𝑐1𝛼1�̿�

𝛽+�̿�
+

𝑐2𝛼2�̿�

1+𝛾�̿�2
)    − 𝑑]

 
 
 
 
 

 .   

The eigenvalues of  𝐽3 derived by its characteristic equation, can be written as follows: 

   
𝜆1 = 𝑟 − (2𝑎�̿� +

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2�̿�)2
),     𝜆2 = 𝑠 − (2𝑏�̿� +

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4�̿�)2
),

𝜆3 = (
𝑐1𝛼1�̿�

𝛽+�̿�
+

𝑐2𝛼2�̿�

1+𝛾�̿�2
 ) − 𝑑.

    

So, the real part of 𝜆1, 𝜆2𝑎𝑛𝑑 𝜆3 is negative only if condition (12) is satisfied, and saddle point 

otherwise. 

Theorem (5.5): The SPFPE is LAS if below conditions holds:  

 

 
𝑐1𝛽𝛼1�̃�(1−2𝑛1𝑧)+𝑐1𝛼1�̃�

2(1−𝑛1𝑧)
2

(𝛽+(1−𝑛1𝑧)�̃�)2
  < 2𝑚�̃� + 𝑑  

                                              
𝑠

1+𝑓2𝑧
 < 𝛼2�̃� +

𝑞2

𝑚3

                                               
𝑟

1+𝑓1𝑧
< 2𝑎�̃� +

𝛽𝛼1𝑧(1−𝑛1𝑧)

(𝛽+(1−𝑛1𝑧)�̃�)2
+

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2�̃�)2}
 
 

 
 

.             (13) 
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Proof: At SPFPE, the J.M is written as follow:  

𝐽4 = [
�̃�11 0 �̃�13
0 �̃�22 0
�̃�31 �̃�32 �̃�33

] , 

Where    

�̃�11 =
𝑟

1+𝑓1𝑧
− (2𝑎�̃� +

𝛽𝛼1𝑧(1−𝑛1𝑧)

(𝛽+(1−𝑛1𝑧)�̃�)2
+

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2�̃�)2
), 

 �̃�13 = −(
𝑟�̃�𝑓1

(1+𝑓1𝑧)2
+ 

𝛽𝛼1�̃�(1−2𝑛1𝑧)+𝛼1�̃�
2(1−𝑛1𝑧)

2

(𝛽+(1−𝑛1𝑧)�̃�)2
) < 0, 

�̃�22 =
𝑠

1+𝑓2𝑧
− (𝛼2�̃� +

𝑞2

𝑚3
), 

�̃�31 =
𝛽𝑐1𝛼1𝑧(1−𝑛1𝑧)

(𝛽+(1−𝑛1𝑧)�̃�)2
> 0 , 

�̃�32 = 𝑐2𝛼2�̃�, 

�̃�33 = 
𝑐1𝛽𝛼1�̃�(1−2𝑛1𝑧)+𝑐1𝛼1�̃�

2(1−𝑛1𝑧)
2

(𝛽+(1−𝑛1𝑧)�̃�)2
− (2𝑚�̃� + 𝑑). 

Then the characteristic equation is: 

(�̃�22 − 𝜆)(𝜆
2 + 𝑡𝑟1𝜆 + 𝑑𝑒𝑡1) = 0, 

where 𝑡𝑟1 = (�̃�11 + �̃�33) < 0  ,   𝑑𝑒𝑡1 = �̃�11�̃�33 − (�̃�13�̃�31) > 0. 

Hence, by trace-determinate stability criterion, SPFPE is LAS if condition (13) is satisfied, 

which is saddle point otherwise. 

Theorem (5.6): The FPFPE is LAS if the following conditions are met: 

 
𝑐2𝛼2�̂�

1+𝛾�̂�2
 < 2𝑚�̂� + 𝑑  

𝑟

1+𝑓1�̂�
   <  

𝛼1�̂�(1−𝑛1�̂�)

𝛽
+

𝑞1

𝑚1

     𝛾�̂�2 < 1

   
𝑠

1+𝑓2�̂�
< 2𝑏�̂� + (

𝛼2�̂�−𝛾𝛼2�̂�
2�̂�

(1+𝛾�̂�2)2
) +

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4�̂�)2}
  
 

  
 

.                            (14) 

Proof: At FPFPE, the J.M can be written as: 

𝐽5 = [

�̂�11 0 0
0 �̂�22 �̂�23
�̂�31 �̂�32 �̂�33

],  

where    

     �̂�11 =
𝑟

1+𝑓1�̂�
− (

𝛼1�̂�(1−𝑛1�̂�)

𝛽
+

𝑞1

𝑚1
), 

     �̂�22 =
𝑠

1+𝑓2�̂�
− (2𝑏�̂� + (

𝛼2�̂�−𝛾𝛼2�̂�
2�̂�

(1+𝛾�̂�2)2
) +

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4�̂�)2
), 
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     �̂�23 = −(
𝑠�̂�𝑓2

(1+𝑓2�̂�)2
+

𝛼2�̂�

1+𝛾�̂�2
) < 0, 

     �̂�31 =
𝑐1𝛼1�̂�(1−𝑛1�̂�)

𝛽
> 0, 

     �̂�32 =
𝑐2𝛼2�̂�−𝛾𝑐2𝛼2�̂�

2�̂�

(1+𝛾�̂�2)2
, 

     �̂�33 =
𝑐2𝛼2�̂�

1+𝛾�̂�2
− (2𝑚�̂� + 𝑑). 

Then, the characteristic equation is: 

(�̂�11 − 𝜆)(𝜆
2 + 𝑡𝑟2𝜆 + 𝑑𝑒𝑡2𝜆) = 0, 

where 𝑡𝑟2 = (�̂�22 + �̂�33) < 0  ,   𝑑𝑒𝑡2 = �̂�22�̂�33 − (�̂�23�̂�32) > 0. 

So, by trace-determinate stability criterion, FPFPE is LAS if condition (14) holds, which is 

saddle point otherwise. 

Theorem (5.7): The PPE is LAS if the following conditions are satisfied: 

𝑎𝑖𝑖
∗  < 0, 𝑖 = 1,2,3

𝛾𝑦∗2 < 1 
},                                                  (15) 

where  𝑎𝑖𝑖
∗  given in proof. 

Proof: At PPE, the J.M is written as: 

𝐽6 = [

𝑎11
∗ 0 𝑎13

∗

0 𝑎22
∗ 𝑎23

∗

𝑎31
∗ 𝑎32

∗ 𝑎33
∗
] , 

where    

𝑎11
∗ =

𝑟

1+𝑓1𝑧∗
− 2𝑎𝑥∗ −

𝛽𝛼1𝑧
∗(1−𝑛1𝑧

∗)

(𝛽+(1−𝑛1𝑧∗)𝑥∗)2
−

𝑚1𝑞1𝐸1
2

(𝑚1𝐸1+𝑚2𝑥∗)2
,, 

𝑎13
∗ = −(

𝑟𝑥∗𝑓1

(1+𝑓1𝑧∗)2
+
𝛽𝛼1𝑥

∗(1−2𝑛1𝑧
∗)+𝛼1𝑥

∗2(1−𝑛1𝑧
∗)2

(𝛽+(1−𝑛1𝑧∗)𝑥∗)2
) < 0, 

𝑎22
∗ =

𝑠

1+𝑓2𝑧∗
− 2𝑏𝑦∗ −

𝛼2𝑧
∗−𝛾𝛼2𝑦

∗2𝑧∗

(1+𝛾𝑦∗2)2
−

𝑚3𝑞2𝐸2
2

(𝑚3𝐸2+𝑚4𝑦∗)2
, 

𝑎23
∗ = −(

𝑠𝑦∗𝑓2

(1+𝑓2𝑧∗)2
+

𝛼2𝑦
∗

1+𝛾𝑦∗2
) < 0, 

𝑎31
∗ =

𝛽𝑐1𝛼1𝑧
∗(1−𝑛1𝑧

∗)

(𝛽+(1−𝑛1𝑧∗)𝑥∗)2
, 

𝑎32
∗ =

𝑐2𝛼2𝑧
∗−𝛾𝑐2𝛼2𝑦

∗2𝑧∗

(1+𝛾𝑦∗2)
2 , 

𝑎33
∗ =

𝑐1𝛽𝛼1𝑥
∗(1−2𝑛1𝑧

∗)+𝑐1𝛼1𝑥
∗2(1−𝑛1𝑧

∗)2

(𝛽+(1−𝑛1𝑧∗)𝑥∗)2
+

𝑐2𝛼2𝑦
∗

1+𝛾𝑦∗2
− (2𝑚𝑧∗ + 𝑑). 

Therefore, the characteristic equation is:  
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𝜆3 + 𝐻1
∗𝜆2 + 𝐻2

∗𝜆 + 𝐻3
∗ = 0, 

where 

  𝐻1
∗ = −(𝑎11

∗ + 𝑎22
∗ + 𝑎33

∗ ), 

       𝐻2
∗ = 𝑎11

∗ 𝑎22
∗ + (𝑎22

∗ 𝑎33
∗ − 𝑎23

∗ 𝑎32
∗ ) + (𝑎11

∗ 𝑎33
∗ − 𝑎13

∗ 𝑎31
∗ ), 

   
    ∆= 𝐻1

∗𝐻2
∗ − 𝐻3

∗ = −𝑎11
∗ 2(𝑎22

∗ + 𝑎33
∗ ) − 𝑎22

∗ 2(𝑎11
∗ + 𝑎33

∗ ) − 𝑎33
∗ 2(𝑎22

∗ + 𝑎11
∗ )                   

                            −2𝑎11
∗ 𝑎22

∗ 𝑎33
∗ + 𝑎23

∗ 𝑎32
∗ (𝑎22

∗ + 𝑎33
∗ ) + 𝑎13

∗ 𝑎31
∗ (𝑎11

∗ + 𝑎33
∗ )   .           

  

So, by Routh-Hurwitz criterion, PPE is LAS if condition (15) holds, which is saddle point 

otherwise. 

 

6. GLOBAL STABILITY ANALYSIS 

  The global asymptotically stability (GAS) of all the points in the equilibrium for model (1) is 

studied in the following theorems by using the Lyapunov function to calculate the attractive 

basin. 

Theorem (6.1): Since TPE is LAS it becomes a GAS when: 

𝑟 < 𝑞1𝐸1   
 𝑠 < 𝑞2𝐸2    

} ,                                                           (16)   

holds.              

Proof: Assume that this positive value as a definite function: 

  𝑊0(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡). 

Where 𝑊0(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊0(0,0,0) = 0 , and   

 𝑊0(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (0, 0, 0). 

 Also, 

𝑑𝑊0

𝑑𝑡
 =

𝑟𝑥

1 + 𝑓1𝑧
− 𝑎𝑥2 −

𝛼1(1 − 𝑛1𝑧)𝑥𝑧

𝛽 + (1 − 𝑛1𝑧)𝑥
−

𝑞1𝐸1𝑥

(𝑚1𝐸1 +𝑚2𝑥)
+

𝑠𝑦

1 + 𝑓2𝑧
− 𝑏𝑦2 −

𝛼2𝑦𝑧

1 + 𝛾𝑦2

            −
𝑞2𝐸2𝑦

(𝑚3𝐸2 +𝑚4𝑦)
+
𝑐1𝛼1(1 − 𝑛1𝑧)𝑥𝑧

𝛽 + (1 − 𝑛1𝑧)𝑥
+  

𝑐2𝛼2𝑦𝑧

1 + 𝛾𝑦2
−𝑚𝑧2 − 𝑑𝑧.

 

 By doing more calculations, we get the following result: 

   
𝑑𝑊0

𝑑𝑡
≤ −(𝑞1𝐸1 − 𝑟)𝑥 − (𝑞2𝐸2 − 𝑠)𝑦 − 𝑑𝑧.  

As a result, 𝑊0 is a Lyapunov function when we obtain  
𝑑𝑊0

𝑑𝑡
< 0 from condition (16), hence 

TPE is GAS. 

 

 



15 

THE DYNAMIC OF TWO PREY– ONE PREDATOR FOOD WEB MODEL 

Theorem (6.2): Assume FAPE is LAS, therefore it's GAS in the sub region 𝑅+
3  when: 

                    𝑠 <
𝑞2𝐸2𝑦

(𝑚3𝐸2+𝑚4𝑦)
 

                 𝑟 𝑓1�̅� + 𝛼1�̅� < 𝑑 
𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̅�)
< 𝑎}

 

 

,                                      (17) 

are satisfied.                                                     

Proof: Suppose this positive value as a definite function: 

  𝑊1(𝑡) = (𝑥 − �̅� − �̅�𝑙𝑛
𝑥

�̅�
) + 𝑦 + 𝑧. 

Where 𝑊1(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊1(�̅�, 0,0) = 0 , and  

 𝑊1(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (�̅�, 0, 0). 

 Also, 

𝑑𝑊1

𝑑𝑡
 = (

𝑥 − �̅�

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
. 

 By using model (1) and more calculations, we obtain: 

𝑑𝑊1

𝑑𝑡
≤ −(𝑎 −

𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̅�)
)(𝑥 − �̅�)2 − (

𝑞2𝐸2𝑦

(𝑚3𝐸2+𝑚4𝑦)
− 𝑠) 𝑦

             −(𝑑 − (𝑟 𝑓1�̅� + 𝛼1�̅�))𝑧.
  

As a result, 𝑊1 regarded as Lyapunov function when we get  
𝑑𝑊1

𝑑𝑡
< 0 from condition (17), 

hence FAPE is GAS. 

Theorem (6.3): Assume SAPE is LAS, so it's GAS in the sub region 𝑅+
3  under these conditions: 

              
     𝑟 <

𝑞1𝐸1

(𝑚1𝐸1+𝑚2𝑥)
 

    𝑠 𝑓2�̌� + 𝛼2�̌� < 𝑑
𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4�̌�)
< 𝑏}

 

 

.                                             (18)  

Proof: Let this positive value as a definite function: 

  𝑊2(𝑡) = 𝑥 + (𝑦 − �̌� − �̌�𝑙𝑛
𝑦

�̌�
) + 𝑧. 

Where 𝑊2(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊2(0, �̌�, 0) = 0 , and     

 𝑊2(𝑥, 𝑦, 𝑧) > 0 , ∀(𝑥, 𝑦, 𝑧) ≠ (0, �̌�, 0). 

 Also, 

𝑑𝑊2

𝑑𝑡
 =

𝑑𝑥

𝑑𝑡
+ (

𝑦 − �̌�

𝑦
)
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
. 

 By using model (1) and more calculations, we get: 
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𝑑𝑊2

𝑑𝑡
 ≤ −(

𝑞1𝐸1
(𝑚1𝐸1 +𝑚2𝑥)

− 𝑟)𝑥 − (𝑏 −
𝑞2𝐸2𝑚4

(𝑚3𝐸2 +𝑚4𝑦)(𝑚3𝐸2 +𝑚4�̌�)
)(𝑦 − �̌�)2

              −(𝑑 − (𝑠 𝑓2�̌� + 𝛼2�̌� ))𝑧.

 

Therefore, 𝑊2 regarded as Lyapunov function when obtained  
𝑑𝑊2

𝑑𝑡
< 0 from condition (18), 

hence SAPE is GAS. 

Theorem (6.4): Assuming that PDFPE is LAS, the following conditions define the basin of 

attraction for this point: 

       

                                 
𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̿�)
< 𝑎

                                 
𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4�̿�)
< 𝑏

(𝑟 𝑓1 + 𝛼1(1 − 𝑛1𝑧))�̿� + (𝑠 𝑓2 + 𝛼2)�̿� < 𝑑 }
 
 

 
 

  .                               (19)                     

Proof: Suppose this positive value as a definite function: 

  𝑊3(𝑡) = (𝑥 − �̿� − �̿�𝑙𝑛
𝑥

�̿�
) + (𝑦 − �̿� − �̿�𝑙𝑛

𝑦

�̿�
) + 𝑧. 

Such that 𝑊3(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊3(�̿�, �̿�, 0) = 0 , and 

 𝑊3(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (�̿�, �̿�, 0). 

 So, 

𝑑𝑊3

𝑑𝑡
 = (

𝑥 − �̿�

𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝑦 − �̿�

𝑦
)
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
. 

 Then, by using model (1) and more calculations, we obtained: 

𝑑𝑊3

𝑑𝑡
≤ −(𝑎 −

𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̿�)
)(𝑥 − �̿�)2 − (𝑏 −

𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4�̿�)
) (𝑦 − �̿�)2

             −(𝑑 − ((𝑟 𝑓1 + 𝛼1(1 − 𝑛1𝑧))�̿� + (𝑠 𝑓2 + 𝛼2)�̿�)𝑧.
 

Consequently, in the region that satisfied condition (19), 𝑊3 behaved as a Lyapunov function 

with respect to PDFPE and 
𝑑𝑊3

𝑑𝑡
< 0, so PDFPE is GAS. 

Theorem (6.5): Assuming that SPFPE is LAS, the following conditions define the basin of 

attraction for this point: 

𝛼1(1−𝑛1𝑧)(1−𝑛1𝑧)�̃�

(𝛽+(1−𝑛1𝑧)𝑥)(𝛽+(1−𝑛1𝑧)�̃�)
+

𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̃�)
< 𝑎 

𝑠 <
𝑞2𝐸2

(𝑚3𝐸2+𝑚4𝑦)
+ 𝑐2𝛼2�̃� 

                                       𝑘12
2   ≤ 4𝑚𝑘11  }

 
 

 
 

.                         (20) 
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Where 

𝑘11 = 𝑎 −
𝛼1(1−𝑛1𝑧)(1−𝑛1𝑧)𝑧

(𝛽+(1−𝑛1𝑧)𝑥)(𝛽+(1−𝑛1𝑧)�̃�)
−

𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2�̃�)
, 

𝑘12 =
𝑟𝑓1

(1+𝑓1𝑧)(1+𝑓1𝑧)
−
𝛼1(1−𝑛1𝑧)(1−𝑛1𝑧)((1−𝑐1)𝛽+�̃�)

(𝛽+(1−𝑛1𝑧)𝑥)(𝛽+(1−𝑛1𝑧)�̃�)
. 

Proof: Suppose this positive value as a definite function: 

  𝑊4(𝑡) = (𝑥 − �̃� − �̃�𝑙𝑛
𝑥

�̃�
) + 𝑦 + (𝑧 − �̃� − �̃�𝑙𝑛

𝑧

𝑧
). 

Such that 𝑊4(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊4(�̃�, 0, �̃�) = 0 , and  

 𝑊4(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (�̃�, 0, �̃�). 

Also, 

𝑑𝑊4

𝑑𝑡
 = (

𝑥 − �̃�

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+ (

𝑧 − �̃�

𝑧
)
𝑑𝑧

𝑑𝑡
. 

 By using model (1) and more calculations, 
𝑑𝑊4

𝑑𝑡
 can be written as: 

𝑑𝑊4

𝑑𝑡
≤ −[𝑘11 (𝑥 − �̃�)

2 − 𝑘12(𝑥 − �̃�)(𝑧 − �̃�) + 𝑚(𝑧 − �̃�)
2] − (

𝑞2𝐸2

(𝑚3𝐸2+𝑚4𝑦)
+   𝑐2𝛼2�̃� − 𝑠) 𝑦, 

and by condition (20), we obtained: 

𝑑𝑊4

𝑑𝑡
≤ −[√𝑘11  (𝑥 − �̃�) + √𝑚(𝑧 − �̃�)]

2
− (

𝑞2𝐸2

(𝑚3𝐸2+𝑚4𝑦)
+   𝑐2𝛼2�̃� − 𝑠) 𝑦. 

As a result, in the region that satisfied condition (20), 𝑊4 behaved as a Lyapunov function with 

respect to SPFPE and 
𝑑𝑊4

𝑑𝑡
< 0, hence SPFPE is GAS. 

Theorem (6.6): Assuming that FPFPE is LAS, the following conditions define the basin of 

attraction for this point: 

 
𝛾𝛼2�̂�(𝑦+�̂�)

(1+𝛾𝑦2)(1+𝛾�̂�2)
+

𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4�̂�)
< 𝑏

                         𝑟 <
𝑞1𝐸1

(𝑚1𝐸1+𝑚2𝑥)
+ 

𝑐1𝛼1(1−𝑛1𝑧)�̂�

𝛽+(1−𝑛1𝑧)𝑥
 

𝐺12
2 ≤ 4𝑚𝐺11}

 
 

 
 

.                                 (21)  

Where 

𝐺11 = 𝑏 −
𝛾𝛼2�̂�(𝑦+�̂�)

(1+𝛾𝑦2)(1+𝛾�̂�2)
−

𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4�̂�)
, 

𝐺12 =
𝑠𝑓2

(1+𝑓2𝑧)(1+𝑓2�̂�)
+

𝛼2

(1+𝛾𝑦2)
−

𝑐2𝛼2(1−𝛾𝑦�̂�)

(1+𝛾𝑦2)(1+𝛾�̂�2)
. 
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Proof: Let the positive value as a definite function: 

  𝑊5(𝑡) = 𝑥 + (𝑦 − �̂� − �̂�𝑙𝑛
𝑦

�̂�
) + (𝑧 − �̂� − �̂�𝑙𝑛

𝑧

�̂�
). 

Where 𝑊5(𝑡): ℝ+
3 →  ℝ is continuously differentiable with 𝑊5(0, �̂�, �̂�) = 0, and 

 𝑊5(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (0, �̂�, �̂�). 

Also, 

𝑑𝑊5

𝑑𝑡
 =

𝑑𝑥

𝑑𝑡
+ (

𝑦 − �̂�

𝑦
)
𝑑𝑦

𝑑𝑡
+ (

𝑧 − �̂�

𝑧
)
𝑑𝑧

𝑑𝑡
. 

Then by using model (1) and more calculations, 
𝑑𝑊5

𝑑𝑡
 can be written as: 

𝑑𝑊5

𝑑𝑡
≤ −[𝐺11 (𝑦 − �̂�)

2 − 𝐺12(𝑦 − �̂�)(𝑧 − �̂�) + 𝑚(𝑧 − �̂�)
2]

− (
𝑞1𝐸1

(𝑚1𝐸1 +𝑚2𝑥)
+
𝑐1𝛼1(1 − 𝑛1𝑧)�̂�

𝛽 + (1 − 𝑛1𝑧)𝑥
− 𝑟) 𝑥 

and by condition (21), we obtained: 

𝑑𝑊5

𝑑𝑡
≤ −[√𝐺11  (𝑦 − �̂�) + √𝑚(𝑧 − �̂�)]

2
− (

𝑞1𝐸1

(𝑚1𝐸1+𝑚2𝑥)
+
𝑐1𝛼1(1−𝑛1𝑧)�̂�

𝛽+(1−𝑛1𝑧)𝑥
− 𝑟) 𝑥. 

Consequently, in the region that satisfied condition (21), 𝑊5 behaved as a Lyapunov function 

with respect to FPFPE and 
𝑑𝑊5

𝑑𝑡
< 0, hence FPFPE is GAS. 

Theorem (6.7): Assuming that PPE is LAS, the following conditions define the basin of 

attraction for this point: 

          
𝑣11 > 0     
𝑣22 > 0    

2𝑣11𝑣33 ≥ 𝑣13 
2

2𝑣22𝑣33 ≥ 𝑣23 
2 }
 

 
,                                                        (22)  

Where  

 𝑣11 = 𝑎 −
𝛼1(1−𝑛1𝑧)(1−𝑛1𝑧

∗)𝑧∗

(𝛽+(1−𝑛1𝑧)𝑥)(𝛽+(1−𝑛1𝑧∗)𝑥∗)
−

𝑞1𝐸1𝑚2

(𝑚1𝐸1+𝑚2𝑥)(𝑚1𝐸1+𝑚2𝑥∗)
, 

 𝑣22 = 𝑏 −
𝛾𝛼2𝑧

∗(𝑦+𝑦∗)

(1+𝛾𝑦2)(1+𝛾𝑦∗2)
−

𝑞2𝐸2𝑚4

(𝑚3𝐸2+𝑚4𝑦)(𝑚3𝐸2+𝑚4𝑦∗)
 , 

 𝑣33 = 𝑚,    𝑣13 =
𝑟𝑓1

(1+𝑓1𝑧)(1+𝑓1𝑧∗)
−
𝛼1(1−𝑛1𝑧)(1−𝑛1𝑧

∗)((1−𝑐1)𝛽+𝑥
∗)

(𝛽+(1−𝑛1𝑧)𝑥)(𝛽+(1−𝑛1𝑧∗)𝑥∗)
, 

 𝑣23 =
𝑠𝑓2

(1+𝑓2𝑧)(1+𝑓2𝑧∗)
+

𝛼2

(1+𝛾𝑦2)
−

𝑐2𝛼2(1−𝛾𝑦𝑦
∗)

(1+𝛾𝑦2)(1+𝛾𝑦∗2)
. 
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Proof: Suppose this positive value as a definite function: 

  𝑊6(𝑡) = (𝑥 − 𝑥
∗ − 𝑥∗𝑙𝑛

𝑥

𝑥∗
) + (𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛

𝑦

𝑦∗
) + (𝑧 − 𝑧∗ − 𝑧∗𝑙𝑛

𝑧

𝑧∗
). 

Where 𝑊6(𝑡): ℝ+
3 →  ℝ  is continuously differentiable with  𝑊6(𝑥

∗, 𝑦∗, 𝑧∗) = 0 , and 

 𝑊6(𝑥, 𝑦, 𝑧) > 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (𝑥∗, 𝑦∗, 𝑧∗). 

Also, 

𝑑𝑊6

𝑑𝑡
 = (

𝑥 − 𝑥∗

𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝑦 − 𝑦∗

𝑦
)
𝑑𝑦

𝑑𝑡
+ (

𝑧 − 𝑧∗

𝑧
)
𝑑𝑧

𝑑𝑡
. 

 So, using model (1) and more calculations, 
𝑑𝑊6

𝑑𝑡
 can be written as: 

𝑑𝑊6

𝑑𝑡
≤ − [𝑣11(𝑥 − 𝑥

∗)2 + 𝑣13(𝑥 − 𝑥
∗)(𝑧 − 𝑧∗) +

𝑣33
2
(𝑧 − 𝑧∗)2]

              − [𝑣22(𝑦 − 𝑦
∗)2 + 𝑣23(𝑦 − 𝑦

∗)(𝑧 − 𝑧∗) +
𝑣33
2
(𝑧 − 𝑧∗)2] .

 

and by condition (22), we getting: 

𝑑𝑊6

𝑑𝑡
≤ −[√𝑣11  (𝑦 − 𝑦

∗) + √
𝑣33

2
(𝑧 − 𝑧∗)]

2

− [√𝑣22    (𝑦 − 𝑦
∗) + √

𝑣33

2
(𝑧 − 𝑧∗)]

2

. 

Therefore, in the region that satisfied condition (22), 𝑊6 behaved as a Lyapunov function with 

respect to PPE and 
𝑑𝑊6

𝑑𝑡
< 0, hence PPE is GAS. 

 

7. NUMERICAL SIMULATION 

  In this section, we used numerical simulations to verify our findings and improve our 

knowledge of how changing parameter values impact the dynamics of the system. We started 

this numerical simulation with a variety of initial conditions and then proceeded to use 

hypothetical parameters. MATLAB R2009b was utilized to show the trajectories were generated. 

 𝑟 = 0.9 ,      𝑓1 = 0.05,      𝑎 = 0.04,   𝛼1 = 0.4 ,    𝛽 = 0.6,   
𝑛1 = 0.1 ,    𝑞1 = 0.2,         𝐸1 = 0.3,     𝑚1 = 0.4, 𝑚2 = 0.5,

  

 
𝑠 = 0.9 ,     𝑓2 = 0.001,      𝑏 = 0.05,    𝛼2 = 0.2 ,   𝛾 = 0.01,
𝑞2 = 0.2 , 𝐸2 = 0.1,        𝑚3 = 0.2,    𝑚4 = 0.3,

 

𝑐1 = 0.25, 𝑐2 = 0.15 ,    𝑑 = 0.01,        𝑚 = 0.06 .   

                   (23) 

 

The solution of model (1) under set (23) converges asymptotically to                                   

𝑃6 = (16.396, 9.933, 3.905 ) from various initial conditions as shown in Fig. 1. 
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Figure 1. Asymptotically globally stable to PPE 

with data (23) and numerous initial conditions. (a) First prey trajectories. (b) Second prey 

trajectories. (c) Predator trajectories. (d) 3D-phase sketch of the model (1). 

 

 

Obviously, Fig. 1 confirms the theoretical results, showing that the PPE is GAS.  

However, the trajectory of model (1) approaches asymptotically to TPE 𝑃0 = (0 ,0 ,0 ), as 

illustrated in Fig. 2, as in set (23) with 𝑟 = 0.1, 𝑠 = 0.1. 
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Figure 2. Asymptotically globally stable to TPE with data (23) and numerous initial conditions. 

(a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories. (d) 3D-phase 

sketch of the model (1). 

 

Additionally, numerical simulations have shown that when the parameters 𝑠 = 0.1 and 𝑑 = 0.3 

are changed for the data (23), the model (1) trajectory approaches the global stable FAPE 𝑃1 =

( 22.367, 0, 0 ) , which can be seen in Fig. 3. 

 

 

Figure 3. Asymptotically globally stable to FAPE with data (23) and numerous initial conditions. 

(a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories.   (d) 3D-phase 

sketch of the model (1). 
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Furthermore, Fig. 4 illustrates the changing values 𝑟 = 0.1  and 𝑑 = 0.2  with data (23) 

indicating that every trajectory for model (1) approaches asymptotically to global stable SAPE 

𝑃2 = ( 0, 17.925, 0 ). 

 

 

 

Figure 4. Asymptotically globally stable to SAPE with data (23) and numerous initial conditions. 

(a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories.   (d) 3D-phase 

sketch of the model (1). 

 

The trajectory for model (1) approaches asymptotically to global stable PDFPE 𝑃3 =

(22.367,17.925,0), as described in Fig. 5, while data (23) with 𝑑= 0.3 is used. 
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Figure 5. Asymptotically globally stable to PDFPE with data (23) and numerous initial 

conditions. (a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories.    

(d) 3D-phase sketch of the model (1). 

Instead, if data (23) with 𝑠 = 0.1, then each for model (1) trajectory approaches asymptotically 

to global stable SPFPE  𝑃4 = ( 20.145, 0, 1.443 ), as dispelled in Fig. 6. 

 

 

Figure 6. Asymptotically globally stable to SPFPE with data (23) and numerous initial 

conditions. (a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories.   (d) 

3D-phase sketch of the model (1). 

Moreover, when the data (23) is considered with 𝑟 = 0.1  the trajectory approaches 

asymptotically to global stable FPFPE 𝑃5 = ( 0,15.348, 2.120 ), as seen in Fig. 7. 
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Figure 7. Asymptotically globally stable to FPFPE with data (23) and numerous initial 

conditions. (a) First prey trajectories. (b) Second prey trajectories. (c) Predator trajectories.   (d) 

3D-phase sketch of the model (1). 

 

Currently, we have observed the following results to study how changing just one parameter at a 

time affects the dynamic behaviour of model (1).  

For the parameters value given in data (23) and the range of 𝛼1 beginning at 𝛼1 ≥ 0.9, as seen 

in Fig. 8, model (1) goes asymptotically at 𝑃5 = (0, �̂�, �̂�), which is FPFPE. 

 

Figure 8. The solution to model (1) in data (23) over time, with different 𝛼1 values.        (a) 

Globally asymptotically stable PPE for 𝛼1 = 0.4. (b) Globally asymptotically stable FPFPE for 

 𝛼1 = 0.9. 
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Further, the trajectory of the model (1) converges asymptotically to the SPFPE 𝑃4 = (�̃�, 0, �̃�) 

for the parameter value given in data (23) with variable 𝛼2 at range 𝛼2 ≥ 0.4, as indicated in 

Fig 9. 

 

Figure 9. The solution to model (1) in data (23) over time, with different 𝛼2 values.  

(a) Globally asymptotically stable PPE for 𝛼2 = 0.2. (b) Globally asymptotically stable 

SPFPE for 𝛼2 = 0.4 . 

 

Even so, model (1) approaches asymptotically to FPFPE 𝑃5 = (0, �̂�, �̂�), as shown in Fig. 10, if 

the first prey changed the  𝑚2 ≤ 0.01 and all the other parameters remained the same from the 

data (23). 

 

Figure 10. The solution to model (1) in data (23) over time, with different  𝑚2 values.      (a) 

Globally asymptotically stable PPE for  𝑚2 = 0.5. (b) Globally asymptotically stable FPFPE for 

 𝑚2 = 0.01. 

 

The last part of the model (1) shows how the second prey changes in the range 𝑚4 ≤ 0.02, 

leading to the SPFPE 𝑃4 = (�̃�, 0, �̃�), which can be seen in Fig. 11. 
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Figure 11. The solution to model (1) in data (23) over time, with different  𝑚4 values.              

(a) Globally asymptotically stable PPE for  𝑚4 = 0.3. (b) Globally asymptotically stable 

SPFPE for   𝑚4 = 0.02 . 

 

8. CONCLUSION AND DISCUSSION 

   In this work, we developed and analyzed an ecological model that characterized the prey and 

predator, with fear and refuge dependent on predator and nonlinear harvesting in the prey. Three 

nonlinear autonomous ordinary differential equations built into the model describe the dynamics 

of three distinct species, namely the first prey (𝑥), second prey (𝑦), and predator (𝑧). The 

Boundedness of model (1) was discussed. For every possible point of equilibrium, the existence 

condition was defined. Local and global stability investigations were done for these points. 

Lastly, numerical simulation is employed to estimate the control group of parameters that impact 

the model dynamics and validate the analytical results that were achieved.  

Therefore, by numerically solving model (1) for various sets of initial points and parameters, we 

have reached the following conclusions; this process started with a hypothetical set of data (23):  

1. Model (1) does not have a periodic dynamic; rather, its solution approaches one of the 

equilibrium points in asymptotic form. 

2. Increasing the  𝛼1 > 0.9 destabilizes the PPE, and the model (1) approaches to FPFPE 

asymptotically. 

3. Increasing the 𝛼2 > 0.4 destabilizes the PPE, and the model (1) approaches to SPFPE 

asymptotically. 

4. Decreasing the  𝑚2 < 0.01 destabilizes the PPE, and the model (1) approaches to 

FPFPE asymptotically. 

5. Decreasing the 𝑚4 < 0.02 destabilizes the PPE, and the model (1) approaches to SPFPE 

asymptotically. 
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6. Biased on the earlier explanation, it is clear that model (1) is highly responsive to 

variations in specific parameters. Consequently it is extremely controllable. 
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