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Abstract: Mathematical models are utilized as a powerful tool to describe the transmission of diseases, especially 

Tuberculosis. Throughout these models, differential equations systems are commonly implemented. In this study 

employs a nonlinear differential equation to portray the disease of Tuberculosis, and the model was constructed in 

deterministic and stochastic systems. According to the deterministic model, we elaborate the positivity and 

boundedness of solutions, then two fixed points were obtained, which are disease-free equilibrium and endemic 

equilibrium points, and their stability conditions is established using Routh Hurwitz. Furthermore, the reproduction 

number is found by demonstrating the maximum of eigen value utilizing the next-generation matrix. Further 

discussion related to constructing a deterministic model involving two control variables, i.e. an effort to maintain 

distance between the susceptible population and the infected population, and efforts to treat the infected population. 

Analysis of optimal control problems by using the Pontryagin principle. Last study establishes about numerical 

simulations and parameter estimation using genetic algorithms. Both deterministic and stochastic models rely on 

parameter estimate results for simulation. Applying different disturbance levels to the stochastic model has a 

significant impact on the dynamical solution. In accordance to the optimal control simulation, the second control 

variable performs better than the first. 

Keywords: tuberculosis; deterministic; stochastic; local stability; optimal control; Malang city.  
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1. INTRODUCTION 

Tuberculosis is a contagious disease caused by Mycobacterium, affecting organs beyond the 

respiratory system. Tuberculosis is a significant worldwide public health concern, especially in 

countries with limited medical resources. The World Health Organization indicates that 

tuberculosis is the foremost cause of death from infectious diseases worldwide, behind HIV/AIDS. 

The WHO projected that in 2020, there were over 10 million new tuberculosis infections and 1.5 

million deaths. The incidence of TB varies by nation, with elevated infection rates in particular 

among countries with low or middle incomes., such as South Asia, Sub-Saharan Africa, and some 

parts of Eastern Europe [1], [2]. 

Tuberculosis is transmitted by airborne droplets when an infected person coughs or sneezes. 

This droplet contains bacteria and may be breathed by others. Upon entering the lungs, tuberculosis 

bacteria may remain latent for several times before presenting as active disease, especially in 

individuals with weakness immune, such as those with HIV, diabetes, and malnutrition [3]. 

Pulmonary TB is the primary form of tuberculosis disease. The principal symptoms are a persistent 

at lasting over three weeks, fever, night sweats, and considerable weight loss. In extrapulmonary 

tuberculosis, symptoms vary depending on the affected organ, including bones, and the 

genitourinary system. 

Tuberculosis is a global epidemic that poses a substantial concern, being the primary cause of 

mortality in several regions worldwide. Based on the 2023 edition of the Global Tuberculosis 

Report, WHO has declared tuberculosis an emerging disease because over 99% of the world's 

population has reported cases of tuberculosis [2]. Indonesia recorded a mortality incidence of 14% 

in 2022, and Indonesia reported the highest number of TB cases in 2023, totaling 809,000. 

Focusing on Malang City, and referring to the Health Profile of Malang City in 2022, the Health 

Office reported a suspected tuberculosis case until 17.010, with 1.632 cases detected positive for 

TB in hospitals, 565 cases in community health centers, and 19 cases in other institutions [4]. 

Based on the background previously, there is an urgency to conduct future research on 

controlling and managing the TB pandemic. One of the control strategies that might be employed 
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is applicable to epidemiology by approaching mathematical model analysis [5]–[7] and numerical 

simulation [8], [9]. The research that examines the tuberculosis through modeling includes OJo et 

al. [10], and Madaki et al. (2020) studied the spread of TB with treatment concern [11]. Ucakan et 

al. (2021) analyzed tuberculosis in Turkey using a deterministic model, which indicated the 

effectiveness of vaccination [12]. Additionally, Mekonen et al. (2021) investigated the analysis of 

co-infection between tuberculosis and COVID-19 [13], further supported by findings of 

Inayaturohmat et al. [14]. Meanwhile, in 2022, the dynamics of TB spread modeled and analyzed 

by Sulayman and Abdullah [15], Kuddus et al. modeled TB cases in Bangladesh [16], and Avilov 

et al. conducted research demonstrating that active TB data could support assumptions for 

estimating the spreading of TB in Russia [3]. 

The research above illustrates a deterministic mathematical model, and the recent tuberculosis 

study by Oshinubi et al. (2023) using a deterministic fractional model, and showing that treatment 

method has a positive effect in controlling disease [17]. Furthermore, the combination of 

deterministic models and optimal control was studied by Xue et al. [18], and has been examined 

by Hakim (2022) as a technique for controlling measles [19], managing COVID-19 infections 

[20]–[22], and modeling diphtheria [23]. Hakim et al. used control theory for predicting cholera 

disease [24], which was also in line by Igoe et al. [25]. In 2023, Hakim derived the research about 

optimal control regarding the spread of COVID-19, by taking quarantine and vaccination policies 

[20]. In addition, several research on optimal control in tuberculosis through vaccination and 

treatment [26], and utilizing the vaccinated population and reinfection cases [27]. Other studies 

consider the vaccination process in the latent population, which is divided into two categories [28]. 

This research article is structured into many sections. The first section shows the context and 

related research about the transmission of diseases, with a particular focus on Tuberculosis. 

Secondly, outlines the biological assumptions and guidelines of deterministic and stochastic 

models with saturated infection. The third section discusses the analysis of the solution dynamics 

of the TB model, including positivity and boundedness properties, fixed points, basic reproduction 

number, and their stability condition. The fourth part breaks down the use of optimum control 

variables inside the deterministic tuberculosis model, along by an investigation of the optimal 
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control problem. Finally, this section examines the numerical simulations of deterministic models, 

stochastic models, and optimal control result. 

 

2. CONSTRUCTION MODEL OF TUBERCULOSIS 

Based on the biological assumptions, we constructed a mathematical model of 

Tuberculosis with saturation function [29] is ℎ(𝑡) =
1

1+𝜂𝐼(𝑡)
. By following the previous 

assumptions, we get the deterministic system as 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 −

𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− 𝜇𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− (𝜇 + 𝜈)𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜈𝐸(𝑡) − (𝛾 + 𝛼 + 𝜇)𝐼(𝑡) + 𝜃𝑅(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − (𝜇 + 𝜃)𝑅(𝑡), 

(1) 

with the total population is 𝑁(𝑡)  =  𝑆(𝑡)  +  𝐸(𝑡) +  𝐼(𝑡)  +  𝑅(𝑡). The variable 𝑆(𝑡) 

depicts the density of the susceptible subpopulation during time, namely those individuals 

at risk of infection. 𝐸(𝑡) represents a subpopulation infected by the Mycobacterium agent, 

which does not seem to provide a significant health risk and is recognized by the exposed 

populations. 𝐼(𝑡) represents the infected subpopulation, those expressing the dangerous 

illness and associated with symptoms in disease. Variable 𝑅(𝑡) denotes the number of the 

recovered subgroup. Then, a modification model (1) will be executed by adding the noise 

or disturbances, and it represent the stochastic behavior. Consequently, model (1) could 

be reformulated as a stochastic differential equation in the following: 

𝑑𝑆 = (𝜇𝑁 −
𝛽𝑆𝐼

1 + 𝜂𝐼
− 𝜇𝑆) 𝑑𝑡 + 𝜎𝑆𝑆𝑑𝑊𝑠 

𝑑𝐸 = (
𝛽𝑆𝐼

1 + 𝜂𝐼
− (𝜇 + 𝜈)𝐸)𝑑𝑡 + 𝜎𝐸𝐸𝑑𝑊𝐸 

𝑑𝐼 = (𝜈𝐸 − (𝛾 + 𝛼 + 𝜇)𝐼)𝑑𝑡 + 𝜎𝐼𝐼𝑑𝑊𝐼 

(2) 
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𝑑𝑅 = (𝛾𝐼 − 𝜇𝑅)𝑑𝑡 + 𝜎𝑅𝑅𝑑𝑊𝑅 , 

with the value 𝜎𝑆, 𝜎𝐸 , 𝜎𝐼, and 𝜎𝑅 are the perturbation (noise) variables, and 𝑊𝑠,𝑊𝐸 ,𝑊𝐼,𝑊𝑅 

are Wiener process or Brownian process. The positive parameters of systems (1) are 

detailed in Table 1. 

Table 1. Parameters Description 

Parameters Interpretation 

𝜋 A reproductive rate of susceptible 

𝛽 The contact rate of susceptible with infectious subgroup 

𝜂 The saturation rate of infection 

𝜇 The natural mortality rate 

𝜈 The rate of exposed become infected 

𝛼 The mortality cause infection 

𝛾 Recovery rate 

𝜃 Reinfection rate 

 

3. ANALYSIS OF TUBERCULOSIS MODEL WITHOUT NOISE AND THEIR PROPERTIES 

3.1 POSITIVITY AND BOUNDEDNESS CONDITION OF SOLUTION 

In this section, we will declare that the solutions of model (1) are non-negative and bounded, as 

well as that the model is most influential and meaningful. 

Theorem 1. By respecting to the model (1), the set W is the invariant manifold, and it is finally bounded. 

Proof.  All populations 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), and it is becoming 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑑𝐸(𝑡)

𝑑𝑡
+

𝑑𝐼(𝑡)

𝑑𝑡
+

𝑑𝑅(𝑡)

𝑑𝑡
. (3) 

Then, by substituting equations (1) into equation (3) gives 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜋 −

𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− 𝜇𝑆(𝑡) +

𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− (𝜇 + 𝜈)𝐸(𝑡) + 𝜈𝐸(𝑡)

− (𝛾 + 𝛼 + 𝜇)𝐼(𝑡) + 𝜃𝑅(𝑡) + 𝛾𝐼(𝑡) − (𝜇 + 𝜃)𝑅(𝑡). 

(4) 

Through the application of basic algebraic, we derive 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜋 − 𝜇(𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)). (5) 
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hence 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁(𝑡), then we have 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜋 − 𝜇𝑁(𝑡). (6) 

Upon rewriting equation (6), we represent the first-order linear ordinary differential equation 

below 

𝑑𝑁(𝑡)

𝑑𝑡
+ 𝜇𝑁(𝑡) = 𝜋,  

and by integrating factors, we get the trivial solution is 

𝑁(𝑡) =
𝜋

𝜇
+ 𝐾𝑒−𝜇𝑡, (7) 

with 𝐾  is constant. By taking 𝑡 = 0 , we have the solution of initial value is 𝑁(0) =
𝜋

𝜇
+

𝐾. Therefore, 

𝐾 = 𝑁(0) −
𝜋

𝜇
. (8) 

Applying the value of 𝐾  in equation (8) into equation (7), then the solutions with the initial 

condition can be stated with  

𝑁(𝑡) =
𝜋

𝜇
+ (𝑁(0) −

𝜋

𝜇
) 𝑒−𝜇𝑡. (9) 

It is visible that lim
𝑡→∞

𝑁(𝑡) =
𝜋

𝜇
, and thus 𝑁(𝑡) is bounded with value 

𝜋

𝜇
. Consequently, we can 

verify that all solutions to equation (1) in line on the field 

𝒲 = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℝ+
4 : 0 ≤ 𝑁 ≤

𝜋

𝜇
}, 

with 𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0) ∈ 𝒲.                            ⊡ 

Theorem 2. All Positive values are obtained on the solutions of equation (1) if the initial 

conditions 𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0) ≥ 0 ∈ 𝑊. 

Proof.  It is readily obvious that all solutions of equation (1) are non-negative values, 

𝑑𝑆(𝑡)

𝑑𝑡
|
𝑆=0

= 𝜋 > 0,  

𝑑𝐸(𝑡)

𝑑𝑡
|
𝐸=0

=
𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
≥ 0, 
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𝑑𝐼(𝑡)

𝑑𝑡
|
𝐼=0

= 𝜈𝐸(𝑡) + 𝜃𝑅(𝑡) ≥ 0, 

𝑑𝑅(𝑡)

𝑑𝑡
|
𝑅=0

= 𝛾𝐼(𝑡) ≥ 0, 

it strengthens all findings into positive values.                                      ⊡ 

3.2 EQUILIBRIUM POITS 

The equilibrium point is achieved when 
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝐸(𝑡)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
= 0. The disease-free 

equilibrium point is the condition in which the disease has been eradicated or no pandemic, 

signifying that 𝐼(𝑡)  =  0. By using the value 𝐼(𝑡)  =  0, we have the explicitly of susceptible 

subpopulation as 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 − 𝜇𝑆(𝑡), (10) 

and the equilibrium point is obtained through 
𝑑𝑆(𝑡)

𝑑𝑡
= 0, then we rewrite 

0 = 𝜋 − 𝜇𝑆(𝑡). (11) 

From (11), the trivial solution is obtained 

𝑆(𝑡) =
𝜋

𝜇
. (12) 

Then we derive the new expression of exposed equations 

𝑑𝐸(𝑡)

𝑑𝑡
= −(𝜇 + 𝜈)𝐸(𝑡), (13) 

As a result, the value of 𝐸(𝑡) = 0. It is then clear that the value of 𝑅(𝑡) = 0. Thus, the disease-

free equilibrium point is 𝐸0(𝑆, 𝐸, 𝐼, 𝑅) = (
𝜋

𝜇
, 0,0,0). Utilizing a disease-free fixed point, we can 

figure out the fundamental reproduction number or a threshold value indicative of a pandemic's 

existence. The fundamental reproduction number can possibly be derived from the next generation 

matrix (NGM) [29], namely 

𝐾 = 𝐹𝑉−1, (14) 

with 𝐹 is the transmission matrix and 𝑉 is the transition matrix of a disease model. Next step, we 

assume that 
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[
𝑓1
𝑓2

] = [

𝛽𝑆𝐼

1 + 𝜂𝐼
𝜈𝐸 + 𝜃𝑅

], 

and 

[
𝑣1

𝑣2
] = [

−(𝜇 + 𝜈)𝐸

−(𝛾 + 𝛼 + 𝜇)𝐼
]. 

Therefore, matrices 𝐹 and 𝑉 become Jacobian matrices expressed as follows, 

𝐹 = [

𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼

𝜕𝑓2
𝜕𝐸

𝜕𝑓2
𝜕𝐼

] = [0
𝛽𝑆

(1 + 𝜂𝐼)2

𝜈 0

], 

and 

𝑉 = [

𝜕𝑣1

𝜕𝐸

𝜕𝑣1

𝜕𝐼
𝜕𝑣2

𝜕𝐸

𝜕𝑣2

𝜕𝐼

] = [
−(𝜇 + 𝜈) 0

0 −(𝛾 + 𝛼 + 𝜇)
]. 

Substituting the disease-free fixed point into the matrices 𝐹 and 𝑉 produces 

𝐹 = [0
𝛽𝜋

𝜇
𝜈 0

], 

and 

𝑉 = [
−(𝜇 + 𝜈) 0

0 −(𝛾 + 𝛼 + 𝜇)
]. 

Then determine the inverse of matrix 𝑉, which is 

𝑉−1 =
1

(𝛾 + 𝛼 + 𝜇)(𝜇 + 𝜈)
[
−(𝛾 + 𝛼 + 𝜇) 0

0 −(𝜇 + 𝜈)
] =

[
 
 
 −

1

(𝜇 + 𝜈)
0

0 −
1

(𝛾 + 𝛼 + 𝜇)]
 
 
 

. 

Determine the equation (14), we evaluate the value of 𝐾 as follows 

𝐾 = 𝐹𝑉−1 = [0
𝛽𝜋

𝜇
𝜈 0

]

[
 
 
 −

1

(𝜇 + 𝜈)
0

0 −
1

(𝛾 + 𝛼 + 𝜇)]
 
 
 

=

[
 
 
 0 −

𝛽𝜋

𝜇(𝛾 + 𝛼 + 𝜇)

−
𝜈

(𝜇 + 𝜈)
0

]
 
 
 

. 
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Moreover, the basic reproduction number represents the greatest eigenvalue of matrix 𝐾 trough 

the characteristic equation bellow 

𝜆2 −
𝛽𝜋𝜈

𝜇(𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)
= 0. 

Finally, the value of reproduction number 𝑅0 is 

𝑅0 = max(−√
𝛽𝜋𝜈

𝜇(𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)
,√

𝛽𝜋𝜈

𝜇(𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)
) = √

𝛽𝜋𝜈

𝜇(𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)
. 

Alongside the disease-free equilibrium point, there exists an endemic equilibrium point, 

characterized by the disease's spreading throughout different places, indicating 𝐼(𝑡) ≠ 0. During 

algebraic analysis, the endemic equilibrium point 𝐸∗ = (𝑆∗(𝑡), 𝐸∗(𝑡), 𝐼∗(𝑡), 𝑅∗(𝑡))  is derived, 

thereby establishing 

𝑆∗(𝑡) =
𝜋 − (𝜇 + 𝜈)𝐸(𝑡)

𝜇
, 

𝐸∗(𝑡) =
(𝛾 + 𝛼 + 𝜇)𝐼(𝑡) − 𝜃𝑅

𝜈
, 

𝐼∗(𝑡) =
(𝜇 + 𝜈)(𝜇 + 𝜃)(𝛾 + 𝛼 + 𝜇) − 𝛽𝑆(𝑡)𝜈(𝜇 + 𝜃) − 𝜃𝛾(𝜇 + 𝜈)

𝜃𝛾(𝜇 + 𝜈) − 𝜂(𝜇 + 𝛾)(𝜇 + 𝜃)(𝛾 + 𝛼 + 𝜇)
, 

𝑅∗(𝑡) =
𝛾𝐼(𝑡)

𝜇 + 𝜃
. 

3.3 LOCAL STABILITY 

The local stability characteristics are determined by linearizing the model at the fixed point and 

generating the Jacobian matrix and the characteristic equation. The Jacobian matrix of the system of 

equations (1), specifically 

𝐽 =

[
 
 
 
 
 
 
 −

𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− 𝜇  0 −

𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 0 

 
𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
 −(𝜇 + 𝜈)  

𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 0 

 0  𝜈 −(𝛾 + 𝛼 + 𝜇) 𝜃
 0  0  𝛾 −(𝜇 + 𝜃)]

 
 
 
 
 
 
 

. (15) 
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Based on (15), the Jacobian matrix for the disease-free equilibrium (DFE) 𝐸0 = (
𝜋

𝜇
, 0,0,0) is 

𝐽(𝐸0) =

[
 
 
 
 
 
 −𝜇  0 −

𝛽𝜋

𝜇
0 

 0 −(𝜇 + 𝜈)  
𝛽𝜋

𝜇
0 

 0  𝜈 −(𝛾 + 𝛼 + 𝜇) 𝜃

 0  0  𝛾 −(𝜇 + 𝜃)]
 
 
 
 
 
 

. 

Using matrix partition, we develop the characteristic equation for 𝐽(𝐸0), namely 

(−𝜇 − 𝜆){(−(𝜇 + 𝜈) − 𝜆) |
−(𝛾 + 𝛼 + 𝜇) − 𝜆 𝜃

𝛾 −(𝜇 + 𝜃) − 𝜆
| − 𝜈 |

𝛽𝜋

𝜈
0

𝛾 −(𝜇 + 𝜃) − 𝜆
|}

= 0. 

By doing standard algebraic calculations, it is determined that the eigenvalue 𝜆1 = −𝜇, while the other 

eigenvalues are derived from the roots of characteristic equation: 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0, 

with 

𝐴1 = 3𝜇 + 𝜈 + 𝛾 + 𝛼 + 𝜃 > 0 

𝐴2 = (𝛾 + 𝛼 + 𝜇)(2𝜇 + 𝜈) + (𝜇 + 𝜈)(𝜇 + 𝜃) + 𝜃(𝛼 + 𝜇) − 𝛽𝜋 

𝐴3 = (𝜇 + 𝜈){𝜇(𝛾 + 𝛼 + 𝜇) + 𝜃(𝛼 + 𝜇)} − 𝛽𝜋(𝜇 + 𝜃). 

Based on the Routh-Hurwitz criteria, the disease-free equilibrium will be asymptotically stable if only 

if 𝐴1 > 0, 𝐴3 > 0, and 𝐴1𝐴2 − 𝐴3 > 0. According to the equation (15), we obtain the new form of 

Jacobian Matrix for disease endemic equilibrium (DEE), namely 

𝐽(𝐸∗) =

[
 
 
 
 
 
 −

𝛽𝐼∗

1 + 𝜂𝐼∗
− 𝜇  0 −

𝛽𝑆∗

(1 + 𝜂𝐼∗)2
0 

 
𝛽𝐼∗

1 + 𝜂𝐼∗
 −(𝜇 + 𝜈)  

𝛽𝑆∗

(1 + 𝜂𝐼∗)2
0 

 0  𝜈 −(𝛾 + 𝛼 + 𝜇) 𝜃

 0  0  𝛾 −(𝜇 + 𝜃)]
 
 
 
 
 
 

. 

By solving the following equation |𝐽(𝐸∗) − 𝜆𝐼| = 0, we get the characteristic equation 𝐽(𝐸∗) is 

𝜆4 + 𝐵1𝜆
3 + 𝐵2𝜆

2 + 𝐵3𝜆 + 𝐵4 = 0, 

with 
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𝐵1 = 𝐴 + 4𝜇 + 𝜈 + 𝛾 + 𝛼 + 𝜃 

𝐵2 = (𝐴 + 𝜇)(𝜇 + 𝜈) + (𝐴 + 2𝜇 + 𝜈)(𝛾 + 𝛼 + 2𝜇 + 𝜃) + (𝛾 + 𝛼 + 𝜇)(𝜇 + 𝜃) 

𝐵3 = (𝛾 + 𝛼 + 2𝜇 + 𝜃)(𝐴 + 𝜇)(𝜇 + 𝜈) + (𝐴 + 2𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)(𝜇 + 𝜃) + 𝜈𝐵(1 + 𝐴) 

𝐵4 = (𝐴 + 𝜇)(𝜇 + 𝜈)(𝛾 + 𝛼 + 𝜇)(𝜇 + 𝜃) + 𝜈𝐵(𝜇 + 𝜃)(1 + 𝐴) 

𝐴 =
𝛽𝐼∗

1 + 𝜂𝐼∗
 

𝐵 =
𝛽𝑆∗

(1 + 𝜂𝐼∗)2
. 

By taking the Routh-Hurwitz criteria, the endemic equilibrium become asymptotically stable if only if  

𝐵1 > 0, 𝐵4 > 0, 𝐵1𝐵2 − 𝐵3 > 0, and 𝐵1𝐵2𝐵3 − 𝐵3
2 − 𝐵1

2𝐵4 > 0. 

4. OPTIMAL CONTROL PROBLEMS 

Optimization of model (1) through the application of control variables 𝜓1(𝑡) aims to minimize 

interactions between susceptible and infected populations, while 𝜓2(𝑡)  represents a control 

strategy that includes administering treatment to the infected population. Consequently, model (1), 

which includes control variables, can be expressed in the following system of equations. 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 −

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− 𝜇𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
=

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− (𝜇 + 𝜈)𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜈𝐸(𝑡) − (𝛾 + 𝛼 + 𝜇)𝐼(𝑡) + 𝜃𝑅(𝑡) − 𝜓2(𝑡)𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − (𝜇 + 𝜃)𝑅(𝑡). 

(16) 

The objective of optimal control is to achieve the optimal value condition for the model (16). In 

this section, we establish an optimum control criterion to minimize the objective function, such 

that 

𝐽(𝜓1(𝑡), 𝜓2(𝑡)) = ∫ (𝐸(𝑡) + 𝐼(𝑡) +
1

2
𝜓1

2(𝑡) +
1

2
𝜓2

2(𝑡)) 𝑑𝑡

𝑡𝑓

𝑡0

. (17) 
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The coefficients 
1

2
 indicate the effort necessary to implement the controls, using only positive 

parameters, we derive the best control 𝜓1
∗(𝑡) and 𝜓2

∗(𝑡) such that: 

𝐽(𝜓1
∗(𝑡), 𝜓2

∗(𝑡)) = min{𝐽(𝜓1(𝑡), 𝜓2(𝑡)), with  𝜓1(𝑡), 𝜓2(𝑡) ∈ 𝑈}, 

concerning the domain 𝑈 = {(𝜓1(𝑡), 𝜓2(𝑡)): 0 ≤ 𝜓1(𝑡) ≤ 1;  0 ≤ 𝜓2(𝑡) ≤ 1}.  Pontryagin's 

Minimum Principle provides a criterion for optimal control. This approach transforms (16) - (17) 

into a Hamiltonian function, as seen below: 

𝐻 = 𝐸(𝑡) + 𝐼(𝑡) +
1

2
𝜓1

2(𝑡) +
1

2
𝜓2

2(𝑡)

+ 𝜆𝑆 (𝜋 −
(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− 𝜇𝑆(𝑡))

+ 𝜆𝐸 (
(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
− (𝜇 + 𝜈)𝐸(𝑡))

+ 𝜆𝐼(𝜈𝐸(𝑡) − (𝛾 + 𝛼 + 𝜇)𝐼(𝑡) + 𝜃𝑅(𝑡) − 𝜓2(𝑡)𝐼(𝑡))

+ 𝜆𝑅(𝛾𝐼(𝑡) − (𝜇 + 𝜃)𝑅(𝑡)), 

(19) 

where 𝜆𝑆, 𝜆𝐸 , 𝜆𝐼 , 𝜆𝑅 are the costate (adjoint) variables relevant for optimal control. Subsequently, 

the theorem of optimal control is established using Pontryagin’s Minimum Principle, as expressed 

Theorem 3. If the variables 𝜓1
∗(𝑡), 𝜓2

∗(𝑡)  are present, and the combined solution of 

𝑆∗(𝑡), 𝐸∗(𝑡), 𝐼∗(𝑡), 𝑅∗(𝑡) is valid for system (16), which minimizes 𝐽(𝜓1(𝑡), 𝜓2(𝑡)) in region 𝑈. 

There are adjoint (costate) variables 𝜆𝑆, 𝜆𝐸 , 𝜆𝐼 , 𝜆𝑅 , that satisfy the equations system 

𝑑𝜆𝑆

𝑑𝑡
= 𝜆𝑆 (

(1 − 𝜓1(𝑡))𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
+ 𝜇) − 𝜆𝐸 (

(1 − 𝜓1(𝑡))𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
) 

𝑑𝜆𝐸

𝑑𝑡
= −1 + 𝜆𝐸(𝜇 + 𝜈) − 𝜆𝐼(𝜈) 

𝑑𝜆𝐼

𝑑𝑡
= −1 + 𝜆𝑆 (

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 ) − 𝜆𝐸 (

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 ) + 𝜆𝐼(𝛾 + 𝛼 + 𝜇 + 𝜓(𝑡))  

− 𝜆𝑅(𝛾 + 𝜓(𝑡)) 

𝑑𝜆𝑅

𝑑𝑡
= −𝜆𝐼(𝜃) + 𝜆𝑅(𝜇 + 𝜃). 
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Subsequently, include the transversality criterion 𝜆𝑆(𝑡𝑓) =  𝜆𝐸(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) =  𝜆𝑅(𝑡𝑓) = 0, such 

as the set of optimal control variable 𝜓1
∗(𝑡), 𝜓2

∗(𝑡) are 

𝜓1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑆)𝛽𝑆1(𝑡)𝐼1(𝑡)

1 + 𝜂𝐼(𝑡)
) , 1} 

𝜓2
∗(𝑡) = 𝑚𝑖𝑛{𝑚𝑎𝑥(0, (𝜆𝐼 − 𝜆𝑅)𝐼(𝑡)), 1}. 

Proof: The existence of an optimum control issue can possibly be established by using 

Pontryagin’s Minimum Principle [8], [24]. Following that, the adjoint variables are obtained by 

differentiating the Hamiltonian function with respect to the state variable, and the system can be 

readily identified as bellows 

 

𝑑𝜆𝑆

𝑑𝑡
= 𝜆𝑆 (

(1 − 𝜓1(𝑡))𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
+ 𝜇) − 𝜆𝐸 (

(1 − 𝜓1(𝑡))𝛽𝐼(𝑡)

1 + 𝜂𝐼(𝑡)
) 

𝑑𝜆𝐸

𝑑𝑡
= −1 + 𝜆𝐸(𝜇 + 𝜈) − 𝜆𝐼(𝜈) 

𝑑𝜆𝐼

𝑑𝑡
= −1 + 𝜆𝑆 (

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 ) − 𝜆𝐸 (

(1 − 𝜓1(𝑡))𝛽𝑆(𝑡)

(1 + 𝜂𝐼(𝑡))
2 )

+ 𝜆𝐼(𝛾 + 𝛼 + 𝜇 + 𝜓(𝑡))  − 𝜆𝑅(𝛾 + 𝜓(𝑡)) 

𝑑𝜆𝑅

𝑑𝑡
= −𝜆𝐼(𝜃) + 𝜆𝑅(𝜇 + 𝜃). 

 

by using the transversality criteria 𝜆𝑆(𝑡𝑓) =  𝜆𝐸(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) =  𝜆𝑅(𝑡𝑓) = 0 . The following 

section outlines how an optimum control variable may be determined by differentiating the 

Hamiltonian function with respect to the control 𝜓1(𝑡), 𝜓2(𝑡), and assessing the outcome as zero, 

we get the control values as 

𝜓1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑆)𝛽𝑆1(𝑡)𝐼1(𝑡)

1 + 𝜂𝐼(𝑡)
) , 1} 

𝜓2
∗(𝑡) = 𝑚𝑖𝑛{𝑚𝑎𝑥(0, (𝜆𝐼 − 𝜆𝑅)𝐼(𝑡)), 1}. 
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5. NUMERICAL RESULTS 

5.1 FITTING PARAMETERS 

By detecting Tuberculosis cases in Malang City, data was gathered through analysis of 

susceptible and infected people from 2014 to 2022. 

Table 2. Tuberculosis Cases in Malang City 

No Years Susceptible Infected 

1 2014 7915 1433 

2 2015 7525 1336 

3 2016 8304 1854 

4 2017 7982 1783 

5 2018 8085 1835 

6 2019 10654 1965 

7 2020 8868 1316 

8 2021 14393 1438 

9 2022 19299 2216 

 

Based on the data in table 2, we have fitted the parameters by using Genetic Algorithm (GA), and 

we get the estimate of all parameters for model (1) is shown in Table 3. 

 

Table 3. Fitting Parameters Through GA  

Parameters Interpretation Estimation 

𝜋 A recruitment rate of susceptible subpopulation 0.53268 

𝛽 The contact rate of susceptible with infected or exposed 

subpopulation 

0.15658 

𝜂 The saturation rate of infection 0.85823 

𝜇 The natural mortality rate 0.25967 

𝜈 The rate of exposed become infected subpopulation 0.91502 

𝛼 The mortality cause infection 0.10563 

𝛾 Recovery rate 0.25163 

𝜃 Reinfection rate 0.6496 
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5.2 DETERMINISTIC MODEL RESULT 

To validate and elaborate the analytical findings of the previously established model (1). 

Utilizing the MATLAB 2021a software, we provide a numerical analysis of system (1). In this 

chapter, we establish the initial condition values as 𝑆(0) = 10, 𝐸(0) = 5, 𝐼(0) = 2, and 𝑅(0) =

0. Based on the parameter value in Table 3, we obtain the reproduction number of SEIR model 

Tuberculosis is 𝑅0 = √
𝛽𝜋𝜈

𝜇(𝜇+𝜈)(𝛾+𝛼+𝜇)
= 2.2027 > 1, and its indicates that the transmission of 

Tuberculosis is going to persist within a group of people. 

 

Figure 1. Dynamical Solution of Deterministic Model 

Figure 1 illustrates a simulation of the SEIR epidemiological model, demonstrating the historical 

track of tuberculosis transmission. In the beginning, a larger section of the population was 

classified as susceptible; however, the proportion of susceptible people rapidly reduced as an 

increasing number of individuals became exposed and ultimately got the illness. During the 

interval between the second and third week, the occurrence of patients with infections peaked. As 

situations got worse an increasing number of persons recovered, which brought about a significant 

decrease in the infected population. Ultimately, between the 10th and 20th weeks, the population 

that was more sensitive and infected approached zero, meaning that most people had recovered 



16 
LUKMAN HAKIM, IESYAH RODLIYAH 

and acquired immunity, encourage confidence over the demise of disease transmission. A 3D 

simulation will demonstrate that all trajectories originating from five different initial values 

converge to a single fixed point. This signifies that the fixed point is stable. 

 

Figure 2. Phase Portrait on 3D Space 𝑆 − 𝐸 − 𝐼 

According to figure (2), there are many curves present. The blue curve likely represents the 

trajectory with beginning values of 𝑆 = 10, 𝐸 = 10, and 𝐼 = 10. Currently, the global incidence 

of the illness is not significant, with little change in the susceptible and exposed populations. The 

magenta curve probably signifies beginning values of 𝑆 = 5, 𝐸 = 100, and 𝐼 = 80, suggesting a 

substantial rise in the exposed and infected populations. The simulation indicates an increased 

transmission of the disease from the first large population of exposed people. The green curve 

shows a significant peak in the infected population, indicating aggressive transmission, while the 

red curve shows a significant increase in the number of infections, indicating active spread despite 

a relatively smaller susceptible population. The last cyan curve illustrates that, despite the 

relatively small size of the susceptible group, the infection remains strikingly substantial among 

those previously exposed. 
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5.3 STOCHASTIC MODEL RESULT 

This section will provide several simulations of stochastic models by applying different 

amounts of perturbation to evaluate the effects of disturbances on the Wiener process. Base on the 

equation system (2), and by taking the initial values are 𝑆(0) = 10, 𝐸(0) = 5, 𝐼(0) = 2, 𝑅(0) =

0, and all parameters in the Table 3.  

 

Figure 3. The Solution System (2) Using the Drift Values as 𝜎𝑆 = 𝜎𝐸 = 𝜎𝐼 = 𝜎𝑅 = 0.1. 

The simulation presents a series of curves: the blue curve represents the group most susceptible to 

infection, the green curve identifies the exposed population, the red curve shows the infected 

population, and the magenta curve demonstrates the recovered population. The susceptible 

population at first declines due to being exposed, whereas the exposed population swiftly arrives 

at a peak, reflecting fluctuations linked to the model's stochastic properties. The diagnosed 

population shows considerable variability, contradicting deterministic models, due to uncertainty 

in transmission of disease and recovery. The recovered population gradually rises, with the total 

recoveries regularly growing; nevertheless, changes occur at more slowly than in other 

compartments. Moreover, the simulation will illustrate that an increase in the size of the applied 

disturbance correlates with a stronger effect on the model's fluctuations. For example, the drift 

values are taken as follows 𝜎𝑆 = 𝜎𝐸 = 𝜎𝐼 = 𝜎𝑅 = 0.6, we get the simulations bellow: 
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Figure 4. The Solution System (2) Using the Drift Values as 𝜎𝑆 = 𝜎𝐸 = 𝜎𝐼 = 𝜎𝑅 = 0.6. 

Based on the figure (4), at the beginning of the simulation, it appears that there is a significant size 

of individuals in the Susceptible and Infected. Indicating an initial exposed population become 

illness. In the first few weeks, the number of individuals in the infected population increased 

drastically, followed by a decrease in the number of Susceptible. This state establishes the most 

acute form of disease transmission, characterized by a significant number of individuals being 

infected and experiencing illness. The quantity of Exposed fluctuates signifying a period of latency 

between being exposed and the beginning of disease. Subsequent to the acute period (about weeks 

5 to 7), the number of Infected diminishes, whilst the population of Recovered increases. This 

indicates that several individuals have recovered from the illness and acquired immunity. Between 

weeks 15 and 20, there was a significant increase in the number of Infected and Exposed, indicating 

a second wave of the disease. 

5.4 OPTIMAL CONTROL SIMULATIONS FOR DETERMINISTIC MODEL 

To verify the analytical findings of the optimum control theorem previously discussed, we 

provide a numerical simulation of system (16) using the starting conditions 𝑆(0) = 10, 𝐸(0) = 5, 
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𝐼(0) = 2, and 𝑅(0) = 0. Based on the numbers in Table 3, we proceed with the simulation of the 

optimum control issues outlined below. 

 

Figure 5. The Behavior Solutions of Susceptible and Exposed without and with control 

 

Figure 5 depicts the modelling of tuberculosis (TB) transmission by comparing a scenario without 

intervention (red line) and another with established control measures. Cyan stripe. The first curve 

depicting the Susceptible population shows a quick decline in the beginning, especially in the 

uncontrolled scenario, when the virus spreads swiftly among people. This exposes several 

susceptible individuals to rapid infection. In the controlled scenario, the lowering of the 

Susceptible population occurs rapidly at first, then slows down by the 10th time point. This 

suggests that control measures might delay the spread of disease. The second graph depicts a rapid 

rise in the Exposed population initially, then by decreasing trend until a stable level is obtained. 

Nevertheless, the simulation results demonstrate that the solution dynamics, both with and without 

control, show little variation. The way of controlling interactions between those who are 

susceptible and those who are infected does not significantly reduce the infected population. 
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Figure 6. The Behavior Solutions of Infected and Recovered without and with control 

 

On the left side of the graph in Figure 6 is a representation of the number of people infected with 

TB. In the uncontrolled scenario, the number of infected individuals increases quickly in the first 

week, after that declines gradually, and stable at a low level by the tenth week. Alternatively, under 

the controlled setting, the starting infection count is higher; nevertheless, the decline occurs more 

rapidly, reaching a very low value by around the fifteenth week. This indicates that control 

measures may accelerate the decrease of impacted individuals. The graph on the right illustrates 

the number of individuals recovering from TB infection. The uncontrolled scenario shows a slow 

recovery rate, as the number of patients recuperating remains continuously low and stable until 

week 40. In contrast, inside the controlled environment, the recovery rate of individuals rapidly 

increased throughout the first phase, reaching a peak of 0.7 between weeks 15 and 20. In contrast 

to the uncontrolled scenario, it maintained a greater level despite a little following decline. This 

suggests that, under supervision, several individuals were able to recover in a short timeframe. 



21 

MATHEMATICAL STOCHASTICS MODEL OF TUBERCULOSIS 

 

Figure 7. The Dynamical Control Rates 𝜓1 and 𝜓2 

 

Figure 7 describes the trajectory of the solution for the two control variables 𝜓1(𝑡) and 𝜓2(𝑡) 

using an interval of 40 weeks, with the goal of regulating the spread of tuberculosis. The left graph 

indicates that control 𝜓1(𝑡) begins to activate about the first week, on the other hand, and with a 

little increase around the 10-th week. At the end of the simulation period, variable 𝜓1(𝑡) rises 

around the 35-th week before decreasing. This shows that control 𝜓1(𝑡) was increased at the end 

to prevent late infection spread. However, the right graph for control 𝜓2(𝑡) shows a unique trend: 

it was immediately maximum level and maintained at high intensity until week 35. It represents 

that control 𝜓2(𝑡) is the main intervention for long-term infection management, while control 

𝜓1(𝑡) is integrated at the end to guard against TB disease. 

 

6. CONCLUSION 

This paper discusses a mathematical model of Tuberculosis with saturated infection. This 

model is divided into four subpopulations: susceptible, exposed, infected, and recovered. Next, the 

model is constructed in the form of a deterministic differential equation. Based on the deterministic 
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model, two equilibrium points are obtained, namely the disease-free equilibrium and the endemic 

equilibrium. The stability of equilibrium was analyzed using the Routh-Hurwitz criterion. Then, a 

deterministic model was constructed involving two control variables, and the analysis results 

showed that the applied control variables exist. Finally, involved numerical simulations to support 

the analysis previously. Based on TB infection case data 2014-2022 in Malang, parameters 

implemented in the model were estimated using the Genetic Algorithm method. The simulation 

results show that the deterministic model show smoothly curve and the persist of a pandemic. The 

stochastic model simulation shows that the noise variable significantly affects the fluctuations on 

the solution dynamics. When the noise value is high, it causes the model solution to experience 

sharper fluctuations. Last simulation of the optimal control problem shows that the applied control 

variables are capable of reducing the latent and infected populations. However, the treatment 

control variable is more effective (𝜓1(𝑡)) than reducing interactions between populations (𝜓2(𝑡)). 
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