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Abstract: We present a theoretical framework based on logistic growth and Michaelis-Menten kinetics for describing 

the interaction between tumour density and drug concentration, through an infusion pump. According to the logistics 

growth and Michaelis-Menten kinetics, the growth rate of tumours increases with the availability of drugs only up to 

a certain point.  Cancer chemotherapy by continuous infusion pump has the advantage of achieving large 

concentrations of the drug at the tumour site while minimising adverse effects on the rest of the body, in contrast to 

conventional methods. The model in this work has aspects of logistic growth, which cover a method for determining 

tumour density and drug concentrations that will eliminate the tumour. Stability analysis is done by solving nonlinear 

equations and finding stable and unstable points, where the coordinates of the stable points represent the tumour 

density and the amount of drug. The stability of the equilibrium point for the model and illustrative numerical examples 

are provided to show the accuracy of the model. 
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1.  INTRODUCTION 

Tumours cause mortality globally, and their therapies are diverse and inconsistently effective. The 

four primary modalities of cancer treatment are surgery, chemotherapy, radiation, and 
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immunotherapy [1]. This research examines cancer therapy by chemotherapy using an infusion 

pump. Chemotherapy is a cancer treatment that employs pharmaceuticals to eradicate cancer cells  

[2]. Numerous varieties of chemotherapeutic agents exist, although they all function in the same 

manner, namely they inhibit the proliferation of cancer cells, hence obstructing their growth and 

dissemination inside the body [2].  An infusion pump is a medical apparatus that administers fluids, 

including nutrients and drugs, to a patient's body in regulated quantities. It may provide nutrition 

or pharmaceuticals, including insulin, other hormones, antibiotics, chemotherapeutic agents, and 

analgesics [3]. Recent researchers have presented mathematical model studies on tumour 

chemotherapy [4],[5], [6],[7],[8],[9],[10],[11],[12]. The following articles studied infusion pump 

therapy [13],[14],[15],[16], [17]. In our research, we will control the amount of doses that enter 

the patient’s body through the device via Michaelis-Menten kinetics. In this model, the flat circular 

infusion device has been surgically implanted in patients requiring prolonged drug therapy. This 

intervention effectively reduces inflammation in external infusion devices and improves mobility. 

The use of insulin infusion for diabetes management and cancer treatment is considered an 

experimental approach. The developers of this device propose the use of heparin for the 

management of thromboembolic disorders, dopamine for the treatment of Parkinson’s disease, and 

hormones for the treatment of other neurological disorders, delivered directly to the body [1]. The 

internal infusion pump can be reconstructed without surgical intervention; however, there are 

drawbacks associated with its construction. Apart from these medical considerations, we will 

analyse how mathematical models, such as the one described earlier, help to clarify the process of 

setting up and controlling the infusion pump. According to our assumptions, it is now possible to 

describe the course of chemotherapy as a system of equations involving the drug C and the tumour 

cells w.  

This paper is laid out as follows: in the second section, we formulate the equations and draw the 

schematic diagram, and then correct the equations according to the units of each term to balance 

the equations and reduce the number of variables in the equations by doing the 

nondimensionalisation of the model equations. In the third section,  we find the equilibrium points 

and test them in terms of whether they are stable or unstable. In the fourth section,   we take 
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numerical examples according to certain conditions discussed in each case and draw them in the 

MATHEMATICA program and numerically in the MATLAB program,  noting the agreement of 

the solution with the numerical solution. Finally, in section five, we present our conclusions. 

2.  FORMULATING THE MODEL 

We begin with a schematic illustration of the application of cancer chemotherapy between tumour 

volume and drug concentration by an infusion pump as shown in Fig. 1. F refers to the flow rate 

of the pump and u to the rate of blood flow away from the tumour site. In many situations, drugs 

that sustain the health of a patient cannot be administered orally but must be injected directly into 

the circulation. This can be done with serial injections, or in particular instances, using continuous 

infusion, which delivers some constant level of medication over an extended time interval. 

 

Figure 1. Logistic modeling device for continuous infusion chemotherapy, a tumour (w) is 

considered to be a group of identical cells, all of which are uniformly exposed to C units of the 

drug.  

 

The appropriate word equations are, now, the system of equations involving the tumour cell 𝑤 

and the drug C equation which might contain terms as follows 

(1) {
rate change of 

tumour for time
} = {

growth rate of
 cells

} − {
drug induced

 death rate
}, 

w=tumour 

cell 

𝑪𝟎 

C=drug units 

F 

Blood inflow 

Removal rate 

u 
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(2) 

 
{
rate change of 
drug for time

} = {
rate drug 

infused
} − {

rate of 
uptake 
by cells

} − {
rate of

 removal by 
 the circulation

}, 

we assume that 𝑤 is the number of tumour cells per unit of blood volume. 

C is the number of drug units in circulation per unit of blood volume. 

Now, we will write what each term in Eqs. ((1)-(2)) represents 

(3) 

 

{
rate change of 

tumour for time
} =

dw

dt
, 

 the tumour grows logistically, where M is the caring capacity 

(4) 

 

 

{
growth rate of

 cells
} = A(𝐶)w(1 −

𝑤

𝑀
), 

and 

(5) 

 

{
drug induced

 death rate
} = Fw (1 −

𝑤

𝑀
). 

On the other hand, the rate change of drug is defined as 

(6) 

 

{
rate change of 
drug for time

} =
dC

dt
, 

where the three terms in Eq . (2) are,  

(7) 

 

{
rate drug 

infused
} = F𝐶0, 

(8) 

 
{

rate of 
uptake 
by cells

} = −α A(𝐶)w(1 −
𝑤

𝑀
), 

and 

(9) 

 
{

rate of
 removal by 

 the circulation

} = −uC. 

We are combining the assumptions of a rate change of tumour for time t with a rate change of 

drug for the time of differential equations. 

Putting together the assumptions of Eqs. (3),(4), and (5) in Eq. (1), we get 
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(10) 

 

𝑑𝑤

𝑑𝑡
= A(𝐶)𝑤(1 −

𝑤

𝑀
) − 𝐹𝑤(1 −

𝑤

𝑀
). 

By substituting Eqs. (6),(7),(8), and (9) in Eq. (2), we get 

(11) 

 

𝑑𝐶

𝑑𝑡
= 𝐹𝐶0 − 𝛼 𝐴(𝐶)𝑤 (1 −

𝑤

𝑀
) − 𝑢𝐶. 

The parameters in the above system and their descriptions are summarised in Table 1. 

 

Table 1. Summary of the quantities and model parameters and dimensions of the model Eqs. 

(10) and (11) 

 

2.1  Corrected Version 

By writing the exact dimension of Eqs. (10) and (11) we find they are not quite correct, so we 

now have to discover the mistakes made in writing them. 

dw

dt
= A(C)𝑤(1 −

𝑤

𝑀
) − 𝐹𝑤(1 −

𝑤

𝑀
), 

Quantity Description Dimensions 

𝑪𝟎 The concentration of drug solution in the infusion pump (Mass/Volume) 

C The concentration of drug solution in a patient body (Mass/Volume) 

F The pump flow rate  (Volume/unit 

time) 

V The volume of the blood in direct contact with the tumour area Volume 

u Rate of blood flow away from the tumour site (Volume/unit 

time) 

𝛂 Drug exhaustion rate  (Mass/Number) 

𝐰 The number of tumour cells per unit of blood volume (tumour density) (Number/Volume) 

𝐀𝐦𝐚𝐱 The maximal tumour reproduction rate (1/unit time) 

𝐀𝐧 The amount of medication at which the growth rate is in the middle of 

the upper limit 

(Mass/Volume) 

A(C) The tumour growth rate and drug consumption (1/unit time) 

M The carrying capacity of the tumour volume (Number/Volume) 
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number

volume∗time
=

1

time
∗

number

volume
(1 −

number

volume
number

volume

) −
volume

time
∗

number

volume
(1 −

number

volume
number

volume

), 

We discovered an inconsistency in the second term for Eq. (10) by looking at the dimensions; one 

way to correct this problem is to divide Fw by the quantity that holds the size dimensions. Since 

the only parameter available is V, we can regard 
Fw

V
, as the appropriate correction. Note that Fw is 

the number of tumour  cells leaving per unit of time, so 
𝐹𝑤

𝑉
,  is the effective density of tumour cells  

leaving per unit of time, thus we find the following corrected version of Eq. (10). 

(12) 

 

𝑑𝑤

𝑑𝑡
= A(𝐶)𝑤(1 −

𝑤

𝑀
) −

𝐹𝑤

𝑉
(1 −

𝑤

𝑀
), 

Now, we write a corrected version of Eq. (11). 

dC

dt
= 𝐹𝐶0 − 𝛼 𝐴(𝐶)𝑤(1 −

𝑤

𝑀
) − uC, 

mass

volume∗time
=

volume

time
∗

mass

volume
−

mass

number
∗

1

time
∗

number

volume
(1 −

number

volume
number

volume

) −
volume

time
∗  

mass

volume
. 

A similar analysis applied to Eq.(11), and reveals that the terms  FC0 and uc should be divided 

by 𝑉 after correcting by the same procedure, thus we arrive at the following corrected version of 

Eq. (13), 

(13) 

 

𝑑𝐶

𝑑𝑡
=

𝐹𝐶0

𝑉
− 𝛼 𝐴(𝐶)𝑤 (1 −

𝑤

𝑀
) −

𝑢𝐶

𝑉
. 

2.2  Michaelis-Menten Kinetics 

The growth rate increases with drug availability only to a certain threshold. The individual tumour 

cells can only absorb drugs and proliferate at a restricted pace. A mechanism that exemplifies this 

phenomenon is the Michaelis-Menten kinetics, 

(14) 

 

     𝐴(𝐶) =
𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
 . 

As shown in Fig.2, the interaction of tumours with drugs is based on the drug catalysis of cell 

tumours, which is based on a similar model of enzyme catalysis by Michaelis and Menten, 

developed in  [19] . Kinetics are characterised by a maximal rate of drug growth rate (denoted. 𝐴𝑚𝑎𝑥) 
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and sensitivity to concentration (denoted 𝐴𝑛, referred to as the Michaelis–Menten constant) this 

latter term is the concentration of the drug that causes the growth rate to function at ½ 𝐴𝑚𝑎𝑥  [20] . 

The reaction exhibits a slow rise in percentage when the concentrations are low. When 

concentrations are elevated, the drug’s growth rate does not show a percentage change but reaches 

its maximum rate [21]. 

 

Figure 2. Michaelis-Menten kinetics: tumour growth rate and drug consumption A(C) is 

assumed to be a saturating function of drug concentration. 

Substitute Eq. (14) in Eq. (12) and Eq.(13). 

(15) 

 

𝑑𝑤

𝑑𝑡
= (

𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
) 𝑤(1 −

𝑤

𝑀
) −

𝐹𝑤

𝑉
(1 −

𝑤

𝑀
), 

 

(16) 𝑑𝐶

𝑑𝑡
=

𝐹𝐶0

𝑉
− 𝛼 (

𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
) 𝑤(1 −

𝑤

𝑀
) −

𝑢𝐶

𝑉
 . 

2.3  Nondimensionalisation of the Model  

Rescaling, or nondimensionlising, is the process of transforming a collection of equations (often 

ordinary differential equations or partial differential equations) into dimensionless forms by 

modifying the scale of the variables in the model. For the selection of the optimal rescaling 

technique, we first analyse the situation in which the tumour and medications are uniformly 

distributed throughout space, thus spatially uniform.  

We make a dimensional analysis of Eqs. (15)  and (16). We then substitute  w = w∗ŵ  , C =

C∗Ĉ , t = t∗τ. into Eq. (15), where w∗, C∗ and t∗ are those which have no dimensions and ŵ, Ĉ, τ 

are those which represent the units of measurement. 
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(17) 

 

𝑑𝑤∗�̂�

𝑑𝑡∗𝜏
= (

𝐴𝑚𝑎𝑥C∗�̂�

𝐴𝑛+C∗�̂�
) 𝑤∗�̂�(1 −

𝑤∗�̂�

𝑀
) −

𝐹𝑤∗�̂�

𝑉
(1 −

𝑤∗�̂�

𝑀
). 

Now we multiply both sides by 𝜏, divided by ŵ, and the result is  

(18) 

 

𝑑𝑤∗

𝑑𝑡∗
= 𝜏 (

𝐴𝑚𝑎𝑥C∗�̂�

𝐴𝑛+C∗�̂�
) 𝑤∗(1 −

𝑤∗�̂�

𝑀
) − 𝜏

𝐹𝑤∗

𝑉
(1 −

𝑤∗�̂�

𝑀
), 

We take a common factor (�̂�) from the denominator of the first term. 

(19) 

 

𝑑𝑤∗

𝑑𝑡∗ = 𝜏𝐴𝑚𝑎𝑥 (
C∗

𝐴𝑛
�̂�

+C∗
) 𝑤∗(1 −

𝑤∗�̂�

𝑀
) −

𝜏𝐹

𝑉
𝑤∗(1 −

𝑤∗�̂�

𝑀
). 

We choose,   

(20) 𝜏 =  
𝑉

𝐹
 , �̂� = 𝐴𝑛, and  �̂� = 𝑀, 

substitute Eq. (20) in Eq. (19), 

(21) 

 

𝑑𝑤∗

𝑑𝑡∗
=  

𝑉

𝐹
 𝐴𝑚𝑎𝑥 (

𝐶∗

1 + 𝐶∗
) 𝑤∗(1 − 𝑤∗) −  𝑤∗(1 − 𝑤∗). 

(22) 

 

Let 𝛼1 =  
𝑉

𝐹
 𝐴𝑚𝑎𝑥, 

(23) 

 

𝑑𝑤∗

𝑑𝑡∗ =  𝛼1(1 − 𝑤∗) (
C∗

1+C∗) 𝑤∗ − 𝑤∗(1 − 𝑤∗), 

remove the stars from the equation, so that the final version of Eq.(15) is, 

(24) 

 

𝑑𝑤

𝑑𝑡
= 𝛼1(1 − 𝑤) (

𝐶

1+𝐶
) 𝑤 − 𝑤(1 − 𝑤). 

Now, in a similar method, we  substitute the definitions of the parameters w, C, and t into Eq. 

(16). We then get 

(25) 𝑑C∗�̂�

𝑑𝑡∗𝜏
=

𝐹𝐶0

𝑉
− 𝛼 (

𝐴𝑚𝑎𝑥C∗�̂�

𝐴𝑛+C∗�̂�
) 𝑤∗�̂� (1 −

𝑤∗�̂�

𝑀
) −

𝑢C∗�̂�

𝑉
, 

If we multiply both sides by 𝜏, divided by �̂�, the result is, 

(26) 𝑑𝐶∗

𝑑𝑡∗ = 𝜏

�̂�

𝐹𝐶0

𝑣
−  𝛼𝜏 (

𝐴𝑚𝑎𝑥𝐶∗

𝐴𝑛
�̂�

+𝐶∗
)  𝑤∗  

�̂�

�̂�
(1 −

𝑤∗�̂�

𝑀
) −  𝑢

𝑉
∗ 𝐶∗𝜏, 

 we substitute Eq. (20)  in Eq. (26), 
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(27) 

 

𝑑𝐶∗

𝑑𝑡∗ =
𝑉
𝐹

𝐴𝑛

𝐹

𝑉
 𝐶∘ − 𝛼 

𝑉

𝐹
(

𝐴𝑚𝑎𝑥𝐶∗

1+𝐶∗ ) 𝑤∗ �̂�

�̂�
(1 − 𝑤∗ 𝑀

𝑀
) −

𝑢

𝑉
𝑐∗ 𝑉

𝐹
, 

(28) 𝑑𝐶∗

𝑑𝑡∗ =
𝐶∘

𝐴𝑛
− 𝛼

𝑉

𝐹
  (

𝐴𝑚𝑎𝑥𝐶∗

1+𝐶∗ ) 𝑤∗ �̂�

�̂�
(1 − 𝑤∗) −  

𝑢

𝐹
𝐶∗. 

(29) 

 

𝑑𝐶∗

𝑑𝑡∗ = 𝛼2 − 
𝛼𝑉𝐴𝑚𝑎𝑥�̂�

𝐹�̂�
 .

𝐶∗

1+𝐶∗  𝑤∗(1 − 𝑤∗) −
𝑢

𝐹
𝐶. 

(30) 

 

Let 𝛼2 =  
𝑐∘

𝐴𝑛
, 𝛼3 =

𝛼𝑉𝐴𝑚𝑎𝑥𝑀

𝐹𝐴𝑛
 and 𝛼4 =

𝑢

𝐹
. 

 

(31) 

 

And substitute Eq. (30) in Eq. (29). 

𝑑𝐶∗

𝑑𝑡∗ =  𝛼2 − 𝛼3 (
𝐶∗

1+𝐶∗) 𝑤∗(1 − 𝑤∗) − 𝛼4𝐶.   

We then remove the stars from the equation, 

(32) 

 

𝑑𝐶

𝑑𝑡
=  𝛼2 − 𝛼3𝑤(1 − w) (

𝐶

1+𝐶
) − 𝛼4𝐶. 

The system of Eq. (15) and (16) with eight parameters is transformed to the dimensionless 

system with four parameters after the nondimensionalisation process as 

�̇� = 𝛼1(1 − 𝑤) (
𝐶

1+𝐶
) 𝑤 − 𝑤(1 − 𝑤). (33) 

�̇� = 𝛼2 − 𝛼3𝑤(1 − w) (
𝐶

1+𝐶
) − 𝛼4𝐶. (34) 

Where hypotheses  𝛼1, 𝛼2, 𝛼3, 𝛼4 in Eqs. (22) and (30) are dimensionless values. 

3.  LINEAR STABILITY ANALYSIS 

In this section, we will discuss steady-state solutions for the model and, linear stability analysis 

for the continuous infusion model. 

3.1  Steady-State Solutions for Model 

The equilibrium points (�̅�, 𝐶̅), for the dynamical system can be found by making the right-hand 

of Eqs. (33) and (34) equal to zero as a first step [22], �̇� = 0, �̇� = 0. 

(35) 𝛼1�̅�(1 − �̅�) (
�̅�

1+�̅�
 ) − �̅�(1 − �̅�) = 0. 
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(36) 𝛼2 − 𝛼3�̅�(1 − �̅�) (
�̅�

1+�̅�
 ) − 𝛼4𝐶̅ = 0. 

From Eq. (35),  

 �̅�(1 − �̅�) ( 𝛼1 (
�̅�

1+�̅�
 ) − 1 ) = 0, 

either �̅�(1 − �̅�) = 0, which leads to �̅� = 0 or  �̅� = 1, 𝛼1 (
�̅�

1+�̅�
 ) = 1, which leads to 

(37) C̅

1+C̅
=

1

 α1
 leads to, 𝐶̅ α1 = 1 + C̅, 

(38) C̅ =
1

α1−1
. 

Substituting  w̅ = 0, and �̅� = 1 in Eq. (36), α2 − 0 − 𝛼4𝐶̅ = 0, leads to, 𝐶̅ =
α2

𝛼4
. 

(39) 

 

The first steady-state point is 𝑆1 = ( w̅1 , 𝐶1̅ ) = ( 0,
α2

𝛼4
), and the second steady-state 

point is 𝑆2 = ( w̅2 , 𝐶2̅ ) = ( 1,
α2

𝛼4
). 

Substituting Eq. (38) in Eq. (36) gives 

α2 − 𝛼3�̅�(1 − �̅�) (

1

α1−1

1+
1

α1−1

) − 𝛼4  
1

α1−1
= 0, 

α2 − 𝛼3�̅�(1 − �̅�) (
1

α1
) −  

𝛼4

α1−1
= 0, 

w̅ =
(−1+𝛼1)𝛼3∓√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1α4))

2(−1+𝛼1) 𝛼3
. 

(40) 

 

The third steady state-point is  

 𝑆3 = ( w̅3 , 𝐶3̅) = (
(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1α4))

2(−1+𝛼1) 𝛼3
,

1

α1−1
). 

and the fourth steady-state point is   

𝑆4 = ( w̅4 , 𝐶4̅) = (
(−1+𝛼1)𝛼3−√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1α4))

2(−1+𝛼1) 𝛼3
,

1

α1−1
). 

To summarise this section, the steady-state of the model is 

(41) 𝑆1 = ( w̅1 , 𝐶1̅ ) = ( 0,
α2

𝛼4
). 

(42) 𝑆2 = ( w̅2 , 𝐶2̅) = ( 1,
α2

𝛼4
). 
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(43) 
𝑆3 = ( w̅3 , 𝐶3̅) = (

(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1α4))

2(−1+𝛼1) 𝛼3
,

1

α1−1
), 

(44) 
𝑆4 = ( w̅4 , 𝐶4̅) = (

(−1+𝛼1)𝛼3−√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1α4))

2(−1+𝛼1) 𝛼3
,

1

α1−1
). 

In the next section, we shall try to determine whether 𝑆1,  𝑆2,  𝑆3 and 𝑆4 are stable steady-states. 

3.2  Linear Stability Analysis for Continuous Infusion Model 

Linearisation is the use of analytical techniques specifically developed for studying linear systems 

to analyse the properties of a nonlinear function close to a precise point. The linearisation of a 

function is the identification of the first-order term of its Taylor expansion in the vicinity of the 

end of interest inside a system defined by the described equation [23]. The Jacobian matrix 

eigenvalues calculated at a hyperbolic equilibrium point may be used in the stability analysis of 

autonomous systems to determine the properties of that equilibrium. Presented below is a 

comprehensive explanation of the linearisation theorem. Further clarification is required for 

linearisation in time-varying systems [24], where the stability criteria are 𝑇𝑟(𝐽) < 0 and 𝑑𝑒𝑡(𝐽) >

0. 

If we assume that the right-hand sides of Eqs. (33) and (34) as, 

𝑓(𝑤, 𝐶) = 𝛼1𝑤(1 − 𝑤) (
𝐶

1+𝐶
) − 𝑤(1 − 𝑤). (45) 

𝑔(𝑤, 𝐶) = 𝛼2 − 𝛼3𝑤(1 − 𝑤) (
𝐶

1+𝐶
) − 𝛼4𝐶. (46) 

then the  nonlinear functions f and 𝑔 are assumed to have steady-state solutions, denoted by �̅� 

and 𝐶̅,  

The Jacobin matrix for the nonlinear system Eqs. (45)(46) is 

(47) 

 
𝐽(𝑤, 𝐶) = [

𝜕𝑓

𝜕𝑤

𝜕𝑓

𝜕𝑐
𝜕𝑔

𝜕𝑤
 
𝜕𝑔

𝜕𝑐

], 

where, 

(48) 𝜕𝑓

𝜕𝑤
= −1 + 2𝑤 +

𝐶(1−2𝑤)α1

1+𝐶
 , 

𝜕𝑓

𝜕𝑐
= −

(−1+𝑤)𝑤α1

(1+𝐶)2
, 
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(49) 

 

𝜕𝑔

𝜕𝑤
=

𝐶(−1+2𝑤)α3

1+𝐶
 ,  

𝜕𝑔

𝜕𝑐
=

(−1+𝑤)𝑤α3

(1+𝐶)2 − 𝛼4. 

We then substitute  Eqs (48) and  (49) in Eq (47). 

(50) 

 
𝐽(𝑤, 𝐶) = [

−1 + 2𝑤 +
𝐶(1−2𝑤)α1

1+𝐶
−

(−1+𝑤)𝑤α1

(1+𝐶)2

𝐶(−1+2𝑤)α3

1+𝐶

(−1+𝑤)𝑤α3

(1+𝐶)2 − 𝛼4

]. 

For the first equilibrium point 𝑠1 = (0,
α2

𝛼4
), 

(51) 

 
𝐽𝑆1

= 𝐽 (0,
α2

𝛼4
) = [

−
𝛼2−α1𝛼2+𝛼4

𝛼2+𝛼4
0

−
𝛼2α3

𝛼2+𝛼4
−𝛼4

]. 

𝑇𝑟(𝐽𝑆1
) = 𝑇𝑟𝐽 (0,

𝛼2

𝛼4
) = −

𝛼2−𝛼1𝛼2+𝛼4

𝛼2+𝛼4
− 𝛼4, (52) 

𝑑𝑒𝑡 (𝐽𝑆1
) = 𝑑𝑒𝑡𝐽 (0,

𝛼2

𝛼4
) = −𝛼4 (−

𝛼2−𝛼1𝛼2+𝛼4

𝛼2+𝛼4
) = 𝛼4 (

𝛼2−𝛼1𝛼2+𝛼4

𝛼2+𝛼4
). (53) 

For the second equilibrium point 𝑠2 = (1,
α2

𝛼4
), 

(54) 

 
𝐽𝑆2

= 𝐽 (1,
α2

𝛼4
) = [

𝛼2−α1𝛼2+𝛼4

𝛼2+𝛼4
0

𝛼2α3

𝛼2+𝛼4
−𝛼4

]. 

𝑇𝑟(𝐽𝑆2
) = 𝑇𝑟𝐽 (1,

𝛼2

𝛼4
) =

𝛼2−𝛼1𝛼2+𝛼4

𝛼2+𝛼4
− 𝛼4, (55) 

𝑑𝑒𝑡 (𝐽𝑆2
) = 𝑑𝑒𝑡𝐽 (1,

𝛼2

𝛼4
) = −𝛼4 (

𝛼2−𝛼1𝛼2+𝛼4

𝛼2+𝛼4
). (56) 

For the third equilibrium point 

 𝑠3 = (
(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4))

2(−1+𝛼1) 𝛼3
,

1

𝛼1−1
), 

𝐽𝑆3
= 𝐽 (

(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4))

2(−1+𝛼1) 𝛼3
,

1

𝛼1−1
) =

[
0 

(−1+𝛼1)((−1+𝛼1)𝛼2−𝛼4)

𝛼3

√(−1+𝛼1)𝛼3[(−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4]

(−1+𝛼1)𝛼1
−

(−1+𝛼1)2𝛼2+𝛼4

𝛼1

], 

(57) 

𝑇𝑟(𝐽𝑆3
) = − (

(−1+𝛼1)2𝛼2+𝛼4

𝛼1
). (58) 
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𝑑𝑒𝑡(𝐽𝑆3
) =

((−1+𝛼1)𝛼2−𝛼4)√(−1+𝛼1)𝛼3[−4𝛼1
2𝛼2−𝛼3+𝛼1(4𝛼2+𝛼3+4𝛼4)]

𝛼1𝛼3
, 

(59) 

For the fourth equilibrium point 𝑠4 =

(
(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4))

2(−1+𝛼1) 𝛼3
,

1

𝛼1−1
) =, 

𝐽𝑆4
= 𝐽 (

(−1+𝛼1)𝛼3+√(−1+𝛼1)𝛼3((−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4))

2(−1+𝛼1) 𝛼3
,

1

𝛼1−1
) =

[
0 

(−1+𝛼1)((−1+𝛼1)𝛼2−𝛼4)

𝛼3

−
√(−1+𝛼1)𝛼3[(−1+𝛼1)(−4𝛼1𝛼2+𝛼3)+4𝛼1𝛼4]

(−1+𝛼1)𝛼1
−

(−1+𝛼1)2𝛼2+𝛼4

𝛼1

]. 

(60) 

𝑇𝑟(𝐽𝑆4
) = −

(−1+𝛼1)2𝛼2+𝛼4

𝛼1
, it is clear that 𝑇𝑟(𝐽𝑆4

) < 0. (61) 

𝑑𝑒𝑡(𝐽𝑆4
) =

(−((−1+𝛼1)𝛼2)+𝛼4)√(−1+𝛼1)𝛼3[−4𝛼1
2𝛼2−𝛼3+𝛼1[4𝛼2+𝛼3+4𝛼4]]

𝛼1𝛼3
, 

(62) 

The trace and determent values change depending on the values of the α1 , α2, α3 , α4 , and 

according to the determination and tracking values we determine whether the point is stable or 

unstable. 

In conclusion to the delivery of drugs by continuous infusion system, we will interpret the various 

results to extract helpful information from the mathematical analysis. To summarise our findings, 

we have determined that a sensibly operating delivery of drugs will always have a stable steady-

state solution with the tumour. Remember that this equilibrium can be biologically meaningful 

provided that, 𝛼1,𝛼2, 𝛼3 and 𝛼4 satisfy the inequalities 

𝛼1 > 1. From Eq. (38), 𝛼1 − 1 > 0, leads to 𝛼1 > 1, (63) 

The steady-state points appear in five cases according to the conditions which are summarised in 

Table 2. 
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Table 2. Cases and conditions under which points appear.  

Cases Conditions Point 1 Point 1  Point 3 Point 4 

Case 1 0 < 𝛼1 ≤ 1 Yes Yes No No 

Case 2 1 < 𝛼1 < 1 +
α4

𝛼2

 Yes Yes No Yes 

Case 3 𝛼1 = 1 +
α4

𝛼2

 Yes Yes No No 

Case 4 𝛼1 > 1 +
α4

𝛼2
  and 𝛼3 > 4𝛼1 (𝛼2 −

𝛼4

𝛼1−1
) Yes Yes Yes Yes 

Case 5 𝛼1 > 1 +
α4

𝛼2
  and 𝛼3 < 4𝛼1 (𝛼2 −

𝛼4

𝛼1−1
) Yes Yes No No 

Note that in the table above.  

• Yes, mean 𝑤 ≥ 0 and 𝑐 ≥ 0. 

• No, mean 𝑤 < 0 and 𝑐 < 0.  

4.  NUMERICAL RESULTS AND DISCUSSION 

In this section, the interaction between tumour volume and drug concentration by the infusion 

pump is studied. We apply a numerical case for the five substitute values in Table 3 and Table 4. 

MATHEMATICA codes are used to find the equilibrium points of the model in Eqs. (45) and (46) 

and draw phase-plane diagrams;  phase diagrams can depict each of these situations graphically.  

MATLAB R2023a is used to find out the numerical solution of the system of Eqs. (45) and (46), 

where the blue curve indicates the tumour density and the red curve indicates the drug 

concentration. 

4.1 Standard Parameters Set 

To apply numerical examples to Eqs. (35) and (36), we must choose values that satisfy the 

conditions in Table 2 and take different cases to show what happens in each case; therefore, we 

choose the set of parameters mentioned in Table 3. For the parameter V, according to a 2020 article, 

[25], there are around 10.5 pints (5 litres) mean (V=5000 ml) of blood in the average human adult 

body, although this will vary depending on various factors. The parameter F is theoretically known 

since they are calibrated by the manufacturer of the pump; atypical value of F is in the range of (1-

6 ml/day) [26]. 𝐴𝑚𝑎𝑥 is the maximal tumour reproduction rate I and is equal to the amount of the 

dose given. If we take the value of the dose given in the logistic model [7], 𝑟 =0.022828 this leads 
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to 𝐴𝑚𝑎𝑥 = 0.022828. 𝐴𝑛 is defined as the  amount of medication at which the growth rate is in 

the middle of the upper limit 𝐴𝑛 = 0.022828. 

Table 3. The value of model parameters and their units. 

Symbol Description Typical value Unite Source 

𝑉 The volume of the blood in 

direct contact with the tumour 

area 

131.41755, 394.25267, 

525.67022, 657.08778, 

657.08778. 

𝑀𝑙 [25] 

F The pump flow rate 6 (Ml/day) [26] 

𝐴𝑚𝑎𝑥 The maximal tumour 

reproduction rate 

0.022828 (1/day) [7] 

𝐶∘ The concentration of the drug 

in the infusion pump 

0.022828 (Mass/ml) [7] 

𝐴𝑛 The amount of medication at 

which the growth rate is in the 

middle of the upper limit 

0.022828 

 

(Mass/ ml) estimated 

𝑀 Carrying capacity 15.21866, 15.21866, 15.21866, 

58.33771,  58.33771. 

(Number/volume

) 

estimated 

𝛼 The drug exhaustion rate 0.0005. (Mass/number) estimated 

𝑈 Rate of blood flow away from 

the tumour site. 

4.39. ( Ml/day) estimated 

We will substitute the values  in Table 3. into Eqs. (22) and (31) we will get the values of 𝛼1, 𝛼2, 

𝛼3 and 𝛼4 as in the following Table 4. 

Table 4. Dimensionless parameter values of the model.  

Nondimensional 

parameter 

Dimension form value Unite 

𝛼1 
 
𝑉

𝐹
 𝐴𝑚𝑎𝑥 

0.5, 1.5, 2, 2.5, 2.5. dimensionless 

𝛼2  𝐶∘

𝐴𝑛

 
1, 1, 1, 1, 1.  dimensionless 

𝛼3 𝛼𝑣𝐴𝑚𝑎𝑥𝑀

𝐴𝑛

 
 1, 1, 1, 3.8333, 3.333. dimensionless 

𝛼4 𝑢

𝐹
 1, 1, 1, 1, 1. dimensionless 

Finally, the interpretation of these equilibrium points is as follows: Using several examples as 

shown in  Table 4, we solve the equations to find the points and identify the stable and unstable 

points. We take different cases as in Table 2 and observe how the solution behaves. A numerical 
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simulation of the system of  Eqs. (45) and (46) is performed to illustrate the analytical behaviour 

to provide a picture of the level. As a result, the model can be predicted in terms of how it will 

behave under a variety of initial conditions but for a pre-defined set of parameter values. The curve 

(path) of the initial values is shown in Fig.3. Using MATHEMATICA(13.2) and seeing the 

agreement of the qualitative analysis with the numerical solution later, we take the stable points to 

denote the tumour density and the drug dose. 

 

Figure 3. MATHEMATICA generated a phase-plane diagram ( the delivery of drugs by 

continuous infusion of a two-species system) with 

a b 

c d 

e 
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a) Case one If 0 < 𝛼1 ≤ 1 when 𝛼1 = 0.5, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1. 

b) Case two If 1 < 𝛼1 < 1 +
α4

𝛼2
  when 𝛼1 = 1.5, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1. 

c) Case three If 𝛼1 = 1 +
α4

𝛼2
  when 𝛼1 = 2, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1. 

d) Case four If𝛼1 > 1 +
α4

𝛼2
  and 𝛼3 > 4𝛼1 (𝛼2 −

𝛼4

𝛼1−1
), 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 =

3.8333, 𝛼4 = 1. 

e) Case five If𝛼1 > 1 +
α4

𝛼2
  and 𝛼3 < 4𝛼1 (𝛼2 −

𝛼4

𝛼1−1
), 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 =

2.8333,  𝛼4 = 1. 

 

Case Study One, 

It is seen from the numerical results of the first case that meet the condition 0 < 𝛼1 ≤ 1, that it has 

two points, one is stable (0,1) and the other is unstable (1,1) where 𝛼1 = 0.5, 𝛼2 = 1, 𝛼3 = 1, 

and 𝛼4 = 1.  in Fig. 4 (a), and (b) that the tumour goes to the stable point (0,1). We took different 

initial conditions greater than the stable point when the initial condition was w0=0.5, C=1.5 and  

noticed that the curve was heading towards the stable value as in Fig.4(a) and we took different 

initial conditions close to the stable point when the initial condition was w0 =0.5, C=0.5 and 

noticed that the curve was heading towards the stable value as in Fig.4(b) This is consistent with 

the analytical aspect of the problem, which is the linear stability analysis in Fig.3(a). We notice  

that there is one stable point (0,1), so to find the real values with dimension units of tumours and 

drugs, we use w = w∗ŵ = 0 ∗ 15.21866 = 0 (Number/Volume),  C = C∗Ĉ = 1 ∗ 0.022828 =

0.022828 (Mass/Volume). 
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Figure 4. MATLAB numerical results of the delivery of drugs by continuous infusion of a two-

species system, 𝛼1 = 0.5, 𝛼2 = 1, 𝛼3 = 1, 𝛼4 = 1. 

 a) When the initial condition 𝑤0=0.5, C=1.5. b) When the initial condition 𝑤0=0.5, C=0.5. 

Case Study Two 

From the numerical results of the second case that meets the condition,  

1 < 𝛼1 < 1 +
α4

𝛼2
, it is seen that it has three points, two are stable (0,1), (1.82288,2) and the other 

is unstable (1,1) where  𝛼1 = 1.5, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1, in Fig. 5 (a),(b),(c), and (d) the 

tumour goes to the point where the tumour is stable when the point is stable  (0,1). We took 

different initial conditions greater than the stable point when the initial condition was w0=0.5, 

C=1.5 and noticed that the curve is heading towards the stable value as in Fig.5(a) and we took 

different initial conditions close to the stable point when the initial condition was   w0=0.5, C=0.5, 

and noticed that the curve is heading towards the stable value as in Fig.5(b).  When the point was 

stable (1.82288,2) we took different initial conditions greater than the stable point when the initial 

condition was w0=1.9, C=2.2 and we noticed that the curve was heading towards the stable value 

as in Fig.5(c). We took different initial conditions smaller than the stable point when the initial 

condition was w0=1.3, C=1.8, and noticed the curve heading towards the stable value as in Fig.5(d). 

This is consistent with the analytical aspect of the problem, which is the linear stability analysis in 

Fig.3(b). Noting that there are two stable points (0,1) and (1.82288,2), to find the real values with 

dimension units of tumours and drugs, we use w = w∗ŵ = 0 ∗ 15.21866 = 0, C = C∗Ĉ = 1 ∗

0.022828 = 0.022828 , w = w∗ŵ = 1.822880 ∗ 15.21866 = 27.74179  (Number/Volume), 

C = C∗Ĉ = 2 ∗ 0.022828 = 0.045656 (Mass/Volume). 

 a  b 
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Figure 5. MATLAB numerical results of the delivery of drugs by continuous infusion of a two-

species system, 𝛼1 = 1.5, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1 

          a) When the initial condition w0=0.5, C=1.5.b) When the initial condition 𝑤0=0.5, C=0.5. 

           c) When the initial condition w0=1.9, C=2.2.d) When the initial condition w0=1.3, C=1.8. 

 

Case Study Three 

It is seen from the numerical results of the third case that meets the condition.  

𝛼1 = 1 +
α4

𝛼2
, that it has two points, two are stable (0,1), (1,1) where 𝛼1 = 2, 𝛼2 = 1, 𝛼3 = 1, and 

𝛼4 = 1, in Fig. 6 (a),(b),(c), and (d) the tumour goes to the point where the tumour is stable  

 (0,1). We took different initial conditions greater than the stable point when the initial condition 

was  w0=0.5, C=1.5 and noticed the curve heading towards the stable value as in Fig.5(a). We took 

different initial conditions close to the stable point when the initial condition was w0=0.5, C=0.5, 

and noticed that the curve was heading towards the stable value as in Fig.5(b).  When the point 

was stable (1,1) we took different initial conditions greater than the stable point when the initial 

 a 
 b 

 c  d 



20 

SOKAINA SABAH HASSAN, HAYDER M. AL-SAEDI 

condition was w0=1.8, C=1.8, and noticed that the curve was heading towards the stable value as 

in Fig.6(c). We took different initial conditions smaller than the stable point when the initial 

condition was w0=0.9, C=0.9, and noticed that the curve was heading towards the stable value as 

in Fig.6(d). This is consistent with the analytical aspect of the problem, which is the linear stability 

analysis in Fig.3(c). We notice that there are two stable points (0,1) and (1,1), w = w∗ŵ = 0 ∗

15.21866 = 0, C = C∗Ĉ = 1 ∗ 0.022828 = 0.022828. To find the real values with dimension 

units of tumours and drugs, we use w = w∗ŵ = 1 ∗ 15.21866 = 15.21866 (Number/Volume), 

C = C∗Ĉ = 1 ∗ 0.022828 = 0.022828 (Mass/Volume). 

 

Figure 6. MATLAB numerical results of the delivery of drugs by continuous infusion of a two-

species system, 𝛼1 = 2, 𝛼2 = 1, 𝛼3 = 1,  𝛼4 = 1. 

a)     When the initial condition 𝑤0=0.5, C=1.5. b) When the initial condition 𝑤0=0.5, C=0.5. 

b) When the initial condition 𝑤0=1.8, C=1.8. c) When the initial condition 𝑤0=0.9, C=0.9. 

 

a b 

c d 
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Case Study Four 

It is seen from the numerical results of the fourth case that meets the condition,  𝛼1 > 1 +
α4

𝛼2
 and 

 𝛼3 > 4𝛼1 (𝛼2 −
𝛼4

𝛼1−1
), that it has four points, two are stable (1,1), (0.319421,0.666667), and 

two are unstable (0,1), (0.680579,0.666667)  where 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 = 3.8333, 𝛼4 = 1, in 

Fig. 7(a),(b),(c), and (d) the tumour goes to the point where the tumour is stable. We took different 

initial conditions greater than the stable point when the initial condition was w0=1.5, C=1.5 and 

noticed that the curve was heading towards the stable value as in Fig.7(a) and we took different 

initial conditions smaller than the stable point when the initial condition was  w0=0.9, C=0.9, and 

noticed that the curve was heading towards the stable value as in Fig.7(b).  When the point was 

stable, (0.319421,0.666667), we took different initial conditions greater than the stable point 

when the initial condition was w0=0.4, C=0.8, and noticed the curve heading towards the stable 

value as in Fig.7(c). We then  took different initial conditions smaller than the stable point when 

the initial condition was  w0=0.2, C=0.4, and noticed that the curve was heading towards the stable 

value as in Fig.7(d). This is consistent with the analytical aspect of the problem, which is the linear 

stability analysis in Fig.3(d). We notice that there are two stable points (1,1) 

and (0.319421,0.666667), and to find the real values with dimension units of tumours and drugs, 

we use w = w∗ŵ = 1 ∗ 58.33771 = 58.33771 , C = C∗Ĉ = 1 ∗ 0.022828 = 0.022828 , w =

w∗ŵ = 0.319421 ∗ 58.33771 = 18.63428 , where the tumour (w) (Number/Volume),  C =

C∗Ĉ = 0.666667 ∗ 0.022828 = 0.01521, (Mass/Volume). 
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Figure 7. MATLAB numerical results of the delivery of drugs by continuous infusion of a two-

species system, 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 = 3.8333,  𝛼4 = 1. 

       a) When the initial condition 𝑤0=1.5, C=1.5. b) When the initial condition 𝑤0=0.9, C=0.9. 

        c) When the initial condition 𝑤0=0.4, C=0.8. d) When the initial condition 𝑤0=0.2, C=0.4. 

Case Study Five 

It is seen from the numerical results of the fifth case that meets the condition,  

𝛼1 > 1 +
α4

𝛼2
  and 𝛼3 < 4𝛼1 (𝛼2 −

𝛼4

𝛼1−1
) , that it has two points, one is stable (1,1), and one is 

unstable (0,1) where 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 = 2.8333,  𝛼4 = 1, in Fig. 8(a) and (b) the tumour 

goes to the point where the tumour is stable   (1,1). We took different initial conditions greater 

than the stable point when the initial condition was w0=2, C=2, and noticed that the curve was 

heading towards the stable value as in Fig.8(a). We took different initial conditions smaller than 

the stable point when the initial condition was w0=0.8, C=0.9, and noticed that the curve was 

heading towards the stable value as in Fig.8(b).  This is consistent with the analytical aspect of the 

a b 

c d 
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problem, which is the linear stability analysis in Fig.3(e). We notice that there is one stable point 

(1,1), so to find the real values with dimension units of tumours and drugs, we use 

w = w∗ŵ = 1 ∗ 58.33771 = 58.33771, C = C∗Ĉ = 1 ∗ 0.022828 = 0.022828, 

w = w∗ŵ = 1 ∗ 58.33771 = 58.33771, (Number/Volume)   

C = C∗Ĉ = 1 ∗ 0.022828 = 0.022828, (Mass/Volume). 

 

Figure 8. MATLAB numerical results of the delivery of drugs by continuous infusion of a two-

species system, 𝛼1 = 2.5, 𝛼2 = 1, 𝛼3 = 2.8333,  𝛼4 = 1.  

a) When the initial condition 𝑤0=2, C=2. b) When the initial condition 𝑤0=0.8, C=0.9. 

5.  CONCLUSION  

In this paper, we have incorporated logistic growth with Michaelis-Menten kinetics to describe the 

interaction between tumour growth and chemotherapy drug concentration. The formulation of the 

model was corrected and rescaled by a nondimensionalisation process  .The resulting model 

consists of coupled ordinary differential equations with nonlinear source terms describing tumour 

growth and drug exhaustion rate.   One of the main advantages of this approach is that the model 

is amenable to mathematical analysis, providing greater insights into the nature of the numerical 

results. For instance, the linear stability analysis and identify parameter regimes for which stable 

points arise. In the simulations of numerical results and discussion section, the parameter values 

of the kinetics for all five cases guarantee that the tumour cells will decline with using 

chemotherapy drugs via a continuous infusion pump. 

 

a b 
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