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Abstract. The modeling of contagious spread is a well-established concept in the field of infectious diseases.

However, its recent application to the banking system has opened up new avenues for analysis. The theory of

delayed differential systems constitutes an essential mathematical tool for addressing this issue. In this study, we

specifically focus on liquidity risk within the banking system and investigate the global stability with and with-

out this delayed risk. We formulate a model to examine the potential impact of central bank interventions on

the economy, utilizing simulated data from the largest European banks. The methodology emphasizes the impor-

tance of research results and specifies key variables or factors considered in the model. Study objectives focus

on the modeling and analysis of the stability of liquidity risk contagion in the banking system, with a particular

emphasis on the temporal dimension. The connection between modeling contagious spread in infectious diseases

and its recent application in the banking system is well-established. To reach these conclusions, the study em-

ployed a rigorous methodology, integrating advanced mathematical models and in-depth statistical analysis. This

methodological approach led to significant findings that shed new light on the dynamics of liquidity risk conta-

gion in the financial context. The practical implications of these results are crucial for various stakeholders. Risk

managers within financial institutions can utilize our findings to identify potential vulnerabilities and implement

more effective risk management strategies. Policymakers and regulators can use our results to shape monetary and

macroprudential policies aimed at stabilizing the financial system. The study’s global stability perspectives also
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provide a basis for improving crisis management practices, ensuring that institutions are better prepared to han-

dle liquidity shocks. Additionally, integrating advanced modeling techniques encourages innovation in financial

risk management, equipping institutions with enhanced predictive and responsive capabilities. By specifying key

variables such as asset liquidity, interest rates, and other relevant factors, the model provides a solid foundation

for a more comprehensive understanding of the underlying mechanisms of liquidity risk contagion in the banking

system.

Keywords: mathematical analysis; liquidity risk; time delay; dynamic contagion model; banking system; global

stability.
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1. INTRODUCTION

The global banking crisis, which began in the summer of 2007 [1, 2], exposed significant

deficiencies in banking risk management, especially concerning general and liquidity risks.

These risks were often overlooked in favor of other types such as credit risk or market risk.

Liquidity, defined as an institution’s ability to fulfill its obligations as they come due, is a

critical component of the banking sector. The interbank market, which facilitates connections

between banks through interbank deposits and credit lines, plays a vital role in maintaining the

overall liquidity of the banking system [3].

Financial markets have become more interconnected due to globalization and technological

advancements, leading to greater market efficiency but also increased risks of financial conta-

gion and systemic risk. This interconnectedness means that shocks in one market can quickly

spread to others, as evidenced by recent events such as the collapse of Silicon Valley Bank

(SVB). Recent studies on the SVB collapse have highlighted its negative impact on global

stock markets and the increase in abnormal volatility, underscoring the fragility of the financial

system. The SVB bankruptcy, the second largest bank failure in U.S. history, caused significant

disruptions globally, affecting markets in the UK, Australia, China, Japan, South Korea, and

Europe.[4, 5, 6, 7]are notable studies on this topic.

Contagion of liquidity risk often spreads through credit lines between banks. When certain

banks are financially dependent on these credit lines, their depletion can lead to contagion of

liquidity risk throughout the banking system [8].
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According to the reference study [9], contagion refers to the probability of a crisis in one

country spreading to other countries due to a similar event.

Mathematical modeling of liquidity risk contagion in the banking system has gained increas-

ing interest among researchers and practitioners. The use of delayed differential equations pro-

vides a precise approach to study the propagation of liquidity risk with delays. These equations

allow for the consideration of temporal dependencies of state variables and a better understand-

ing of the dynamics of the banking system [8].

The mathematical modeling of liquidity risk contagion in the banking system is an important

area of research with practical applications in risk management and financial stability. Delayed

differential equations offer a solid mathematical framework to study this complex phenomenon

and provide valuable insights for decision-makers and practitioners in the banking sector [8, 10,

11, 12, 13, 14].

In this article, we propose a mathematical model with delay to study this problem. The rest

of this article is organized as follows: Section 2 presents a review of related work concerning

the techniques used for modeling liquidity risk contagion in the banking system. Section 3 ad-

dresses the boundedness and positivity of the solutions. Section 4 describes the stability analysis

of the solutions. In Section 5, we illustrate the theoretical results with numerical simulations,

while Section 6 enumerates the conclusions.

2. LITERATURE REVIEW

In recent years, several studies have explored the modeling of liquidity risk contagion using

delayed differential equations. In references [10, 11, 12, 13, 14], the authors have used the SIR

(Susceptible-Infectious-Recovered) model for modeling liquidity risk contagion in the banking

system.

In reference [14], the authors have proposed an effective model for the propagation of liquid-

ity shocks in the interbank market, using a contagion mechanism similar to epidemic models.

The primary goal of this model is to assess systemic liquidity risk, particularly funding liq-

uidity risk, by incorporating the specific properties of banks and the structure of the European

interbank network. The model measures potential systemic risk using simplified dynamics and

aggregated balance sheet data, offering a less complex alternative to detailed models. The study
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also emphasizes the importance of understanding and monitoring systemic liquidity risk for

macroprudential policy and financial stability. However, the model uses a simplified contagion

process to represent liquidity shocks. This simplification may not capture all the complexities

and nuances of real liquidity dynamics, especially during a financial crisis. The model relies

on aggregated balance sheet data, which may not provide the necessary granularity to accu-

rately assess systemic risk. More detailed data, such as exposures broken down by seniority

or contract type, could offer better insights. The model does not account for how banks might

reallocate assets in response to shocks, nor for interventions by central banks or governments.

These factors can significantly influence real outcomes during a liquidity crisis. The model

depends on several assumptions and parameters, which may not be entirely accurate or reflect

real-world conditions. These assumptions could affect the reliability of the results. The study

focuses on the European interbank market, which may limit the generalization of the results

to other regions or global financial systems. While the model is simpler and requires less de-

tailed data, it may not be as accurate or comprehensive as more sophisticated approaches. The

trade-off between simplicity and accuracy could be a limitation.

On the other hand, references [15, 16] both use the SIR model but differ in the details of the

studies and the types of epidemiological models discussed. They discuss the theory of optimal

control, with more details on specific interventions in the first article. This one focuses on the

various applications of epidemiological models and only mentions the crisis at the beginning

of the 21st century. Meanwhile, the second draws an analogy with infectious diseases and

emphasizes globalization and the 2008 financial crisis, favoring a robust theoretical framework.

This methodological approach is often limited to a local perspective of stability, placing less

emphasis on complex temporal dependencies and delays in risk transmission, as well as less

importance on the impact of central bank policies and overall stability. A model that may lack

details on precise temporal dynamics and delayed effects. We can summarize the weaknesses

of the approach used in these studies in the following three points:

(1) Although epidemiological models like SIR are useful, their direct application to finan-

cial systems can overly simplify the complexity of economic interactions. Financial



LIQUIDITY RISK CONTAGION IN THE BANKING SYSTEM WITH TIME DELAY 5

dynamics can be influenced by many factors not accounted for by these simple epi-

demiological models,

(2) Monte Carlo simulations and empirical studies may not fully capture the reality of fi-

nancial crises, especially if they rely on simplified assumptions or limited datasets. The

simulation results heavily depend on the initial assumptions and chosen parameters,

(3) Theoretical optimal control measures may not be easily applicable in the real world due

to political, economic, and social constraints,

To deal with limitations, we propose a mathematical model based on delayed differential equa-

tions to model the propagation of liquidity risk. This model allow us to identify conditions of

global stability within the banking system, evaluate the impact of central bank interventions on

economic stability, and highlight the significance of temporal variables in risk propagation.

3. MATHEMATICS MODEL

We will consider the differential system is an extension of the research work [8] and based

on the research work [17]

(3.1)



d f1(t)
dt =−α1 f1(t) f2(t− τ)−α2 f1(t),

d f2(t)
dt = α1 f1(t) f2(t− τ)−α3 f2(t),

d f3(t)
dt = α2 f1(t)+α3 f2(t).

with

f1(t): The set of banks at time t whose general ratio is greater than 1.

f2(t): The set of banks at time t whose general ratio is less than 1.

f3(t): The set of banks that have gone bankrupt at time t.

where with the initial conditions,

(3.2) t = 0, f1(0) = a 6= 0, f2(0) = 0, f3(0) = 0.

f1(t)+ f2(t)+ f3(t) = N

N denotes the number of banking system at time t, and
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α1: Spread rate. Parameter α1 indicates the speed at which contagion spreads. It is a measure

of the contagiousness of an infected bank, where a susceptible bank in contact with a single

infected bank will become infected with probability α1.

α2: Solution rate. This second parameter, represents the speed of recovery. It is a measure of

the resistance to contagion. Accordingly, an infected bank will recover with probability α2.

α3: Bankruptcy rate. This third parameter represents the rate at which an infected bank will

go bankrupt. Therefore a distressed bank will go bankrupt with a probability α3.

and

τ: delay, which represents the time lag between the infection of a bank and the transmission

of liquidity risk to other banks.

The first equation, d f1(t)
dt = −α1 f1 f2(t− τ)−α2 f1(t), represents the rate of change of sus-

ceptible banks over time. The first term, −α1 f1 f2(t−τ), indicates the loss of susceptible banks

due to infection from infectious banks with a delay of τ . The parameter α1 represents the

transmission rate, which is the probability that a susceptible bank gets infected by an infectious

bank. The second term, −α2 f1(t), represents the rate at which susceptible banks recover, with

α2 being the recovery rate.

The second equation, d f2(t)
dt = α1 f1 f2(t− τ)−α3 f2(t), describes the rate of change of infec-

tious banks f2(t) over time. The first term, α1 f1 f2(t−τ), represents the gain of infectious banks

from the transmission of infectious banks with a delay of τ . The second term, −α3 f2(t), indi-

cates the rate at which infectious banks recover directly without going through the susceptible

phase. The parameter α3 is the transition rate from infectious to bankrupt.

The third equation, α2 f1(t)+α3 f2(t), describes the rate of change of banks transitioning to

bankruptcy f3(t) over time. The first term, α2 f1(t), represents the rate at which susceptible

banks recover and transition to the recovered phase. The second term, α3 f2(t), indicates the

rate at which infectious banks transition to bankruptcy.

By solving these simultaneous differential equations with appropriate initial conditions for

f1(t), f2(t), and f3(t), you can study the propagation of liquidity risks in the banking system

with a delay. The values of the parameters α1, α2, α3, and τ need to be determined based on

the specific context of the study and the characteristics of the considered banking system.
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Our Model:

We propose a bank dynamics model inspired by the research work [8]. This model is based on

a system of differential equations that describes the evolution of three sets of banks according

to their financial health:

f1(t): The number of banks at time t with a general ratio greater than 1 (healthy).

f2(t): The number of banks at time

t with a general ratio less than 1 (in distress).

f3(t): The number of banks at time

t that have gone bankrupt.

N representing the total number of banks.

The parameters:

α1: Contagion rate.

α2: Recovery rate.

α3: Bankruptcy rate.

Common Aspect with the Model of [8]: Our model shares fundamental characteristics with the

model presented in [8], which also examines the dynamics of banks based on their financial

health. Both models utilize differential equations to model the transition between the states of

banks. For instance, the structure of the equations and the classification of banks into three

groups (healthy, at risk, bankrupt) are common elements.

New Aspect:

The main novelty of our model lies in the introduction of a delay (τ) in the first equation. This

delay represents the time elapsed between when a bank is infected by liquidity risk and when

this contagion spreads to other banks.

Temporal Reality: Unlike the model in [8], which assumes instant transmission of risks, our

model captures the temporal lag that may exist in the propagation of banking crises. This delay

makes our modeling more realistic by considering situations where the effects of a crisis do not

manifest immediately.
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Modified Dynamics: The introduction of this delay can alter the overall dynamics of the

system, allowing for a better understanding of how a financial crisis can develop and intensify

over time, rather than spreading instantaneously.

In summary, our model differs from that of [8] by incorporating a delay in the propagation of

risks, thus adding an essential temporal dimension for more accurately modeling contagion in

the banking system.

4. BORNITUDE AND POSITIVITY OF SOLUTIONS

In this section, we will establish the positivity and the Bornitude of the solutions of the model

(3.1).

4.1. Positivity of solutions.

Proposition 4.1.

For any positive initial condition f1(0), f2(0), f3(0) model variables (3.1) f1(t), f2(t),and f3(t)

will remain positive for everything t > 0.

Proof. We will prove that for positive initial conditions, i.e., f1(0) = a > 0, f2(0) = 0, and

f3(0) = 0, the solutions f1(t), f2(t), and f3(t) remain positive for all t > 0.

To simplify the notations, we will denote f1, f2, and f3 instead of f1(t), f2(t), and f3(t),

respectively.

(1) Positivity of f1:

The derivative of f1 with respect to time is given by:

d f1

dt
=−α1 f1 f2(t− τ)−α2 f1.

Since f1(0) = a > 0 and f2(t) ≥ 0 for all t, the terms −α1 f1 f2(t− τ) and −α2 f1 are

both negative or zero. Therefore, d f1
dt ≤ 0. Let’s assume that there exists a T > 0 such

that f1(T ) = 0. This would mean that f1 reaches its minimum at T . However, assuming

the continuity of f1, this would imply that d f1
dt must be strictly positive at T to move

away from the minimum value of f1. This contradicts d f1
dt ≤ 0. Therefore, f1(t)> 0 for

all t > 0.
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(2) Positivity of f2:

The derivative of f2 with respect to time is given by:

d f2

dt
= α1 f1 f2(t− τ)−α3 f2.

Since f1 > 0 for all t > 0 and f2(t)≥ 0 for all t, the terms α1 f1 f2(t− τ) and −α3 f2 are

both positive or zero. Therefore, d f2
dt ≥ 0. Let’s assume that there exists a T > 0 such

that f2(T ) = 0. This would mean that f2 reaches its minimum at T . However, assuming

the continuity of f2, this would imply that d f2
dt must be strictly negative at T to move

away from the minimum value of f2. This contradicts d f2
dt ≥ 0. Therefore, f2(t)> 0 for

all t > 0.

(3) Positivity of f3:

The derivative of f3 with respect to time is given by:

d f3

dt
= α2 f1 +α3 f2.

Since f1 > 0 and f2 ≥ 0 for all t > 0, the terms α2 f1 and α3 f2 are both positive or zero.

Therefore, d f3
dt ≥ 0. Let’s assume that there exists a T > 0 such that f3(T ) = 0. This

would mean that f3 reaches its minimum at T . However, assuming the continuity of f3,

this would imply that d f3
dt must be strictly negative at T to move away from the minimum

value of f3. This contradicts d f3
dt ≥ 0. Therefore, f3(t)> 0 for all t > 0.

In summary, we have shown that the solutions f1(t), f2(t), and f3(t) of the system remain

positive for all t > 0 with the initial conditions f1(0) = a > 0, f2(0) = 0, and f3(0) = 0. �

4.2. Bornitude of solutions.

Proposition 4.2.

the solutions f1, f2 and f3, of the system (3.1) are bounded.

Proof. To demonstrate the boundedness of the system, we need to show that the variables of the

system remain bounded for all values of time t.

Let’s assume that we have a solution ( f1(t), f2(t), f3(t)) of the given differential system. We

will demonstrate that each component of this solution remains bounded as t varies within a

given interval.
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Let’s consider the first equation of the system:

d f1(t)
dt

=−α1 f1(t) f2(t− τ)−α2 f1(t)

The terms −α1 f1(t) f2(t− τ) and −α2 f1(t) lead to a decrease in f1(t) over time. Since α1 and

α2 are positive, these terms act as decay factors. Consequently, f1(t) remains bounded.

Moving to the second equation:

d f2(t)
dt

= α1 f1(t) f2(t− τ)−α3 f2(t)

The term α1 f1(t) f2(t − τ) results in an increase in f2(t), while the term −α3 f2(t) leads to a

decrease. As α1 and α3 are positive, the growth term outweighs the decay term, implying that

f2(t) remains bounded.

Finally, the third equation is:

d f3(t)
dt

= α2 f1(t)+α3 f2(t)

Both terms on the right contribute to an increase in f3(t), as α2 and α3 are positive. Thus, f3(t)

remains bounded.

In conclusion, by examining each equation individually, we observe that all variables f1(t),

f2(t), and f3(t) remain bounded. Consequently, the solutions of the system remain bounded for

all values of time t. This demonstrates the boundedness of the system. �

5. STABILITY ANALYSIS

We will analyze the global stability [18, 19, 20, 21, 22, 23, 24, 25] of the differential system

given by equations (3.1). The system models the evolution of three interconnected banks in the

presence of contagion and bankruptcy. Our objective is to examine the equilibrium points of

the system and analyze their global stability.

5.1. Equilibrium Points. To find the equilibrium points, we need to solve the system of dif-

ferential equations [26, 27] by setting the rates of change to zero:

d f1

dt
=−α1 f1 f2(t− τ)−α2 f1 = 0,(5.1)

d f2

dt
= α1 f1 f2(t− τ)−α3 f2 = 0,(5.2)
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d f3

dt
= α2 f1 +α3 f2 = 0.(5.3)

From the third equation, we can express f2 in terms of f1:

(5.4) f2 =−
α2

α3
f1.

Substituting this expression into the second equation, we get:

(5.5) α1 f1

(
−α2

α3

)
f1(t− τ)−α3 f2 = 0.

Simplifying and solving for f1, we find:

(5.6) f1(t− τ) =
α3

α1
.

This means that the equilibrium points are characterized by a constant f1 with a value of α3
α1

,

f2 proportional to f1 with a proportionality constant of −α2
α3

, and f3 = 0.

5.2. Jacobian Matrix. The Jacobian matrix J of the system is given by [17, 28, 29]

(5.7) J =


α1 f2(t− τ)−α2 −α1 f1(t− τ)

α1 f2(t− τ) α1 f1(t− τ)−α3

α2 α3

 .

Evaluated at the equilibrium point ( f1, f2, f3) =
(

α3
α1
,−α2

α3
f1,0

)
, the Jacobian matrix becomes:

(5.8) Jeq =


α2 −α1

(
α3
α1

)
α1

(
−α2

α3

)
α1

(
α3
α1

)
−α3

α2 α3

 .
Let’s now calculate the eigenvalues of Jeq.

5.3. Calculation of Eigenvalues. The characteristic equation of Jeq is:

(5.9) det(Jeq−λ I) = 0,

where I is the identity matrix. Let’s solve this equation for λ :

(5.10)
∣∣∣α2−λ −α1

(
α3
α1

)
α1

(
−α2

α3

)
α1

(
α3
α1

)
−α3−λ

∣∣∣= 0.
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After calculations, we obtain the eigenvalues:

λ1 =−α2,(5.11)

λ2 =
α1α3

α3
−α3 =−α2,(5.12)

λ3 =
α1α3

α3
−α3−α2.(5.13)

5.4. Interpretation of Eigenvalues. The eigenvalues provide insights into the stability of the

equilibrium point. In our case, all three eigenvalues are equal to −α2, except for the third one

which is −α2−α3.

5.4.1. Eigenvalue λ1. The first eigenvalue λ1 =−α2 is repeated twice. This indicates that the

system has a direction in which the dynamics are slower, but all trajectories remain close to the

equilibrium point. This slowness is due to the variable f1.

5.4.2. Eigenvalue λ2. The second eigenvalue λ2 = −α2 also indicates marginal stability in

the direction related to f1. Trajectories stay close to the equilibrium point, but with slower

convergence.

5.4.3. Eigenvalue λ3. The third eigenvalue λ3 =−α2−α3 is different from the first two. If α3

is small compared to α2, then λ3 is close to −α2, meaning that the dynamics in the f1 direction

are also stable.

This concludes our analysis of the global stability of the differential system. The eigenvalues

indicate that trajectories stay close to the equilibrium point despite minor variations in initial

conditions. The stability of the system depends on the parameters α1, α2, and α3. A more de-

tailed interpretation of the results would require specific numerical values for these parameters.

6. NUMERICAL SIMULATION

In this section, we present numerical results to demonstrate the performance of the proposed

approach and compare it with the traditional method, which uses fixed weighting coefficients in

the cost function. The model defined by the system of equations is analyzed.

For the numerical simulation in a real-world context, the propagation and recovery rates,

denoted as α1 and α2, are taken from the work of Philipps, Koutelidakis, and Leontitsis [31].
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The data, based on 169 major European banks in 2012, were computed in [31]. Thus, in our

simulation, we assume N = 169, representing the total number of banks, with 10 banks initially

affected by liquidity risk at t = 0.

Three initial liquidity crisis scenarios have been considered for each case: one in Spain, one

in France, and one in Germany. The data for these scenarios are provided in the following

tables: (1), (2), and (3).

Parameters Fig.2a Fig.3a Source

α1 0.005 0.005 [32]

α2 0.013 0.013 [32]

α3 0.1 0.0001 Assumed

f1(0) 158.0 158.0 [32]

f2(0) 10.0 10.0 [32]

f3(0) 0.0 0.0 [32]

τ1 5.0 5.0 Assumed

τ2 50.0 50.0 Assumed

TABLE 1. The initial parameter conditions for the model (3.1) in the context of

Spain.

Parameters Fig.2b Fig.3b Source

α1 0.002 0.002 [32]

α2 0.02 0.02 [32]

α3 0.1 0.0001 Assumed

f1(0) 158.0 158.0 [32]

f2(0) 10.0 10.0 [32]

f3(0) 0.0 0.0 [32]

τ1 5.0 5.0 Assumed

τ2 50.0 50.0 Assumed

TABLE 2. The initial parameter conditions for the model (3.1) in the context of

France.
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Parameters Fig.2c Fig.3c Source

α1 0.0012 0.0012 [32]

α2 0.008 0.008 [32]

α3 0.1 0.0001 Assumed

f1(0) 158.0 158.0 [32]

f2(0) 10.0 10.0 [32]

f3(0) 0.0 0.0 [32]

τ1 5.0 5.0 Assumed

τ2 50.0 50.0 Assumed

TABLE 3. The initial parameter conditions for the model (3.1) in the context of

Germany.

Data on the behavior of the system liquidity risk model (3.1) during the same period is illus-

trated in Figures 1, 2, 3, and 4.
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FIGURE 1. Liquidity risk with time delay in Spain, France and Germany behav-

ior over time with α3 = 0.1, τ1 = 5 and t = 100.
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FIGURE 2. Liquidity risk with time delay in Spain, France and Germany behav-

ior over time with α3 = 0.1, τ2 = 50 and t = 100.



LIQUIDITY RISK CONTAGION IN THE BANKING SYSTEM WITH TIME DELAY 15

Spain

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

160

Ba
nk

f1
f2
f3 France

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

160

Ba
nk

f1
f2
f3 Germany

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

160

Ba
nk

f1
f2
f3

FIGURE 3. Liquidity risk with time delay in Spain, France and Germany behav-

ior over time with α3 = 0.0001, τ1 = 5 and t = 100.
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FIGURE 4. Liquidity risk with time delay in Spain, France and Germany behav-

ior over time with α3 = 0.0001, τ2 = 50 and t = 100.

• First Figure (1) with a delay of τ1 = 5:

A short delay (τ1 = 5) means that the period during which the central bank reacted to

liquidity risk was limited. In Spain, with an insufficient delay, liquidity risk affected 100

banks, indicating a high vulnerability. In France and Germany, the risk reached nearly

25 banks, suggesting relatively better but still significant management.

• Second Figure (2) with a delay of τ2 = 50:

A longer delay (τ2 = 50) indicates that central banks had enough time to implement

effective solutions. Liquidity risk decreased, reaching approximately 60 banks in Spain

and around 18 banks in France and Germany. This suggests that longer delays allow for

more effective management.

• Third Figure (3) with α3 = 0.0001 and τ1 = 5:



16 SAID FAHIM, HAMZA MOURAD, FATIMA AMGHAD, MOHAMED LAHBY

Introducing α3 = 0.0001 (a parameter) and a short delay (τ1 = 5), liquidity risk re-

mains stable in the three countries due to a negligible failure rate. However, the τ1 = 5

delay remains insufficient for effective liquidity risk management.

• Fourth Figure (4) with a delay of τ2 = 50:

With a longer delay (τ2 = 50), the fourth figure shows improved management through

macroprudential policies, resulting in a reduction of liquidity risk in all three countries.

The overall conclusion emphasizes that the delay is a crucial element in liquidity risk manage-

ment. Central banks need time to stabilize the banking system effectively. The analysis of the

different figures highlights how the duration of the delay influences the spread and management

of liquidity risk in the three countries, underscoring the importance of an adequate period to

react effectively.

7. CONCLUSION

We investigated the dynamic contagion behavior in the banking sector with respect to liquid-

ity risk and global stability, using a delayed SIR epidemic model. The parameters for trans-

mission and recovery rates were found to vary based on the country being studied, which also

influences the onset of liquidity risk.

The analysis revealed significant negative impacts from three contagion scenarios involving

liquidity risk within the banking sector. Banks with substantial financial stakes in Europe are

more susceptible to banking crises. To mitigate this, a delay mechanism was proposed to re-

duce the number of affected banks, curb widespread contagion, and avoid severe financial and

economic repercussions.

The recommendations are based on the following results:

• Implications of the results for financial and macroeconomic sectors:

Our study’s results suggest that effective liquidity risk management depends on the fac-

tor of time, especially regarding central banks’ interventions. This could influence mon-

etary and financial policies, emphasizing the need to consider the optimal timing to

stabilize the banking system.
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• Study limitations:

We acknowledge that our model relies on simplifying assumptions and uses simulated

data from the largest European banks. These limitations provide opportunities for future

research to refine the model and make it more representative of reality.

• Potential avenues for future research:

It would be interesting to further explore the impact of bank-specific factors on the

spread of liquidity risk. The integration of real-time data and an in-depth study of central

banks’ specific interventions could enhance our understanding of the phenomenon.

• Comparison of model predictions with observed results in European banks:

The comparative analysis of our model’s predictions with the observed results in Eu-

ropean banks is crucial. This highlights the strengths and limitations of our model,

evaluating its practical relevance. We note that our model may well capture certain as-

pects of liquidity risk contagion, while other cited studies provide complementary or

divergent perspectives.

• Comparison with other cited studies:

In comparison with the cited studies [32],[33], [34], our study stands out for these stud-

ies enrich the research landscape by providing additional nuances or addressing specific

aspects that complement our approach.

In summary, the comprehensive discussion section provides a more complete and critical per-

spective on our research, highlighting its contributions, limitations, and context in relation to

existing work.
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