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Abstract. Finite Element Method (FEM) based numerical techniques for two-dimensional and two-directional 

problems are challenging for numerical analysis practitioners. In this study, an implicit numerical scheme was 

developed to solve a set of coupled non-linear partial differential equations using the finite element method. This 

study presents a numerical approach using Finite Element Method (FEM) to implicitly solve the Schnakenberg 

biological model. This method uses the inherent advantages of the finite element method, such as its adaptability and 

ability to deal with complex geometries, while also introducing a strategy to improve stability. A system of algebraic 

equations is derived from the model equations to compute spatiotemporal dynamics by discretizing the spatial 

domain. The numerical solution is obtained by iteratively solving the resulting algebraic equations, by employing 

suitable linear solvers and convergence criteria. The results also demonstrate that this method captures intricate 

spatial patterns of morphogenesis concentration in animal species. Furthermore, the objective of this study is to 

analyze stripe and spot-like patterns during morphogenesis in animal species. 
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1.  INTRODUCTION 

Mathematical modeling is the process of describing real-life problems using mathematical ideas, 

symbols, and concepts. Modeling is an application of mathematics to real-world problems. A 

mathematical representation of a biological system is known as a biological model. To predict 

the future state of a system, it is necessary to model biological phenomena mathematically. 

Biological models have recently attracted significant attention [1]-[5]. Biological models are 

used to understand ecosystems, living beings, and other processes. Numerical models have been 

developed through mathematical modeling of biological phenomena, and spatial and temporal 

patterns have been derived in [6]. From a biological perspective, these patterns can be classified 

into two groups: chemical interaction and cell movement models. Gradient and reaction models 

are two subcategories. Pattern formation in biological modeling is associated with the diffusion 

or reaction of substances within a specific geometric configuration. The Schnakenberg model has 

been widely used as powerful model in numerous biological processes. This is an autocatalytic 

reaction that occurs in various biological models. During such reactions, the reaction rate 

increases as reaction proceeds. The authors proposed a scheme for solving the fractional- order 

Schnakenberg model and described an auto- chemical reaction with possible oscillatory behavior 

that may have several applications in biology and biochemistry [7]. Semi-analytical solutions for 

the Schnakenberg model in a reaction-diffusion cell with feedback mechanism and stability were 

examined in [8]. Faiz Muhammad Khan et al. developed an approximation scheme for fractional- 

order chemical Brusselator models using the widely used LADM [9]. Modeling 

multidimensional dynamical systems with partial differential equations (PDEs) is often used to 

formulate natural phenomena, such as heat, electrodynamics, quantum mechanics, and fluid 

dynamics [10][11]. O. Nikan et al. developed a localized mesh less algorithm for calculating the 

solution to a nonlinear biological population model (NBPM). The model describes the dynamics 
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of the biological population and makes valuable predictions under a variety of scenarios. Local 

radial basis functions (LRBF-PU) are used to approximate the solution to the NBPM [12][13]. 

Researchers have developed a method for analyzing the effects of initial conditions and growing 

domains on the competition between admissible modes in 3D truing pattern emergence using 

finite element modeling with Schnakenberg kinetics [14]. The Schnakenberg model is 

mathematical representation of reaction-diffusion processes that occur in biological systems, 

with two non-linear Partial Differential Equations (PDEs) that designate the temporal and spatial 

evolution of chemical concentrations. The model captures the dynamics of self-organization and 

pattern form, such as the distribution of morphogens during embryonic development, growth, 

and the development of biological systems, such as tumors or cell populations. Cell proliferation, 

migration, and interaction with surrounding tissue factors were also considered. Pattern 

formation phenomena commonly occur in biology and other sciences. The reaction and diffusion 

equations are used to model this phenomenon. The development of patterns in hydra [15], skin 

pigmentation, fish and tiger patterns, and butterfly wing pigmentation [16] are significant and 

interesting illustrations of the biological procedures of reaction-diffusion classifications. This is 

typically perceived when animal morphogenesis and skin pattern development occur [17][18]. 

Biological patterns can undergo generation, degradation, activation, or deactivation within the 

framework of image-guided biological systems [19]. Reaction diffusion equations can delineate 

diverse spatial patterns owing to the small-scale instabilities of chemical concentrations; this 

occurrence is referred to as diffusion unsteadiness [20][21]. The significance of many dynamic 

and biological existences in chemical theory, fluid dynamics, and mathematical biology lies in 

their ability to elucidate real-life processes. These phenomena are typically governed by non-

linear partial differential equations (PDEs), which have the capacity to forecast dynamic 

occurrences worldwide and characterize exponential changes over time. PDEs determine 

widespread effectiveness across multiple domains, including physics, engineering, and biology, 

as researchers harness the power of differential equations to effectively model these systems 

[22]–[26]. Time-dependent nonlinear parabolic partial differential equations are numerically 

solved using the Modified Galerkin Weighted Residual Method (MGWRM) using modified 
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Bernstein polynomials. Using modified Bernstein polynomials, an approximate solution has been 

assumed. The modified Galerkin method was applied to transform the nonlinear parabolic PDEs 

into time-dependent ordinary differential equations [27]. The authors examined the solution of 

fractional partial differential equations of the parabolic type in Riesz space. Fractional-in-space 

operators have been successfully applied to mathematical physics problems, such as anomalous 

diffusion and dispersion and standard Brownian motion in terms of the Riesz derivative using the 

fractional order operator [28]. The Gray-Scott reaction-diffusion phenomenon has been 

extensively studied by eminent scholars [29]-[31]. Ali et al. [32] examined the Galerkin-

Bernstein Approximations of the System of Time Dependent Nonlinear Parabolic PDE. A cubic 

B-spline has proven to be of considerable use to Mittal et al. [33], while assessing the model. 

Youssouf et al. solved the standard telegraph equation, a partial differential equation commonly 

used for modeling wave propagation in transmission lines, using the Laplace-Adomian method 

[34]. For many years reaction-diffusion systems have been used to gain deep insights into 

biological systems. Several chemical, biological, physical, and environmental processes have 

been modeled using these models in the real world. The most commonly used reaction-diffusion 

models are the Brusselator, Lengyel-Epstein, and Schnakenberg models because of their variety 

of applications and stability. Models of this type can be used to generate patterns in biological 

and chemical systems. In 1979, Schnakenberg familiarized himself with Schnakenberg’s 

chemical reaction diffusion model. This model designates an auto-chemical reaction with 

oscillatory behavior, such as membrane investigation and embryogenesis. In addition, it also 

models the spatial distribution of the morphogen. The biological and physical behavior of tumor 

evolution in the presence of normal healthy tissue, considering various events involved in the 

process is investigated with mathematical formulation. These include hyper and hypoactivation 

of signaling pathways during tumor growth, vessels’ growth, vascularization, and competition of 

cancer cells with healthy host tissue [35]. The Authors examined regression analysis and degree-

based indices correlate with several physicochemical properties related to drug activities for 

heart attack. Various statistical parameters and Topological indices were used to analyze the 

Heart Attack drugs and other chemical properties [36][37]. The finite element method is a 



5 

BIOLOGICAL SCHNAKEN BERG MODEL EMPLOYING FINITE ELEMENT METHOD 

 

powerful tool for numerical simulations of Biological and chemical systems. FEM is a numerical 

technique that is well suited for solving partial differential equations (PDEs) arising from various 

scientific and engineering problems. It discretizes the computational domain into smaller 

elements and approximates the solution within each element by using basis functions [38][39]. 

This study contributes to the field of mathematical biology by providing a robust and efficient 

numerical framework for studying the biological systems designated by the Schnakenberg model. 

Using diffuse flows and reaction rates, as well as boundary conditions, an implicit finite element 

method is used to investigate a variety of biological phenomena. Most computational strategies 

for solving problems of this type are based on finite difference methods, and rectangles are 

generally used as the discrete domain. We elucidated our problem using a triangular grid with 

local scaling diffusion parameters. The developed numerical scheme is applied to the 

Schnakenberg model. The purpose of this model was to calculate the morphogenesis 

concentration patterns for specific animal species. 

2.  PROBLEM FORMULATION 

The Schnakenberg model is referred to as the morphogenesis model in the literature. 

Physiological morphogenesis refers to the growth and development of components according to 

their size, pattern, and physical structure. It can be used for pattern formation and morphogenic 

construction, such as bone formation, muscle formation, growth, and stability analysis. This 

model shows the behavior of a chemical activator denoted as u  and a chemical inhibitor denoted 

as v . 

Mathematically Schnakenberg model is given as follows 

( )

( )

2

2

,

(1)

,

u
u r u v

t

v
v s u v

t



 


=  + 


 =  +



 

The chemical species u  is the activator and v  is the inhibitor. 2 2,u v  , is the diffusion term. 

The reaction relations are given as  
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2

2

( , )
(2)

( , )

r u v c u u v

s u v d u v

 = − −


= −  

The terms ( , )r u v  and ( , )s u v in Eq: (2) are reaction terms. , is the non-dimensional constant, c 

and d are constant production terms, and 
2u v  signifies the production term in the presence of 

inhibitorv . By substituting the values of the reaction terms, we obtain 

           

2 2

2 2

( ) ,

(3)

( ) ,
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u c u u v u R

t

v
v d u v v R

t



 

+

+


 =  + − +    


  =  + −    

 

  Using weighted residual 

         . . (4)W E w E dx


=   

The method of weighted residual yields  

         (W.E) 0 (5)=  

Where 

  

2 2

2 2

( ),

(6)

( ),

u
u c u u v u R

t
E

v
v d u v v R

t



 

+

+


 − − − +    

= 
  −  − −    

 

The principle of variational formulation is to integrate the weighted residual into   . The 

variational formulation is as follows: 

 Let 1, ( )u v H   

2 2

1

2 2

2

1

1 2

( ( )) 0

( ( )) 0 (7)

for all , ( )

u
s u c u u v d

t

v
s v d u v d

t

s s H



 






− − − +  = 


 

−  − −  =


  





  

   From Eq: (7)   we obtain the following system 



7 

BIOLOGICAL SCHNAKEN BERG MODEL EMPLOYING FINITE ELEMENT METHOD 

 

1

2 2
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2 2
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1 2
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( ) 0
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( ) 0

, ( )
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u
s d u s d c u u v s d

t
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s d v s d d u v s d

t

s s H



 

  

  

  


 −  + − +  =
 


 −  + −  =
 

  

  

  

 

  Consider all boundary conditions assumed to be zero. Sobolev space is defined as 

   1 2 2( ) ( ): ( ( )) (9)H u L u L =     
 

Readers are recommended to review the basic theory of finite elements and Sobolev spaces for 

further details on Sobolev spaces in [40].  

2.1. Discretization of the problem 

Suppose   is a unit square domain (biological cell) and 
h is a family of triangles G with a 

maximum size 0h  . The discrete space 
hX  of continuous piecewise affine finite elements is 

considered over    as follows: 

          0

1( ) | , | ( ) (10)h h h hX s C g s g P G=       

Where
hX X  is the discrete space with 

1P  finite points, and 
0C  is a continuous space function.  

We considered triangular- grid 
h  with each element h > 0. 

1( )P G , shows spaces of one degree 

polynomial functions see ref [41]-[44]. As the problem is time- dependent, the next step is to 

discretize the time derivative. 

 We use the forward difference operators to discretize the time derivatives 

1

1
(11)

i i

h h h

i i

h h h

u u u

t t

v u u

t t

+

+

  −
=   

 
 − =

   

 

( )

1

1
2

1 1 1 1

1
2

2 2 2

1

1 2

, ( )

( ) ( )

( ) ( )

for all , ( ) 12

h h

i i

h h
h h h h h h h h

i i

h h
h h h h h h

h h

u v H

u u
s d u s d u s d c u v s d

t

v v
s d v s d d u v s d

t

s s H

 

 

+

   

+

  

  


−  = −   − + + 
 


−  =−   + − 
 


 

   

  
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The linearization technique is used owing to the nonlinearity of the problem. The discretized 

form of (12) is as follows: 

1

1 1 1 2

1 1 1 1 1

1 1 2

2 2 2 2

1

1 2

, ( )

( ( ( ) )

( ) ( ( ) )

, ( ) (13)

h h

i i i i i

h h h h h h h h h h

i i i i

h h h h h h h h

h h

u v H

u s d t u s d t u s d t c u v s d u s d

v s d t v s d t d u v s d v s d

s s H

 

 

+ + +

    

+ +

   

  


+   +  = + + 



+    = − + 

  

    

   
 

By simplifying we get the following system  

  

1 1 1

1 1 1

1 1 1

2 2 2

(14)

0,1,2,3,...

i i ii

i i i i

J t B Fu c
t

dJ t B v F

for i





+ + +

+ + +

    +  
= +       

+            

=

 

An implicit numerical scheme of Schnakenberg model becomes 

         
1 (15)i iBU F tM+ = +  

Where B  is the stiffness matrix,  1 1 2 2, ,... n nU u v u v u v= , n denotes the nodes on the discrete 

domain  ,and  M is a vector obtained from a discrete linear form. 

3. RESULTS AND DISCUSSIONS 

This section presents the main simulation results for the Schnakenberg model. From the 

methodology section, we obtained an implicit numerical scheme of the Schnakenberg model is as 

follows: 

1i iBU F t M+ = +  

Here, B is the stiffness matrix, which is symmetric and positive definite, obtained from the 

discretization of the symmetrical bilinear form.  1 1 2 2, ,... n nU u v u v u v= , n indicates nodes on the 

discrete domain , M is a vector that signifies the estimation of the linear form. The system of 

algebraic equations obtained from the derived numerical scheme is solved using the conjugate 

gradient (CG) technique, which is the built-in capability of the Free Fem++ software. By default 

the tolerance measure of the CG algorithm is 110−= . The bi-dimensional bi-directional problem 
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is solved on a triangular grid, which allows local selection of scaling diffusion parameters. In this 

model, pattern formations were examined during morphogenesis in the cells of an animal species. 

The simulations obtained from the derived numerical scheme exhibited stripe- like 

morphogenesis. 

The Numerical results indicate that the reactions-diffusion (RD) equations perform well in 

describing the features of some biological phenomena in the form of patterns. This study 

demonstrates the patterns of spots and stripes obtained based on mathematical models. The 

derived numerical models were tested for various combinations of various choices of scaling 

diffusion parameters. 

 For the fixed values of 0 0u =1.0,v =0.9,  =176.72,c=0.1, =9.1676, =0.9d  with time step,

Δt = 0.05 , the solution of equation (15) gives following behaviors at different iterations. 

 

 

FIGURE 1. A vector plot  ,u v  at Second time iteration 
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FIGURE 2. A vector plot  ,u v  at third time iteration 

 

 

FIGURE 3. A vector plot  ,u v  at seventh time iteration 
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FIGURE 4. A vector plot  ,u v  at eighth time iteration 

 

 

FIGURE 5. Magnitude of [u, v] at second time iteration 
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FIGURE 6. Magnitude of [u, v] at third time iteration 

 

 

FIGURE 7. Magnitude of [u, v] at seventh time iteration 
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FIGURE 8. Magnitude of [u, v] at eighth time iteration 

 

 

FIGURE 9. The morphogenesis concentration (Activator of [u, v]) at eight time iteration 
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FIGURE 10. The morphogenesis concentration (Inhibitor of [u, v]) at eighth time iteration 

These plots illustrate the solutions to equation (15) with striped and spot like patterns. It was also 

observed that the chemical concentration increased with time from the boundary towards the 

center of the cell. An inward direction was observed for the concentration. Additionally, it was 

observed that the maximum concentrations surround the center of the cell. Figures (1-10) show 

the chemical concentration inside the cell. The results demonstrate that the reaction-diffusion 

equations accurately describe the generation of stripe and spot-like patterns that appear on the 

skin of many animals.  

Figures 9 and 10 shows that the activator created spot-like patterns, and inhibitor generated 

stripe-like patterns in the morphogenesis process. Eight iterations were performed to determine 

solutions in the morphogenesis process. In implicit numerical models, discrete time steps do not 

affect the stability of the problem, since implicit numerical models are generally stable. 

4. CONCLUSION AND THE FUTURE RECOMMENDATION 

    4.1 Conclusion 

 In this study, an FEM- based implicit numerical scheme was developed to solve the coupled set 

of nonlinear PDEs. The biological model Schnakenberg was used as the model problem in this 
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study. The designed implicit numerical schemes were applied to the proposed model problems 

by using a triangular grid as the discrete domain of the computation. The triangular grid allows 

the local choice of scaling diffusion parameters. The effects of the various combinations on the 

local choice of the scaling parameters is an interesting perspective and is shown as a case study 

for obtaining dense simulation patterns for the chemical concentration in a unit square cell for 

the animal species.  It was observed from the experiments that the obtained simulation patterns 

were generally the strip- like and spot-like patterns. It is evident from the morphogenesis process 

that the chemical concentration increases as diffusion proceeds from the boundary to the center. 

The maximum chemical concentration was observed around the cell center and the minimum at 

the cell boundary. 

The spot-like shapes (non- smooth regions) were seen from the simulation patterns for the 

activator u in the proposed model; such type of occurring irregularity in the activator process is 

controlled by the inhibitor v as a result of smooth patterns in the form of stripe-like smooth 

patterns for the chemical concentration.  The impact of activator u on the morphogenesis process 

is a remarkable output for generating spot-like patterns. This regularization perspective which 

controls the spot-like process using stripe-like smooth combines the proposed models with other 

methods for the process of pattern formation, such as pigmentation in animals. 

In this study, we found that reaction diffusion equations are effective in explaining biological 

models and estimating pattern formation for chemical processes in cells. The discrete time step 

choices do not affect the stability of this FEM-based numerical scheme for the coupled set of 

nonlinear partial differential equations, because the coupled set is implicit, and therefore 

unconditionally stable. 

4.2. Future Recommendation  

From the detailed discussion and the observed performance of the numerical implicit scheme 

discussed in this paper, it is suggested that the developed numerical implicit scheme can be 

applied to other models for the estimation of the pattern formation for the chemical concentration 

in animal species. The proposed model, in combination with other biological models for pattern 

formation in fish, zebras, and other animals, can be used to estimate pattern recognition and 
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pigmentation processes. The unavailability of exact solutions to the proposed problem does not 

allow us to indicate a priori error estimates and comparisons with other models or numerical 

schemes. An a posteriori error estimate is only possible for the proposed problem, which is still a 

challenging task, especially for nonlinear partial differential (PD) equations. Such error bounds 

are under consideration for future work. 
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