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Abstract: Longitudinal data is derived from repeated measurements over time, and when analyzing such data using 

logistic regression models, it is essential to account for the correlations induced by these repeated observations. To 

address this, a random component is incorporated into the linear predictor, transforming the model into a generalized 

linear mixed model (GLMM). In this approach, the linear predictor is no longer purely systematic due to the 

inclusion of the random component. Estimation of parameters in a GLMM cannot rely on the conventional 

maximum likelihood estimation method, as it must account for the random component in the linear predictor. A 

viable alternative is the quasi-likelihood method, which provides a framework for estimating these parameters. 

Among various quasi-likelihood-based approaches, the generalized estimating equation (GEE) is commonly 

employed, as it explicitly incorporates the correlation structure in the data through a specified "working correlation" 

matrix. In particular, an autoregressive structure is often chosen for this matrix. The estimation procedure is then 

carried out iteratively through the Fisher Scoring method, with convergence achieved after several iterations. To 

assess the performance of this methodology, simulation studies are conducted, followed by its application to real-

world data for empirical validation. 
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1. INTRODUCTION 

In survey research, it is often necessary to collect data through repeated measurements, 

resulting in data with a longitudinal structure. Longitudinal data is typically utilized in studies 

examining the correlation of individual changes over time. This type of data is gathered when 

responses are measured from units at multiple time points. One key advantage of longitudinal 

data is its ability to capture the temporal progression of responses in sequence. Additionally, 

longitudinal data often exhibits a characteristic where it is composed of numerous clusters, each 

of which tends to be relatively small in size. 

The primary objective of longitudinal data analysis is to investigate the effects of covariates 

at each level on the response, as well as the impact of changes in the response over time. A key 

advantage of longitudinal data analysis is its ability to distinguish between cross-sectional effects 

and those arising from repeated measurements. Furthermore, this approach allows for the 

examination of variability both in response levels and in changes over time across different units. 

Unaccounted-for variance in the observed variables creates dependencies between responses, 

even when covariates are controlled for. This undermines the assumptions of standard linear 

regression models and must be addressed to ensure valid inferences. Typically, repeated 

measurement data is categorized as either balanced or unbalanced. Data is considered balanced if 

all units are measured at the same time points, whereas it is regarded as unbalanced when units 

are measured at varying time points. 

Logistic regression is a regression model designed for binary outcomes, where parameter 

estimation typically utilizes the maximum likelihood estimation (MLE) method, assuming 

independent and identically distributed data. However, in the context of longitudinal data, the 

assumption of independence is violated due to the correlation induced by repeated measurements. 

As a result, the standard logistic regression model cannot be estimated using MLE, as this 

method does not account for the correlations between observations. 

To address this issue, various approaches have been proposed for analyzing logistic regression 

models with longitudinal data. One of the most common methods is the generalized linear mixed 
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model (GLMM). While the GLMM accommodates the correlation between repeated 

measurements, it still requires assumptions regarding the distribution of the response variable. 

Furthermore, it may be insufficient if the correlation structure between responses is not properly 

incorporated, as the model does not explicitly account for this element. 

The primary goal of longitudinal data analysis is to examine the effects of covariates on the 

response variable, both at each individual level and across time. This type of analysis allows 

researchers to separate cross-sectional effects from those due to repeated measurements. 

Additionally, longitudinal data enables the exploration of variability in both response levels and 

changes over time across different units. Unexplained variance in the observed data can create 

dependencies between responses, even after accounting for covariates, thereby violating the 

assumptions of ordinary linear regression models. These dependencies must be addressed to 

avoid erroneous conclusions. 

Longitudinal data, particularly in the context of repeated measurements, can be classified as 

either balanced or unbalanced. Balanced data refers to situations where all units are measured at 

the same time points, while unbalanced data arises when measurements are taken at different 

time intervals for each unit. 

For categorical responses, the generalized linear model (GLM) is commonly employed. Like 

logistic regression, the GLM also uses maximum likelihood estimation based on the assumption 

of independent and identically distributed data. However, this assumption is not met in 

longitudinal studies due to the correlation between repeated observations. Consequently, the 

GLM cannot be appropriately estimated using MLE without adjustments to account for the 

correlation structure. 

To analyze longitudinal categorical data, such as the probability of layoffs, researchers often 

apply the generalized linear mixed model. In this case, layoffs are a binary or count response, 

with the binary response indicating whether layoffs occur and the count response reflecting the 

number of employees laid off. As layoffs are measured annually, the data exhibits a longitudinal 

structure. The generalized linear mixed model, along with the generalized estimating equation 

(GEE) method, provides a robust framework for estimating the parameters in this context. The 
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quasi-likelihood approach used within GEE helps address the correlation between repeated 

measurements, making it a suitable choice for analyzing such longitudinal data. 

 

2. MATERIALS AND METHODS 

 The general linear model for longitudinal data structures is the generalized linear mixed 

model, which has the following mathematical equation: 

g(μ) = Xβ + u                     (1) 

where μ = E(yij) is the expectation of the response yij, X is a matrix of independent variables β is 

a vector of regression coefficients and u is a vector of random components. g(.) is a link function  

which depends on its random components.  

 Generalized linear mixed model (GLMM) is a regression model that cannot be explained as 

a linear combination of its coefficients so that the response vector is no longer normally 

distributed. GLMM is a development of GLM by adding random components to its systematic 

components. 

Parameter estimation method for data containing correlation structure such as longitudinal 

data without requiring strict distribution assumption can use generalized estimating equation. 

The advantage of this method is that the computational method for this method is simpler than 

the generalized linear model. In addition, this method also does not require multivariate 

distribution assumptions. Another advantage is that the resulting estimator is consistent even 

though there is a specification error in the correlation structure used and can be applied to 

incomplete data or missing data, with missing observations being missing completely at random 

(MCAR) [2]. 

Generalized estimating equations (GEE), first introduced in 1986 by Liang and Zeger [4], 

has become more popular in various fields of science. Hardin and Hilbe [3] stated that although 

the Generalized Linear Model (GLM) is a powerful and flexible method to use, its analysis is 

limited, the assumption of GLM is that each individual must be independent of other individuals. 

However, in longitudinal data this assumption may not be met. The main advantage of using 
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GEE lies in the results of consistent and unbiased parameter estimates, even when the correlation 

structure is miss-specified [5]. GEE is an adjustment to GLM when the data is correlated, so this 

method can be applied to various response variables that are often encountered in empirical 

applications (eg, continuous, polychotomous, dichotomous, and enumeration data). Although 

GEE does not require data to follow a particular distribution, it assumes that the variance of the 

response variable is described as an expectation function. 

One of the important things that distinguishes GEE from other methods is the presence of 

a correlation structure included in its parameter estimation. This correlation structure is called the 

Working Correlation Matrix (WCM). Determining WCM is highly dependent on the correlation 

conditions that occur in the data used. According to Liang and Zeger [4], GEE remains robust 

even if the WCM used is not appropriate. Some WCM options that can be used are Independent 

Structure, Exchangeable Structure, Autoregresive Structure and Unstructured Correlation [6]. 

For longitudinal data, the appropriate WCM is Autoregresive Structure. 

    𝑅𝑖(𝛼) =

[
 
 
 
 

1 𝛼 𝛼2 … 𝛼𝑁−1

𝛼 1 𝛼 … 𝛼𝑁−2

𝛼2 𝛼 1 … 𝛼𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮
𝛼𝑁−1 𝛼𝑁−2 … 𝛼 1 ]

 
 
 
 

                                              (2) 

where: 𝛼𝑡 = ∅∑ 𝒆𝒊𝒋𝒆𝒊,𝒕+𝟏
′𝑁

𝑖=1 (⁄ 𝑁𝑇 − 𝐾) , 𝛼 = ∑ 𝑎𝑡
𝑇−1
𝑡=1 (⁄ 𝑇 − 1)  and ∅  is dispersion 

parameter. 

The logistic model used for longitudinal data is as follows 

   𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) = 𝑿𝑖𝑗
′ 𝜷         (3) 

For i = 1, 2, … n and j = 1, 2, … , mi.  Where mj  many repeated measurements of i-th unit, 

n is a number of observations, πij is the probability of success for i-th unit in j-th time and β is the 

vector of regression coefficients. 

To estimate the parameters in Equation (3) we must take into account the existence of 

WCM as in Equation (2) so that the parameter estimation cannot use the maximum likelihood 

method. The method used is to maximize the log-likelihood function based on the normal 

distribution even without fulfilling the normality assumption of the response. The resulting 
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likelihood function is called quasi-likelihood. GEE modifies the log-likelihood function by 

inserting WCM into an equation that takes into account the correlation in the data [2]. The quasi-

score likelihood equation is stated as: 

          𝑈(𝛼, 𝛽) = ∑ ∑ 𝜔𝑖𝑗𝑫𝑖𝑗
′ 𝑽𝑖𝑗

−1𝑆𝑖𝑗 = 0
𝑚𝑖
𝑗=1

𝑛
𝑖=1                     (4) 

where: 𝑫𝑖 =
𝜕𝜋𝑖𝑗

𝜕𝛽
= 𝑨𝑖𝑗𝑿𝑖𝑗   and  𝑽𝑖𝑗 = 𝑨

𝑖𝑗

1

2 𝑹(𝛼)𝑨
𝑖𝑗

1

2   

  𝑨𝑖𝑗 = 𝑑𝑖𝑎𝑔{𝜋𝑖𝑗(1 − 𝜋𝑖𝑗)}   and  𝑆𝑖𝑗 = 𝑌𝑖𝑗 − 𝜋𝑖𝑗 

where 𝑅(𝛼) is WCM from 𝑌𝑖1, . . . , 𝑌𝑖𝑗, correltion structure for longitudinal data using the 

autoregression structure correlation matrix as in Equation (2). When Equation (4) is reduced 

against β it will produce the following equation: 

     𝑰 = ∑ ∑ 𝜔𝑖𝑗𝑫𝑖𝑗
′ 𝑽𝑖𝑗

−1𝑫𝑖𝑗
𝑚𝑖
𝑗=1

𝑛
𝑖=1  (5) 

where: 

 �̂� =
𝑛

𝑛−1
∑ (𝑩𝑖 − 𝑩)(𝑩𝑖 − 𝑩)

′𝑛
𝑖=1  

 𝑩𝑖 = ∑ 𝜔𝑖𝑗𝑿𝑖𝑗
′ 𝐴𝑖𝑗

1 2⁄
�̂�(𝛼)−1�̂�𝑖𝑗

1 2⁄𝑚𝑖
𝑗=1 𝑿𝑖𝑗   and   𝑩 =

1

𝑛
∑ 𝑩𝑖

𝑛
𝑖=1  

Equation (1) is not linear in the parameter 𝛽, so that it requires an optimization method to 

obtain the solution.. The optimization method used to obtain �̂�  is the Fisher Scoring Method. 

Based on [7], the Fisher scoring method equation for quasi-likelihood is as follows: 

   𝜷(𝑡+1) = 𝜷(𝒕) − (∑ 𝜔𝑖𝑗𝑫𝑖𝑗
(𝑡)′

𝑖,𝑗 𝑽𝑖𝑗
(𝑡)−1

𝑫𝑖𝑗
(𝑡)

)
−1

(∑ 𝜔𝑖𝑗𝑫𝑖𝑗
(𝑡)′

𝑖,𝑗 𝑽𝑖𝑗
(𝑡)−1

(𝑌𝑖𝑗 − 𝜋𝑖𝑗
(𝑡)

))                   (6) 

The process is iterated until convergence is achieved. According to [1], the measure of 

convergence that can be used is : 

    
|𝜷(𝑡+1)−𝜷(𝑡)|

|𝜷(𝑡)|+10−6 < 𝜖 = 10−8 (7) 

For the iteration process, the initial estimated value �̂� at t = 0 is obtained from the 

estimate using the ordinary logistic regression model using maximum likelihood estimation 

without involving correlation elements. Then in the next stage, the estimated value is calculated 

by involving WCM.  
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3. APPLICATION 

In this section, the application of the GEE method will be described through simulation 

studies and applications on real data. We are using simulation studies to determine the 

performance of the GEE estimator for longitudinal data with binary responses for various 

correlation structures and various sample sizes. The simulation procedure used is based on the 

simulation conducted by [8]. Predictor variables are generated as many as from a uniform 

distribution (0.1). The correlation structure used is Autoregression with lag 1 or AR (1) with a 

correlation coefficient value of 0.5. Binary responses are generated using the “mvtbinaryEP” 

package from R software using the probability value  

𝜋𝑖𝑗 =
𝑒𝑥𝑝 (0.5 + 0.6𝑋1𝑗 + 0.6𝑋2𝑗)

1 + 𝑒𝑥𝑝 (0.5 + 0.6𝑋1𝑗 + 0.6𝑋2𝑗)
 

Simulations were performed for sample sizes of 10, 30, 50 and 100 with 5 repeated 

measurements. The simulations were repeated 1000 times. 

The following description is an explanation of real data regarding layoffs from a company 

that will be applied to the proposed method. The global business world in recent decades has 

experienced significant fluctuations. The 2008 global financial crisis and more recently, the 

COVID-19 pandemic, have had a profound impact on the world's economic landscape, including 

Indonesia. One of the direct consequences of these crises is the increasing number of layoffs [9]. 

Layoffs of employees cause a family's income to stop, which can lead to temporary poverty [10]. 

If they do not get a job, it is feared that it will become chronic poverty and increase the poverty 

rate in Indonesia. 

In addressing these issues, the government has enacted PP No. 35 of 2021, Law No. 13 of 

2003, and Law No. 11 of 2021 which require companies to pay severance pay to employees if 

the company lays off employees. With the enactment of these regulations, companies are 

expected to not only view layoffs as an unexpected event, but also as a business risk that can be 

measured and managed. By understanding the chances of layoffs, companies can take proactive 

steps to reduce their negative impacts, both financially and in terms of reputation. The chances of 

layoffs can be the basis for financial risk mitigation for companies in preparing severance fund 
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reserves so that the company's financial health is maintained. 

In estimating the probability of layoffs [11] uses several factors as determinants of the value 

of the probability of layoffs. In general, business demand is consumer behavior towards 

goods/services requested by considering various certain conditions. Business demand is one of 

the important components that is closely related to sales results. The lower the business demand, 

the greater the possibility that a company will not be able to survive for long because it 

experiences financial losses due to declining sales results. In 2013, the US Bureau of Labor 

Statistics through the Mass Layoff Statistics (MLS) program made an observation stating that 

business demand is one of the highest causes of layoffs in the United States. After that, further 

research was conducted by [11]. on business demand factors, organizational restructuring, 

financial problems, and product specifications as causes of layoffs using regression analysis. The 

results showed that business demand had an influence of 20.6% on layoffs that occurred in the 

United States [11]. Seeing this influence, business demand in this study will be used as one of 

the indicators in determining the value of the opportunity for layoffs due to loss of efficiency by 

involving the company's financial ratios. 

Data on layoffs from a company are measured repeatedly annually so that they have a 

longitudinal data structure. Longitudinal data are generally used when research is needed on the 

correlation of individual changes. Longitudinal data are obtained when units determine responses 

at different times. One of the things that can be obtained from longitudinal data is the chronology 

of a response in sequence. Longitudinal data also has the characteristic that the data often 

consists of a large number of clusters, each of which is small in size. 

Computation methods for simulation and application on real data using R software version 

4.3 with the packages “MASS”, “gee” and “geepack” [12]. 

 

4. RESULTS AND DISCUSSION 

 The results of the simulation study of the logistic regression parameter estimator on 

longitudinal data using the GEE method for various sample sizes can be seen in Table 1. 
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Table 1. Simulation results of the GEE method for various sample sizes 

Sample 

Size 

n = 10 n = 30 n = 50 n = 100 

Esimate SE Esimate SE Esimate SE Esimate SE 

β0 -0.1026 0.3661 0.1628 0.2003 0.2665 0.0903 0.3243 0.0342 

β1 1.5324 0.7163 0.9417 0.3143 0.8636 0.1703 0.8321 0.0552 

β2 -0.0092 0.4621 0.2382 0.3421 0.4231 0.0674 0.4351 0.0601 

 

 Based on Table 1, it can be seen that for very small sample sizes, the GEE estimator shows 

very poor performance. This can be seen from the large bias produced and the very large 

standard error. The GEE estimate value for n = 10 has the largest bias value and the largest 

standard error. For each sample size, the largest bias is produced by the β1 estimator, as well as 

the largest standard error is also produced by the β1 estimator except for n = 100, the largest 

standard error is produced by the β2 estimator. As the sample size increases, the performance of 

the GEE estimator improves. This is evidenced by the decreasing estimation bias and the 

increasingly small standard error value. 

 In addition, simulations were also conducted for various WCM structures, namely 

Independent Structure, Exchangeable Structure, Autoregresive Structure and Unstructured 

Correlation for the same sample size of 200. The results of the GEE estimator simulation for the 

logistic regression model for various correlation structures are presented in Table 2. 

Table 2. Simulation Results for various correlation structures 

Correlation 

Structure 

Independet Exchangeable Autoregressive Unstructure 

Esimate SE Esimate SE Esimate SE Esimate SE 

β0 0.3527 0.0258 0.3555 0.0258 0.3602 0.0256 0.3362 0.0261 

β1 0.8855 0.0370 0.8823 0.0374 0.8765 0.0366 0.8946 0.0372 

β2 0.7057 0.0399 0.7121 0.0402 0.6871 0.0395 0.7210 0.0411 

 

Based on the simulation results in Table 2, the GEE estimator for various WCM 

structures shows similar performance. There is no significant difference in the estimator bias or 

standard error value of each WCM structure. This proves that the GEE estimator remains robust 
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even though the selected WCM structure is not appropriate. 

The application on real data uses a binary response, namely whether the company lays off 

or not and three predictor variables, namely Return Of Asset (X1), Asset Turn Over (X2) and Debt 

to Total Asset (X3). The data have been done an exploration process carried out based on the 

procedures in [13]. The working correlation matrix used is autoregression as follows: 

𝑅 =

(

 
 

1 0.696 0.485 0.338 0.235
0.696 1 0.696 0.485 0.338
0.485
0.338
0.235

0.696
0.485
0.338

1 0.696 0.485
0.696 1 0.696
0.485 0.696 1 )

 
 

 

The results of the analysis of layoffs data using the binomial family and AR-M working 

correlation matrix are presented in Table 3 as follows. 

Table 3. Application on Layoffs Data 

  Estimate  Naive S.E. Naive Z Robust S.E.  Robust Z 

β0 -0.7651154 0.3658271  -2.0914673 0.4259170 -1.7963955 

β1 0.5139252 1.7185804 0.2990405 1.2067189 0.4258864 

β2 -0.9729021 0.5338190 -1.8225317 0.7136654 -1.3632469 

β3 -0.3803542 0.8957152 -0.4246374 1.0493044 -0.3624822 

 

Based on Table 3, the regression coefficient estimator related to return on assets is 

positive, meaning it is directly proportional, while the regression coefficient related to asset 

turnover and debt to total assets is negative, meaning it is inversely proportional. The results of 

the analysis also show that the naive standard error method generally produces an 

underestimated estimator. This can be seen from the robust standard error value which is 

generally greater than the naive method. The use of the naive standard error method can affect 

the error in conclusions drawn in hypothesis testing that should be accepted but are rejected. 

Thus, the robust standard error is more recommended to be used. 

 

5. CONCLUSION 

When applied to longitudinal data obtained from repeated measurements, the logistic 
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regression model estimated using the maximum likelihood method may yield biased estimators 

with large variance. To address this issue, the generalized linear mixed model (GLMM) is 

employed, with parameter estimation conducted through a quasi-likelihood approach. One such 

method utilizing quasi-likelihood is the Generalized Estimating Equation (GEE). The GEE is 

considered an appropriate estimator for logistic regression parameters in longitudinal data, as it 

accounts for the correlation between observations by incorporating a working correlation matrix 

into the estimation process. 

The simulation results indicate that the GEE estimator exhibits biased and inefficient 

properties. However, for large sample sizes, the performance of the GEE estimator is quite 

favorable, with a notably small standard error. Additionally, the GEE estimator demonstrates 

robust properties with respect to the working correlation matrix (WCM) structure employed, 

meaning that even when the WCM structure is not perfectly specified, the GEE estimator 

maintains good performance. In this study, the standard error reported is derived from the 

simulation process, and it is recommended that future research use the standard error obtained 

directly from the GEE estimation method. 

Several researchers have utilized the quasi-likelihood method in their studies. For instance, 

[14] applies generalized quasi-likelihood to address overdispersion in longitudinal count data, 

while [15] explores its use in high-dimensional data. Additionally, [16] examines the application 

of quasi-likelihood in generalized linear mixed models (GLMM) for longitudinal data. Another 

method for estimating parameters in GLMMs is the penalized quasi-likelihood approach. This 

technique has been employed by several authors, including [17], who apply bias correction to the 

variance estimator, [18], who incorporates the penalized quasi-likelihood information criterion 

into GLMMs, and [19], who investigates optimal design for GLMM based on penalized quasi-

likelihood. Other estimation methods, such as the Laplace approximation and adaptive 

quadrature, are discussed by [20]. A systematic review of estimation techniques in GLMMs, 

particularly in the field of psychology, is provided by [21]. For future research, we plan to apply 

both the penalized quasi-likelihood and Laplace approximation methods to our data, comparing 

the results with the GEE approach discussed in this paper. 
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The analysis of real data indicates that the naive standard error method typically yields an 

underestimated estimate. Relying on the naive standard error method can lead to errors in 

hypothesis testing, where a conclusion that should have been accepted may instead be rejected. 

Therefore, the use of the robust standard error method is strongly recommended. 
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