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Abstract. This study presents the Marshall-Olkin Alpha Power Transformed Extended Exponential Distribution, a

new statistical model that improves the flexibility of the standard exponential distribution using the Marshall-Olkin

Alpha Power Transformed Extended-X family of distributions. MOAPTEEx distribution depends on the parameters

θ , λ , and α . The lack of closed-form solutions and the requirement for numerical methods are highlighted as we

examine the Maximum Likelihood Estimation (MLE) method for parameter estimation. The performance of many

estimating strategies, such as maximum product spacing (MPS), least squares (LS), and MLE, across a range of

sample sizes is assessed; this is done using a Monte Carlo simulation exercise. The results show that MLE is the

most reliable method, particularly for larger samples, while MPS performs worse for smaller samples. Applications

to actual datasets provide additional validation of the MOAPTEEx distribution, showing its efficacy in simulating

fiber strength datasets where outer-performed the other competing models.
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1. INTRODUCTION

Statistical modeling plays a crucial role in the analysis and interpretation of complex data in

various disciplines, including finance, engineering, healthcare, and social sciences. The expo-

nential distribution with the CDF and PDF defined as;

(1) f (x;λ ) = 1− e−λx; λ ,x > 0,

(2) f (x;λ ) = λe−λx; λ ,x > 0,

this is particularly notable for its application in modeling the time until an event occurs, such

as the lifespan of products or the time until failure in reliability studies. Despite its widespread

use, the exponential distribution is often criticized for its lack of flexibility, as it assumes a con-

stant hazard rate and may not adequately capture the variability observed in real-world data.

Researchers have developed a range of generalized distributions that incorporate additional

parameters to better fit empirical data such as [1] proposed the generalization of exponential

distribution using beta function, [2] introduced the logistic–exponential survival distribution, A

new generalized Exponential family of distributions using Kumaraswamy method [3], and later

Alpha Power Exponential distribution was proposed by [4], [5] proposed Exponentiated Gen-

eralized Gull Alpha Power Exponential (EGGAPE) distribution as an extension of Exponential

distribution, recently a novel extended inverse-exponential distribution was introduced by [6] .

[7] proposed Marshall-Olkin family of distributions with the aim of increasing flexibility and

applicability by adding parameters that can modify the shape and behavior of the base distri-

bution. This family has been successfully applied to various contexts, enhancing the modeling

capabilities of traditional distributions including Exponential distributions. Many Researchers

has utilized the Marshall-Olkin family of distributions to extend the other distribution such as

Marshall–Olkin extended weibull distribution proposed by [8], the Marshall-Olkin Fréchet dis-

tribution [9], Marshall-Olkin Extended Gumbel Type-II Distribution [10] as a new family of dis-

tribution, [11] proposed Exponentiated Marshall-Olkin exponential distribution in application to

COVID-19 second wave in Nepal, A discrete Kumaraswamy Marshall-Olkin exponential distri-

bution [12], The Marshall–Olkin alpha power family of distributions with applications [13] with

consideration on exponential distribution, and EGMO-exponential (EGMO-E) distribution [14].
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Recently, a new generator family of distribution called Alpha Power Transformed Extended-X

family of distribution with application to COVID-19 pandemic status in china proposed by [15]

the authors considered the Weilbull distribution as the baseline distribution,researchers effec-

tively to manage skewness and kurtosis, making it possible to model COVID-19 data set that

deviate from the assumptions of standard distributions. The integration of the Marshall-Olkin

method with the Alpha Power transformed Extended-X family of distribution leads to the devel-

opment of the Marshall-Olkin Alpha Power Transformed Extended-X distribution with a CDF

and PDF defined as;

(3) FMOAPT Ex(x) =


α

(
1− 1−G(x)

eG(x)

)
−1

(α−1)θ+(1−θ)

α

(
1− 1−G(x)

eG(x)

)
−1

 ; for θ > 0, α > 0, α 6= 1

2G(x)
θ

for α = 1

(4)

fMOAPT Ex(x) =



θ(logα)g(x)[2−G(x)]α

(
1− 1−G(x)

eG(x)

)

(α−1)eG(x)

θ+(1−θ)(α−1)−1

α

(
1− 1−G(x)

eG(x)

)
−1

2 ; for θ > 0, α > 0, α 6= 1

g(x)[2−G(x)]
θeG(x) for α = 1

Where G(x) and g(x) is the CDF and PDF of a baseline distribution.

We use the one-parameter exponential distribution as the baseline distribution to introduce the

three-parameter exponential distribution which adds flexibility to exponential distribution. This

new family of distribution aims to provide a more adaptable framework for modeling a wide

range of data behaviors, particularly those encountered in fiber strength analysis and other ap-

plications in materials science.

The motivation for this research is rooted in the necessity for advanced statistical tools that

can accommodate the complexities of real-world data using the two data sets proves the supe-

rior performance of the MOAPTEEx when compared to other distributions. By introducing the

MOAPTEEx distribution, this study aspires to enhance the toolkit available to statisticians and

researchers, facilitating more accurate data analysis and interpretation in various applications.
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2. MARSHALL-OLKIN ALPHA POWER TRANSFORMED EXTENDED-EXPONENTIAL

DISTRIBUTION

In this section we apply the MOAPTE-X family of distribution to the exponential distribu-

tion, the Cumulative Density Function (CDF) of Marshall - Olkin Alpha Power Transformed

Extended-Exponential Distribution obtained by substituting equation (1) into (3), is defined as;

(5)

FMOAPT EEx(x) =



α

(
1− e−λx

e1−e−λx

)
−1

(α−1)

θ+(1−θ)(α−1)−1

α

(
1− e−λx

e1−e−λx

)
−1




; for θ > 0, α > 0, α 6= 1

2(1−e−λx)
θ

for α = 1

And its PDF reduces to;

(6)

fMOAPT EEx(x) =



θλ (logα)e−λx[1+e−λx]α

(
1− e−λx

e1−e−λx

)

(α−1)e1−e−λx

θ+(1−θ)(α−1)−1

α

(
1− e−λx

e1−e−λx

)
−1




2 ; for θ > 0, λ > 0,

α > 0, α 6= 1

λe−λx[1+e−λx]

θe1−e−λx for α = 1

The survival function of MOAPTE-Ex is respectively given as;

(7) S(x) =
θα−θα

(
1− e−λx

e1−e−λx

)

(α−1)θ +(1−θ)

(
α

(
1− e−λx

e1−e−λx

)
−1

) ; θ > 0, α > 0, α 6= 1

Where θ ,α,β ,λ > 0 and α 6= 1.

Fig. 1a shows the the plots of MOAPTEEx distribution’s shape depending on its parameter

values. Fig. 1a indicate that MOAPTEEx has monotone decreasing form (right skewed), sym-

metrical, and left skewed, this illustrates flexibility of MOAPTEEx distribution to adapt its shape

to various parameter choices.

The CDF of MOAPTEEx is a monotone increase as shown in Fig. 1b and the survival function

plots are monotone decreases see Fig. 3.
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(A) Probability density function

(B) Cumulative density function

FIGURE 1. Probability density function (a) and Cumulative density function (b)

plots of the MOAPTEEx distribution with different parameter values
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Hazard Function

The random variables x1,x2,x3, . . . ,xn follows a MOAPTEEx distribution denoted as X ∼

MOAPTEEx(θ ,α,λ ), then the hazard function h(x) for this distribution obtained by substituting

Eq. (6) and (7) into Eq. (8), given;

(8) hMOAPT EEx(x) =
fMOAPT EEx(x)
SMOAPT EEx(x)

,

the hazard rate function can be expressed as

(9)

h(x,α,θ ,λ ) =

λ (logα)e−λx[1+ e−λx]

α

 e−λx

e1−e−λx


−1



e1−e−λx

θ +(1−θ)(α−1)−1

α

1−
e−λx

e1−e−λx


−1



, θ > 0, λ > 0, α > 0, α 6= 1

The hazard rate function of the MOAPTEEx distribution appears in Fig. (2) in several shapes

that vary at different parameter values. The MOAPTEEx distribution can accommodate the

data set with decreasing hazard rate depending on the value of the parameters, also can exhibit

increasing hazard rate shapes,bathtubs and up-down bathtub shape, This demonstrates how flex-

ible this distribution is and can be applicable to the data with different behaviors.
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FIGURE 2. Hazard rate function plots of the MOAPTE-Ex distribution with dif-

ferent parameter values

FIGURE 3. Survival Function plots of the MOAPTE-Ex distribution with differ-

ent parameter values
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3. STATISTICAL PROPERTIES OF MARSHALL-OLKIN ALPHA POWER TRANSFORMED

EXTENDED-EXPONENTIAL DISTRIBUTION

3.1. Quantile function. The quantile function of the MOAPTEEx distribution random vari-

able X is QX(u) = F−1
X (u),0 < u < 1, and for any θ ,α,β ,λ > 0 and α 6= 1.

(10) QX(u) =
−1
λ

log

W

1−
log
(

1−u(1−θα)
1−u(1−θ)

)
log(α)

e

 , 0 < u < 1

The Median

The median of MOAPTEEx distribution obtained by putting u = 0.5 into equation (10) (QX(u))

respectively.

QX(0.5) =
−1
λ

log

W

1−
log
(

1−0.5(1−θα)
1−0.5(1−θ)

)
log(α)

e


For any θ ,α,λ > 0 and α 6= 1.

Table (1) shows the quantile values of the MOAPTEEx distribution at different parameter set,

with increasing values of λ , θ and α , the quantile values rise for all quantile levels (0.1, 0.2,...,

0.9).

TABLE 1. Quantile Table for Different Parameter Combinations

α = 0.2, λ = 1.5 θ = 0.6, λ = 1.1 θ =0.6, α = 0.2

u (θ = 0.1) (θ = 1.5) (θ = 9) (α = 0.2) (α = 5.5) (α = 10.5) (λ = 0.1) (λ = 5.1) (λ = 14.6)

0.1 0.00183 0.02639 0.13354 0.01478 0.07282 0.10323 0.16258 0.00319 0.00111

0.2 0.00410 0.05649 0.25330 0.03252 0.14943 0.20116 0.35783 0.00702 0.00244

0.3 0.00699 0.09157 0.37191 0.05429 0.23306 0.30181 0.59716 0.01171 0.00407

0.4 0.01084 0.13354 0.49655 0.08171 0.32787 0.41142 0.89878 0.01763 0.00618

0.5 0.01610 0.18559 0.63423 0.11750 0.43978 0.53721 1.29270 0.02535 0.00885

0.6 0.02385 0.25331 0.79447 0.16671 0.57873 0.69009 1.83381 0.03598 0.01256

0.7 0.03635 0.34791 0.99371 0.23959 0.76365 0.88996 2.63555 0.05168 0.01806

0.8 0.05990 0.49654 1.26774 0.36234 1.03857 1.18232 3.98570 0.07817 0.02730

0.9 0.12225 0.79448 1.72994 0.63335 1.54966 1.71599 6.96681 0.13660 0.04772
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3.2. Rényi entropy. Renyi entropy analysis provides understanding about the uncertainty and

complexity inherent in the underlying probability distribution. Consider a continuous variable

named X with PDF, denoted by f (x) of MOAPTEEx, the Rényi entropy of order δ is defined as:

(11)

Rδ (X) =
1

1−δ
log
∫

∞

0
f δ (x)dx where δ > 0,δ 6= 1

=
δ log(θλ (logα))

(1−δ )
log
∫

∞

0


e−λx[1+ e−λx]α

(
1− e−λx

e1−e−λx

)

(α−1)e1−e−λx

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]2


δ

dx.

where δ > 0,δ 6= 1

Rényi entropy behave differently under various combinations of the parameters α , λ , and θ

as shown in Table (2). The Rényi entropy values across parameter sets of varying θ and λ

consistently decrease with increasing δ , indicating reduced uncertainty. A larger values of θ

lead to more concentrated distributions, and higher values of α and λ result in more dispersed

distributions.

TABLE 2. Rényi Entropy of Different Parameter Sets

δ

α = 1.8, λ = 3.1 θ = 0.1, λ = 1.1 θ =0.01, α = 2.5

θ = 1.1 θ = 5.5 θ =12.5 α = 0.4 α = 1.5 α = 5.5 λ = 0.9 λ = 1.5 λ = 9.5

2.5 5.3911 4.282 3.8443 0.5043 1.0255 6.6371 3.8414 6.8288 40.2986

4 4.6439 3.7587 3.4098 0.8436 1.1804 5.6388 3.4052 5.7925 32.5677

5.5 4.3742 3.5639 3.2448 0.953 1.2156 5.2852 3.2393 5.4262 29.9698

7 4.2303 3.4575 3.1535 1.0057 1.2258 5.0992 3.1474 5.234 28.6617

8.5 4.1392 3.3891 3.094 1.0361 1.2281 4.9829 3.0876 5.1139 27.8721

10 4.0757 3.3407 3.0516 1.0555 1.2272 4.9026 3.0449 5.031 27.3429

11.5 4.0286 3.3043 3.0196 1.0687 1.2251 4.8434 3.0127 4.97 26.9631
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3.3. Order statistics. Given a sample of size n from the MOAPTEEx distribution, let

X1,X2, . . . ,Xn be the random variables representing the sampled observations. The order sta-

tistics are denoted as X(1) ≤ X(2) ≤ . . .≤ X(n) where X(i) is the ith order statistics.

Given

(12) f (xi:n) =
n!

(i−1)!(n− i)!
f (x)F(x)i−1(1−F(x))n−i

Substituting equation (6) and (5) into (12) yields:

(13)

f (xi:n) =
n!θλ (logα)e−λx[1+ e−λx]

(i−1)!(n− i)!(α−1)ne1−e−λx α

(
1− e−λx

e1−e−λx

)(
α

(
1− e−λx

e1−e−λx

)
−1

)i−1

×

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−(n+1)(
θα−θα

(
1− e−λx

e1−e−λx

))n−i

When i = 1 the minimum order statistics for MOAPTEEx distribution) is given as:

(14)

f (x1:n) =
n!θλ (logα)e−λx[1+ e−λx]

(n−1)!(α−1)ne1−e−λx α

(
1− e−λx

e1−e−λx

)(
θα−θα

(
1− e−λx

e1−e−λx

))n−1

×

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−(n+1)

For i = n the maximum order statistics for MOAPTEEx distribution is given as:

(15)

f (xn:n) =
n!θλ (logα)e−λx[1+ e−λx]

(n−1)!(α−1)ne1−e−λx α

(
1− e−λx

e1−e−λx

)(
α

(
1− e−λx

e1−e−λx

)
−1

)n−1

×

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−(n+1)

3.4. Mode. By determining the value of x that maximizes the function, we can find the mode

of MOAPTEEx distribution from equation 6 is given as:

(16)

d
dx

fMOAPT E−Ex(x) = log(α) λ ee−λ x−1 e−λ x +λ ee−λ x−1 e−2λ x−λ −λ e−λ x− λ e−λ x

e−λ x +1

− 2α1−ee−λ x−1 e−λ x
log(α) σ1 (θ −1)(

θ (α−1)− (θ −1)
(

α1−ee−λ x−1 e−λ x−1
)) = 0
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The value that satisfies the derivative equation derived from the distribution’s probability den-

sity function for any given x is the mode of the MOAPTEEx distribution. However, because of

the complexity of the equation, analysis of this mode may prove to be challenging, using nu-

merical optimization technique provide a practical and effective solution. Finding the value of

x that yields the highest probability density and minimizing the negative of the PDF will yield

a reliable estimate of the mode of the distribution.

3.5. The rth Moments of MOAPTEEx distribution. We need to calculate the E(xr) based on

fMOAPTEEx(x). The rth moments of MOAPTEEx distribution is obtained by inserting equation 6

into the following equation;

E(xr) =
∫

∞

0
xr fMOAPT EEx(x)dx

The rth moment of the MOAPTEEx distribution is given by:

(17)

E[xr] =
∫

∞

0
xr

θλ (logα)e−λx
[
1+ e−λx

]
α

(
1− e−λx

e1−e−λx

)
(α−1)−1e−(1−e−λx)

×

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−2

dx

where θ ,α,λ > 0 and α 6= 1.

Then expanding equation (17) using

(1− z)−2 =
∞

∑
k=0

(k+1)zk,(1− z)k =
k

∑
j=0

(
k
j

)
(−1) jz j,αz =

∞

∑
m=0

(logα)m

m!
zm,

ex =
∞

∑
n=0

xn

n!
,and

∫
∞

0
xre−βx dx =

Γ(r+1)
β r+1

Let A =

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−2

from equation (17), Then, A =[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)]−2

can be expressed in term of (1− z)−2 as;

(18)

A =

(
1−

[
(1−θ)− (1−θ)(α−1)−1

(
α

(
1− e−λx

e1−e−λx

)
−1

)])−2

=
∞

∑
k=0

(k+1)(1−θ)k
k

∑
j=0

(
k
j

)
(−1) j+i

(
1

α−1

) j j

∑
i=0

(
j
i

)(
α

(
1− e−λx

e1−e−λx

)) j−i
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substituting equation 18 into 17 results:

(19)

E[xr] =
θλ (logα)

α−1

∞

∑
k=0

(k+1)(1−θ)k
k

∑
j=0

(
k
j

)
(−1) j+i

(
1

α−1

) j j

∑
i=0

(
j
i

)∫
∞

0
xre−λx

[
1+ e−λx

]

× e−(1−e−λx)

(
α

(
1− e−λx

e1−e−λx

)) j−i+1

dx

For furthermore expansion in equation 19 yields:

(20)

E[xr] =
θλ (logα)

α−1

∞

∑
k=0

(k+1)(1−θ)k
k

∑
j=0

(
k
j

)
(−1) j+i+v

(
1

α−1

) j j

∑
i=0

(
j
i

)
∞

∑
u=0

(logα)u

u!
×

( j− i+1)u
u

∑
v=0

(
u
v

)
∞

∑
n=0

(v−1)n

n!
e−(v+1)

∫
∞

0
xre−(v+1+n)λx

[
1+ e−λx

]
dx

=
θλ (logα)

α−1

∞

∑
k=0

k

∑
j=0

j

∑
i=0

∞

∑
u=0

u

∑
v=0

∞

∑
n=0

(k+1)(1−θ)k(k
j

)
(−1) j+i+v(logα)u(v−1)n

u!n!(α−1) j

( j− i+1)ue−(v+1)
∫

∞

0
xre−(v+1+n)λx

[
1+ e−λx

]
dx

= ψk, j,i,u,v,n

∫
∞

0
xre−(v+1+n)λx dx+

∫
∞

0
xre−(v+2+n)λx dx

Therefore, the moment of MOAPTEEx distribution given as:

(21) E[xr] = ψk, j,i,u,v,n

(
Γ(r+1)

[(v+1+n)λ ]r+1 +
Γ(r+1)

[(v+2+n)λ ]r+1

)
where

ψk, j,i,u,v,n =
θλ (logα)

α−1

∞

∑
k=0

k

∑
j=0

j

∑
i=0

∞

∑
u=0

u

∑
v=0

∞

∑
n=0

(k+1)(1−θ)k(k
j

)
(−1) j+i+v(logα)u(v−1)n

u!n!(α−1) j

( j− i+1)ue−(v+1)

For k > j and θ ,α,λ > 0 and α 6= 1

3.5.1. The mean. The mean of the MOAPTEEx distribution is given from equation 21 by

substituting r = 1 gives:

E[x] = ψk, j,i,u,v,n

(
1

[(v+1+n)λ ]2
+

1
[(v+2+n)λ ]2

)
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Table 3 shows the statistical measurements including mean, standard deviation, skewness,

and kurtosis for various parameter sets.

TABLE 3. The first five Moments,standard deviation,Skewness and kurtosis of

the MOAPTEEx distribution for some Parameter sets

Statistic
α = 0.6, λ = 0.2 θ = 0.5, λ = 0.2 θ =2.5, α = 0.6

θ = 0.41 θ = 5.5 θ =10.5 α = 0.06 α = 5.6 α = 14.6 λ = 0.3 λ = 2.28 λ = 10.2

M1 0.2238 0.0497 0.0277 0.2423 0.1313 0.0923 0.1342 0.2816 0.0874

M2 0.1302 0.0334 0.0188 0.1290 0.0857 0.0623 0.0877 0.1408 0.0155

M3 0.0904 0.0251 0.0142 0.0854 0.0634 0.0470 0.0650 0.0883 0.0043

M4 0.0688 0.0201 0.0114 0.0631 0.0503 0.0377 0.0515 0.0627 0.0016

M5 0.0554 0.0168 0.0096 0.0499 0.0416 0.0315 0.0427 0.0481 0.0007

Std. Deviation 0.2831 0.1757 0.1341 0.2652 0.2617 0.2318 0.2640 0.2481 0.0888

CV 1.2650 3.5369 4.8374 1.0945 1.9932 2.5107 1.9667 0.8812 1.0157

Skewness 1.1182 3.7558 5.2522 1.0731 1.9092 2.5119 1.8740 0.9154 2.1793

Kurtosis 3.0395 16.3793 30.6763 3.1387 5.3217 8.0736 5.1785 3.0074 10.1665

3.6. Skewness and Kurtosis. Quantile-based Bowley’s measure of skewness as proposed by

[16] which measures the asymmetry and Moors Kurtosis [17] for assessing tail behavior of the

distribution, are useful properties of the Marshall - Olkin Alpha Power Transformed Extended-

Exponential distributions that provide insights into the shape of the distribution and are obtained

mathematically as:

Sk(B) =
Q(1/4)+Q(3/4)−2Q(1/2)

Q(3/4)−Q(1/4)

KM =
Q0.375−Q0,625 +Q0.875−Q0.125

Q0.75−Q0.25

where Q is the quantile function of the MOAPTEEx distribution.

Figure 4a for skewness and 4b for the kurtosis of the MOAPTEEx distribution with fixed

value of α = 7.09 and different values of θ and λ .



14 EUNICE SHADRACK JOHN, ANTHONY KIBIRA WANJOYA, MUTUA KILAI

(A)

(B)

FIGURE 4. Plot for the MOAPT EEx Moors Kurtosis (b) and Bowley Skewness

(a) with (α = 7.09)
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4. PARAMETERS ESTIMATION OF MOAPTEEx

In this section, the Maximum Likelihood Estimation (MLE), Maximum Product Spac-

ing (MPS), and Least Squares (LS) was used to estimate the parameters θ ,α and λ of the

MOAPTEEx distribution.

4.1. Maximum Likelihood Estimation. Given the equation 6 respectively with a sample of n

independent and identically distributed observations {x1,x2, . . . ,xn}, the log-likelihood function

of the MOAPTEEx distribution is defined as

L (θ ,λ ,α | x1,x2, . . . ,xn) =
n

∑
i=1

log( fMOAPTEEx(xi))

Substituting the expression for fMOAPTEEx(x):

L (θ ,λ ,α | x1,x2, . . . ,xn) =
n

∑
i=1

log


θλ (logα)e−λxi [1+ e−λxi ]α

(
1− e−λxi

e1−e−λxi

)

(α−1)e1−e−λxi

[
θ +(1−θ)(α−1)−1

(
α

(
1− e−λxi

e1−e−λxi

)
−1

)]2


Then the logarithm of the likelihood function of MOAPTEEx given as

(22)

L (θ ,λ ,α | x1,x2, . . . ,xn)

= n log(θ)+n log(λ )+n log(logα)−λ

n

∑
i=1

xi +
n

∑
i=1

log(1+ e−λxi)+ log(α)
n

∑
i=1

(
1− e−λxi

e1−e−λxi

)

−
n

∑
i=1

[
log(α−1)+

(
1− e−λxi

)]
−

n

∑
i=1

[
2log

(
θ +(1−θ)(α−1)−1

(
α

(
1− e−λxi

e1−e−λxi

)
−1

))]

The derivative of L (θ ,λ ,α | x1,x2, . . . ,xn) with respect to θ ,α and λ given as

(23)
∂L

∂θ
=

n
θ
−2

n

∑
i=1

α−α

1−
e−λxi

e1−e−λxi



θ(α−1)− (θ −1)

α

1−
e−λxi

e1−e−λxi


−1



(24)
∂L

∂α
=

n
α log(α)

− n
α−1

+
n
α
− 1

α

(
n

∑
i=1

ee−λxi−1e−λxi

)
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−2
n

∑
i=1

(θ −1)αee−λxi−1e−λxi

(
α

1− e−λxi

e1−e−λxi −1

)
+(α−1)(θ −1)(ee−λxi−1e−λxi−1)[

θ(α−1)− (θ −1)

(
α

1− e−λxi

e1−e−λxi −1

)]
(α−1)αee−λxi−1e−λxi

(25)

∂L

∂λ
=

n
λ
− e−λ n

eλ −1
−

n

∑
i=1

xi

eλ xi +1
− n(n+1)

2
− eλ(

eλ −1
)2 +

e−λ (n−1)(
eλ −1

)2 +
e−λ n (n+1)

eλ −1

+ log(α)

((
n

∑
x=1

xi ee−λ xi−λ xi−1

)
+

(
n

∑
i=1

xi ee−λ xi−2λ xi−1

))

+
2log(α)(θ −1)

α−1

n

∑
x=1

xα1−ee−λx−λx−1
(

ee−λx−λx−1 + ee−λx−2λx−1
)

θ − (θ −1)
α1−ee−λx−λx−1−1

α−1

Since the maximum likelihood estimates (MLEs) of the parameters in the MOAPTEEx distri-

bution, as derived from equation (23) to (25) , do not have closed-form solutions, the resulting

system of equations from setting the partial derivatives to zero might not have a simple analyti-

cal solution. In such cases, numerical optimization methods are used to find the MLEs. One of

the most effective methods for this purpose is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm.

4.2. Least Squares (LS) method. The OLS objective function is defined as the sum of

squared differences between the theoretical CDF F(xi;θ ,α,λ ) and the empirical CDF:

S(θ ,α,λ ) =
n

∑
i=1

(
F(xi;θ ,α,λ )− i

n+1

)2

The OLS function for the parameters θ , α , and λ based on the provided CDF F(x;θ ,α,λ ) is

defined as:

S(θ ,α,λ ) =
n

∑
i=1


α

(
1− e−λxi

e1−e−λxi

)
−1

(α−1)

(
θ +(1−θ)(α−1)−1

(
α

(
1− e−λxi

e1−e−λxi

)
−1

)) − i
n+1


2

.
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The function above can be minimized to obtain the estimates for the parameters θ ,α and λ .

Let

fi(α,θ ,λ ) =
α

(
1− e−λxi

e1−e−λxi

)
−1

(α−1)

(
θ +(1−θ)(α−1)−1

(
α

(
1− e−λxi

e1−e−λxi

)
−1

)) − i
n+1

,

then, this estimates can be obtained by solving the nonlinear function bellow

∂S (θ ,α,λ )

∂θ
=

n

∑
i=1

fi(α,θ ,λ )
∂ fi(α,θ ,λ )

∂θ
= 0

∂S (θ ,α,λ )

∂α
=

n

∑
i=1

fi(α,θ ,λ )
∂ fi(α,θ ,λ )

∂α
= 0

∂S (θ ,α,λ )

∂λ
=

n

∑
i=1

fi(α,θ ,λ )
∂ fi(α,θ ,λ )

∂λ
= 0

4.3. Maximum Product Spacing (MPS) method. Given a sample x1,x2, . . . ,xn from

MOAPTEEx distribution with F(xi;θ ,α,λ ) where θ ,α , and λ are the parameters of the dis-

tribution, the MPS method as introduced by [18] and [19] and later used by [20], and [21] by

maximizing the following function with respect to θ ,α , and λ

D(θ ,α,λ ) =

(
n+1

∏
i=1

(
Fθ (X(i:n))−Fθ (X(i−1):n)

)) 1
n+1

=
1

n+1

n+1

∑
i=1

ln
(
Fθ (X(i:n))−Fθ (X(i−1):n)

)

D(φ) =
1

n+1

n+1

∑
i=1

ln


(α−1)−1

α

(
1− e

−λx(i+1)

e1−e
−λx(i+1)

)
−1


θ + (1−θ)

(α−1)

α

(
1− e

−λx(i+1)

e1−e
−λx(i+1)

)
−1



−

(α−1)−1

[
α

(
1− e−λxi

e1−e−λxi

)
−1

]
(

θ + (1−θ)
(α−1)

(
α

(
1− e−λxi

e1−e−λxi

)
−1

))


For, φ = (θ ,α,λ ), x(0) =−∞ and F(x(0);θ ,α,λ ) = 0, and x(n+1) = ∞,

F(x(n+1);θ ,α,λ ) = 1, x(1),x(2), . . . ,x(n) are ordered sample values.

Maximizing D(φ), by finding the partial derivatives with respect to each parameter and setting

them equal to zero, yields:

∂D(φ)

∂θ
= 0,

∂D(φ)

∂α
= 0,

∂D(φ)

∂λ
= 0
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Since the resulting system of equations is typically complex and cannot be solved explicitly due

to the lack of a closed-form solution, the MPS function is maximized by numerical optimization

techniques.

5. SIMULATION STUDY

The simulation was conducted using a Monte Carlo approach, which involves repeatedly

generating random samples from a specified distribution and evaluating the performance us-

ing different estimation methods such as Maximum Likelihood Estimation (MLE), Maximum

Product Spacing (MPS), and Least Squares (LS). The random variables were generated using

defined quantile function with the sample size of n= 30, 300, 600, 800, and 1000 taken into con-

sideration and each sample size was repeated 1000 times. True parameter values for simulation

were set to θ = 0.6, α = 0.5, λ = 0.1 and θ = 0.6, α = 0.5, λ = 0.1. Based on the simulation

results, MLE is the preferred method for estimating the parameters of the MOAPTEEx distribu-

tion, particularly for larger sample sizes. MPS may be considered as an alternative for smaller

sample sizes or when computational efficiency is a concern.

i. The results confirmed the expected trend: as sample size increased, bias and MSEs for

λ , θ , and α decreased.

ii. The parameter α is more sensitivity to sample size, with substantial reductions in bias

and MSEs observed for larger samples.

iii. The MLEs demonstrated overall unbiasedness, consistency, and efficiency, indicating

their reliability in providing precise parameter estimates for the MOAPTEEx distribu-

tion.

iv. MPS tends to perform better for smaller sample sizes, but its performance deteriorates

as the sample size increases. LS shows consistent performance across different sample

sizes but is generally outperformed by MLE.
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TABLE 4. Simulation results for different methods of parameter estimation

(MLE, MPS, and LS

θ = 0.6, α = 0.5, λ = 0.1

θ̂ α̂ λ̂

n Methods Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

30
MLE 0.3227 1.0781 1.0383 8.7214 7149.1731 84.5528 0.0370 0.0096 0.0982
MPS -0.0182 0.5536 0.7441 4.9185 2412.3705 49.1159 -0.0279 0.0060 0.0772
LS 0.3127 1.0454 1.0224 6.0610 1333.8247 36.5216 0.0212 0.0108 0.1037

300
MLE 0.0632 0.1123 0.3351 0.1225 0.1848 0.4299 -0.0043 0.0007 0.0270
MPS -0.0039 0.1158 0.3403 -0.1009 0.1888 0.4345 -0.0303 0.0024 0.0490
LS 0.0978 0.1391 0.3730 -0.0015 0.1837 0.4286 -0.0135 0.0011 0.0338

600
MLE 0.0347 0.0653 0.2555 0.1157 0.1710 0.4135 -0.0035 0.0004 0.0208
MPS -0.0128 0.0842 0.2902 -0.0758 0.1666 0.4082 -0.0243 0.0018 0.0421
LS 0.0603 0.0754 0.2746 -0.0034 0.1747 0.4180 -0.0137 0.0008 0.0281

800
MLE 0.0420 0.0516 0.2270 0.0917 0.1520 0.3898 -0.0022 0.0003 0.0177
MPS 0.0031 0.0830 0.2881 -0.0512 0.1546 0.3932 -0.0187 0.0015 0.0384
LS 0.0587 0.0574 0.2395 -0.0457 0.1590 0.3988 -0.0144 0.0007 0.0267

1000
MLE 0.0424 0.0497 0.2230 0.0813 0.1496 0.3867 -0.0031 0.0002 0.0156
MPS 0.0136 0.0739 0.2718 -0.0824 0.1412 0.3758 -0.0182 0.0013 0.0367
LS 0.0533 0.0536 0.2316 -0.0217 0.1609 0.4012 -0.0131 0.0007 0.0264

θ = 0.4, α = 0.6, λ = 0.5

θ̂ α̂ λ̂

n Methods Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

30
MLE 0.3972 1.0371 1.0184 6.2579 4027.0886 63.4593 0.2480 0.3605 0.6004
MPS 0.0625 0.3950 0.6285 4.8199 2105.0213 45.8805 -0.1280 0.1837 0.4286
LS 0.2768 0.7953 0.8918 7.1306 2004.0386 44.7665 0.2048 0.5351 0.7315

300
MLE 0.0707 0.0626 0.2502 0.0493 0.1691 0.4113 -0.0159 0.0237 0.1539
MPS 0.0269 0.0559 0.2363 -0.1776 0.2109 0.4593 -0.1476 0.0592 0.2434
LS 0.1015 0.0853 0.2920 -0.0006 2.4671 1.5707 -0.0654 0.0345 0.1857

600
MLE 0.0525 0.0299 0.1728 0.0347 0.1576 0.3970 -0.0228 0.0137 0.1170
MPS 0.0153 0.0426 0.2065 -0.1592 0.1855 0.4307 -0.1319 0.0483 0.2198
LS 0.0595 0.0431 0.2075 -0.0636 1.0132 1.0066 -0.0806 0.0234 0.1531

800
MLE 0.0491 0.0275 0.1657 0.0266 0.1505 0.3879 -0.0143 0.0094 0.0968
MPS 0.0132 0.0368 0.1919 -0.1302 0.1700 0.4123 -0.1000 0.0364 0.1909
LS 0.0554 0.0329 0.1812 -0.1063 0.1783 0.4222 -0.0780 0.0202 0.1422

1000
MLE 0.0475 0.0269 0.1640 0.0164 0.1469 0.3833 -0.0199 0.0075 0.0869
MPS 0.0119 0.0385 0.1962 -0.1549 0.1676 0.4094 -0.0984 0.0361 0.1899
LS 0.0615 0.0329 0.1813 -0.1212 0.1805 0.4248 -0.0810 0.0196 0.1402
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6. APPLICATIONS

The MOAPTEEx distribution was applied to two data sets in order to compare its performance

and the other models, the results shows MOAPTEEx distribution outperforming other compet-

ing models based on all selection criteria and goodness-of-fit tests, making it the most suitable

model, the first data set used has been obtained by [22], which represents the strength of single

carbon fibers tested at a gauge length of 1mm, this data have been previously used by [4]in their

research. The second dataset used by [23]in Comparative analysis of the GAPIE distribution

using strengths of glass fibres data. The MOAPTEEx was compared to Marshall–Olkin expo-

nential distribution [7], exponential (Ex) distributions, Exponentiated Exponential (EEx) [24],

Alpha Power Exponential distribution [4] and transmuted generalized exponential (TGEx) [25]

which are summarized below.

Function Equation Conditions

fMOEx(x;θ ,λ )
θλe(−λx)[

1− (1−θ)e(−λx)
]2 θ ,λ ,x > 0

fGEx(x;α,λ ) αλe(−λx)
[
1− e(−λx)

]α−1
α,λ > 0

fAPEx(x;α,λ ,β )
log(α)λe(−λx)α1−e(−λx)

(α−1)
α,λ > 0, α 6= 1

FT GEx(x;α,λ ,θ) αλe(−λx)
[
1− e(−λx)

]α−1
{

1+θ −2θ
[
1− e(−λx)

]α}
α,λ > 0, |θ |< 1

fEx(x;λ ) 1− e(−λx) x > 0,λ > 0

6.1. The strength for the single carbon fibers dataset. The skewness value of 0.07602 of

single carbon fibers dataset as shown in table 5 and the figure 5 shows the dataset is nearly nor-

mally distributed and the distribution of the fiber strength measurements is almost symmetric.

Figure 7 show a concave TTT plot which suggests that the dataset follows an increasing failure

rate. Table6 and 7 as the results shows MOAPTEEx distribution as the best fit model for the

strength for the single carbon fibers dataset based on various selection criteria and goodness-

of-fit assessments. It outperformed other competing models, in terms of log-likelihood values.

Additionally, the MOAPTEEx model demonstrated acceptable K-S p-values and favorable A*

and w* statistics, indicating a superior fit to this type of dataset.
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TABLE 5. Summary Statistics of the Strength for Single Carbon Fibers

N Mean Skew Kurtosis Min Max 1st Quartile 3rd Quartile CV

56 4.261 0.07602 -0.003403 2.247 6.06 3.728 4.683 0.1927

FIGURE 5. Histogram plot of single car-

bon fibers dataset

FIGURE 6. Box plot of single carbon

fibers dataset
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FIGURE 7. TTT plot of single carbon fibers data set

FIGURE 8. The Fitted densities plot for the single carbon fibers dataset



MARSHALL-OLKIN ALPHA POWER TRANSFORMED EXTENDED EXPONENTIAL DISTRIBUTION 23

TABLE 6. Values of Selection Criteria for various competing distributions for

the single carbon fibers dataset

Model log(l) AIC CAIC BIC HQIC

MOAPTE-Ex -69.18 146.1458 146.6073 152.2218 148.5015
EEx -72.25 148.4926 148.7190 152.5433 150.0630
MOE-Ex -80.64 165.5955 165.8219 169.6462 167.1660
APEx -105.07 214.1473 214.3738 218.1980 215.7178
TGEx -129.45 258.895 258.971 259.971 258.251
Exponential -137.17 276.3327 276.4068 278.3581 277.1179

TABLE 7. Estimates of the parameters and goodness-of-fit tests for the single

carbon fibers dataset

Model Estimates (Std. Error) K–S (p-value) A* w*

θ̂ α̂ λ̂

MOAPTE-Ex 1138.3 489.36 0.2743 0.085863 (0.7713) 0.15395 0.02106
( 489.36) (1.0112e-05) (0.0516)

EEx - 80.68967 1.1444 0.1046 (0.5376) 0.1609 0.08144

- (28.9522) (0.0982)

MOE-Ex 111.3425 - 1.183O5 0.2165 (0.0088) 0.1779 0.1206

(36.16408416) - (0.08417492)

APEx - 104.5916 0.5121 0.3269 (7.898e-06) 0.1882 0.2744

- (43.9717) (0.0402)

TGEx 87.789 127.527 0.0934 0.3942 (7.772e-08) 0.1929 0.32971

(11.8621) (21.1235) (0.0314)

Ex - - 0.2347 0.4633 (1.591e-11) 0.2363 0.52971

- - (0.0314)

6.2. The glass fibre strengths. The data on 1.5 cm strengths of glass fibres appears to be

slightly left-skewed with the skewness value of -0.922 as shown in table 8 and the histogram

in figure 9 shows the dataset is skewed to the left. Figure 11 show a concave TTT plot which

suggests that the dataset follows an increasing failure rate. Table9 and 10 as the results shows

MOAPTEEx distribution as the best fit model for The glass fibre strengths dataset based on

various selection criteria and goodness-of-fit assessments. It outperformed other competing
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models, in terms of log-likelihood values. Additionally, the MOAPTEEx model demonstrated

acceptable K-S p-values and favorable A* and w* statistics, indicating a superior fit to this type

of dataset.

TABLE 8. Summary Statistics of the Strengths of glass Fibres

N Mean Skew Kurtosis Min Max 1st Quartile 3rd Quartile CV

63 1.507 -0.922 1.103 0.55 2.24 1.375 1.685 0.2151

FIGURE 9. Histogram plot of glass fibre strengths dataset

FIGURE 10. Box plot of glass fibre strengths dataset
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FIGURE 11. TTT plot of single carbon fibers data set

FIGURE 12. The Fitted densities plot for the glass fibre strengths dataset
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TABLE 9. Values of Selection Criteria for various competing distributions for

the glass fibre strengths dataset

Model log(l) AIC CAIC BIC HQIC

MOAPTE-Ex -16.65 42.2835 51.7129 48.7129 44.8122
MOE-Ex -25.97 55.4981 61.7844 59.7844 57.1839
EEx -31.38 66.7669 73.0532 71.0532 68.4528
APEx -53.88 111.755 118.0413 116.0413 113.4409
TGEx -88.83 179.6606 182.8038 181.8038 180.5035
Ex -95.63 187.257 189.687 188.687 187.786

TABLE 10. Estimates of the parameters and goodness-of-fit tests for the glass

fibre strengths dataset

Model Estimates (Std. Error) K–S (p-value) A* w*

θ̂ α̂ λ̂

MOAPTE-Ex 140.0067 5.40168 3.0574 0.1043 (0.4085) 0.1187 0.09235
( 108.761) (33.145) (1.2135)

MOE-Ex 139.0027 - 2.9341 0.2901 (0.3805) 0.1264 0.1834
(55.356) - (0.13545)

EEx - 33.924 2.0556 0.3264(0.3276) 0.1434 0.2562
- (8.7106) (0.1251)

APEx - 140.534 1.1593 0.3945 (0.2017) 0.1839 0.3034
- (78.6311) (0.09564)

TGEx 0.20667 11.00169 1.2743 0.4734 (0.1156) 0.2229 0.3568
(0.1356) (8.7642) (0.1961)

Ex - - 0.757 0.5213 (2.435e-3) 0.2957 0.4078
- - (0.2479)

7. CONCLUSION

This article proposed the Marshall-Olkin Alpha Power Transformed Extended Exponential

distribution as a robust three-parameter univariate model that enhances the flexibility of expo-

nential distribution with two shape parameters, it serves as a strong alternative in many cases.
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Some mathematical properties, including the quantile function, moments, Rényi entropy, skew-

ness, order statistics, and kurtosis, are derived. Parameter estimation is performed using Maxi-

mum Likelihood Estimation (MLE), Maximum Product Spacing (MPS), and Least Squares (LS)

methods, with MLE demonstrating the most reliability, particularly for larger sample sizes. The

MOAPTEEx was effectively used in two real datasets, consistently outperforming competing

models in terms of the evaluation of goodness of fit and the values of the selection criteria. The

MOAPTEEx distribution provides better fit for the assessed datasets based on the numerical

results, so its potential use in several fields, including long-term sustainability and reliability

research, where hazard rates may be declining, rising, or showing unimodal patterns.
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