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Abstract: In this paper, an eco-epidemiological model with fear and internal competition in the first and second prey
populations have been proposed and studied, the susceptible predator is fed on preys using Holling type-Il and Lotka-
Volterra functional responses in the presence of additional food and hunting cooperation to the susceptible predator.
Furthermore, it is assumed that the infected predator is receiving treatment. The existence, uniqueness and
boundedness of the solution have been studied. The conditions of local and global stability have been identified. The
goal of this study is to determine the fear, additional food, hunting cooperation and treatment effect on the stability of
the proposed system, it has been demonstrated that they play a significant role in regulating the system's stability.
Finally, our analytical conclusions were verified numerically by Mathematica.
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1. INTRODUCTION
Mathematical modeling is a powerful tool used to understand complex systems and predict

their behavior through the use of mathematical frameworks. When applied to ecological and
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biological contexts, such models can illuminate interactions among species, and environmental
factors, and many research works have been down in literature [1-4].

In ecological contexts, fear influences predator-prey interactions. For prey species, the
perception of risk from predators can alter foraging behavior, habitat use, and social structures.
For example, when prey feel threatened, they may change their feeding times or locations to avoid
detection, impacting their growth and reproductive success. This behavioral response can also
affect predator dynamics, as reduced prey availability can lead to changes in predator hunting
strategies and population dynamics, see [5-8] and the reference therein.

Hunting cooperation among predators represents a fascinating aspect of ecological dynamics
that significantly influences population structures, species interactions, and ecosystem stability.
When predators work together, their collective hunting strategies can enhance their efficiency,
leading to profound effects on both prey populations and the broader ecological community.
Moreover, the dynamics of hunting cooperation can be affected by environmental factors, such as
food availability and habitat structure. When resources are abundant, cooperation may increase,
leading to larger predator populations. Conversely, in environments with limited resources,
competition may intensify, affecting the stability of predator-prey dynamics, see [9-11] and the
reference therein.

When predators are provided with additional food, their foraging behavior may change,
potentially leading to increased population densities. With more resources available, predators
might exhibit less competitive behavior, allowing them to thrive and even expand their territories.
This can lead to cascading effects throughout the food web, as an increase in predator populations
can place greater pressure on prey species, potentially leading to declines in their numbers.
Understanding the impact of additional food on dynamic systems is essential for effective
ecosystem management and conservation strategies. By analyzing these interactions, researchers
can better predict how changes in resource availability affect species dynamics, community
structure, and overall ecosystem health, see [ 12-14] and the reference therein.

The ecological interactions such as competition, mutualism, and predation play an important
role in population dynamics. However, the size of populations is also impacted by disease
infestation. Prey-predator interactions should therefore take this issue seriously. Many field
investigations have shown that both predators and prey are infected with disease. Diseases can
reduce the ability of infected organisms to survive and reproduce by affecting their internal

mechanisms, see [15-17] and the reference therein. Hence, predator-prey relationships when both



THE DYNAMICS OF FOOD-WEB ECO-EPIDEMIOLOGICAL MODEL

populations are afflicted should worry us all.

In recent years, infectious disease has emerged as a significant factor, hence modeling
transmissible diseases mathematically has become an important tool in analyzing and controlling
infectious diseases. Models and simulations can help construct and test hypotheses, evaluate
quantitative hypotheses, provide specific answers, establish the impact of parameter changes, and
provide parameter estimations. For example, some authors studied diseases that can have infected
a human been like COVID-19 and the human immunodeficiency virus, see [18-21] and the
reference therein.

In eco-epidemiological models treatment has a significant impact on disease dynamics.
Researchers and public health officials can create more effective interventions that take into
account medical and environmental factors by comprehending these intricate relationships. In the
end, this will enhance public health results and disease control strategies [22, 23].

Recently, Yousef and et al. [24] studied a fractional-order eco-epidemiological model with fear
and hunting cooperation but they did not consider the effect of treatment, Ghosh and et al. [25]
studied an eco-epidemiological model with the combined effects of fear, hunting cooperation,
including treatment for infected prey. Also, they analyzed their model with memory effects but
they did not consider the effect of additional food.

The aim of this paper is to study an eco-epidemiological model involving two prey populations
and one predator with disease in the presence of fear and internal competition in prey’s population,
moreover additional food, hunting cooperation and treatment have been proposed in predator
population.

2. MATHEMATICAL MODEL

In this work, a mathematical model of first and second preys, susceptible predator and infected
predator with hunting cooperation has been proposed for study. whose total population density at
time T is denoted by L,(T), L,(T), L5(T), L,(T) respectively.

dL, _ ajly 2 BiLiLs -
dT ~ 1+fils 1 c+anA+Ly
dL, azL,

_ 2
a1 hL b,L5 — (p + hL3)L,Ls,

— €Y
dLy _ _ Lgtly Cy(L1+nA)L3 _ YL,
ar = Gals (1 K ) Cramast, T C2(PF hlg)lols = (d+BL)L; + o+Ly
dL, YLy
d_T —_ BL3L4_ - 8L4_ - +L4 —



INAAM IBRAHIM SHAWKA, AZHAR ABBAS MAJEED

Where L,(0) >0, L,(0) =0, L;(0) =0 and L,(0) = 0 represent the initial condition (IC). While

the biological meaning of the parameters in system (1) described in Table 1.

Table 1: Description of the parameters in system 1

Parameters Description

a;,i =123 The intrinsic growth rate of the first prey, second prey and susceptible predator respectively

bj,j =12 Internal competition rate of first prey and second prey respectively

from=12 The fear rate of the first prey and second prey species from susceptible predator

K>0 The carrying capacity of the susceptible predator population

B, >0 The maximum rate of predation

c=1 The half saturation value of the predator

a The ratio of the maximum growth rates of the predator when it consumes the prey and
additional food

n>0 The ratio of the search rate of the predator for additional food

A>0 The additional food

p The attack rate of the susceptible predator to the second prey

h The hunting cooperation in susceptible predator

;>0 The conversion rate by attack the first prey

0<(C <1 The conversion rate by attack the second prey

d>0 The natural death rate of susceptible predator

B The disease transmission rate

) The death rates of infected predator

y The maximum medical resource supplied for treatment

o Saturation factor that measure the effect of the delay in treatment for the infected individuals

The interaction functions of system (1) are continuous and have continuous partial derivatives on
R% with respect to dependent variables Ly, L,, Ly and L,. Accordingly, they are Lipschitzian
functions and hence system (1) has a unique solution for each non-negative initial condition.
Additionally, the following theorem demonstrates the system's boundedness.
Theorem 1. All the solutions of system (1) which initiate in R% are uniformly bounded
provided that

c=>1 (2)
Proof. Let (Ll(t), Lo (t), L3(t), Ly (t)) be any solution of the system (1) with non-negative initial
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condition (L;(0), L,(0), L3(0),L,(0)) € R%.
Assume that M(t) = L,(t) + L,(t) + L3(t) + L,(t) then taken the time derivative of M(t) along
the solution of the system (1), we get

dM _ a1L1 2 BlL1L3 asz
dt ~ 1+fiLs %1 Cctana+l, ' 1+foLs

— byL3 — (p + ALs)LaLs + azls (1 — 25) +

C1(L1+nA)L3
C+anA+Lq

+ Co(p + hL3)LyLy — (d + BLy)Ly + L=+ BLyLy — 5Ly — 2
4

o+ o+Ly
Now, by condition (2) with the biological perspective, always C; < B; and C, < 1 consequently,

it is determined that

am 2 2 asL}
E S alLl - blLl + asz - b2L2 + a3L3 + C]_T]AL3 - K

—dL; — 6L,
Thus, using comparison theorem, we have

M by b, azLls
a < 20k (150 1) + 205, (132 L) + o + Cn)Ls (1= ) -,

where u = min {a, ,a,,d,§}.

Now since the function g,(L;) = 2a4L, (1 — 2I’TlLl) is logistic function with respect to L, and
1

2
hence it is bounded above by the constant %.
1

Also, since the function g,(L,) = 2a,L, (1 — ZbTZLz) is logistic function with respect to L, and
2

a3

hence it is bounded above by the constant o
2

Finally, since the function g3;(Ls) = (a3 + C;nA)L (1 —K(aai—LC?’nA)) is logistic function with
3 1

K(az+C1nA)?

respect to L; and hence it is bounded above by the constant , 1t 1s observed that

as

2 2 2
d—M+,uMSN, where N=(ﬂ+ﬂ+M).
dt b, b

2 4az
Then by solving the above differential inequality it is obtained that M(t) < % + (MO - %) e Mt
Then, gim M(t) < %
So, 0 S M(t) < % That is the solutions are uniformly bounded.

3. EXISTENCE OF EQUILIBRIUM POINTS (EPs)
In this section, the existence of all possible (EPs) of system (1) has been discussed. It is noticed
that, system (1) has fifteen (EPs).
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e The trivial (EP) P, = (0, 0, 0, 0) is always exists.

e The (EP) P, = (% 0, 0, 0) is always exists.

e The (EP) P, = (0, % 0, 0) is always exists.

e The (EP) P,=(0, 0, L,, 0) where ;:waﬂgzgm“]meﬁtm-mmmm
3

condition holds
as; > d. 3)

e The (EP) P, = (% % 0, 0) is always exists.

e The (EP) Ps = (fl, 0, L, 0) exists if the following equations have a positive solution

a1 _ __Bils _
1+fiL3 bily C+oanA+L, 0, (4)
_Ls Ci(Li+nd)
a3 (1 K) + C+anA+L, d=0. ©)

From Eq.(5), we have

__ K[(C1+az—d)L1+((C+anA)(az—d)+CinA)]

Ly = az;(C+anA+L,) ' ©)
Now, by substituting Eq.(6) in Eq.(4), we obtain the following equation

S{LA + S,I3 + S3L2 4+ S,Ly + S5 = 0, (7)
where

Sy = —azby[az + f1K(C; + a; —d)] <0,

S, =a; [a3(a1 —3b,(C + and)) — b, 1K ((C1 +a;—)[(C+and)+1]+ ((C+

and)(as - d) + Cn4))],

S3 = az [3a3 (C + anA)[a; — by (C + anA)] — K[([b1f1(C + anA)(az — d) + C;nA][(C +
anA) + 1] + (C; + a3 — d)[b, f1(C + anA) + B,]) + B, /1K(C, + a3 — d)z]]'

S, =as [a3(C + anA)?[3a, — b;(C + and)] — B;K ((C1 +a; —d)(C + anA) + ((C +

and)(a; — d) + CnA) )| = 2B, fiK2(C, + a3 = DI(C + and)(as — d) + CynAl,

Ss = a1a32(C + OWIA)B - K((C + anA)(a; —d) + ClnA)[a3(C + anA)[B; + by f1] + B1f1K],
which has unique positive solution say L, if the next conditions with condition (3) are hold
a, > 3b,(C + anA), (8)
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613(0L1 —3b,(C + anA)) > blflK((C1 +a; —d)[(C+anAd) +1] + ((C +anA)(a; —d) +

CinA)), 9)
[3a3(C + anA)[a, — by (C + anA)] > K[([b1f,(C + anA)(az — d) + C;nA][(C + anA) +
1] + (C; + a3 — d)[b1f1(C + anA) + B,]) + B f1K(C, + a3 — d)z]]: (10)

a1a3%(C + anA)® > K((C + anA)(az — d) + CinA)[az(C + anA)[B, + b, f1] + B1fiK].  (11)
So, the (EP) Ps = (fl, 0, f3 ,0), where i3 =L, (il), exists if in addition to condition (3)
conditions (8 — 11), are hold.

e The (EP) P = (0, Ly, Ls, 0) exists if the following equations have a positive solution

i~ bela = (p+ hLyL; =0, (12)
L CinA
as (1—?)+ﬁ+€2(p+hL3)L2—d = 0. (13)
From Eq.(12), we have
_ a;—(1+f,L3)(p+hl3z)Lz
L2 = by(1+f2L3) ' 14

Now, by substituting Eq.(14) in Eq.(13), we obtain

Q1L§ + QzLé + Q3L% +Q4L3+ Q5 =0, (15)
where

Ql == _CzhzfzK(C + (an) < O,

Q, = —ChK(C+ anA)[2pf, + h] <O,

Q3 = —(C+ and)[asb,f, + C,pK (pf; + 2h)] <0,

C,p? b

Qs = (C+ cnd) [bofoK (a5 — d) + (a, — 22122,

Qs = K[(C+ anA)[b;(as — d) + Cra;p] + C1nAb,].
Which has unique positive solution say L; if condition (3) are hold.
So, the (BP) P = (0, Ly, L3,0) where L, = Ly(L3) exists if in addition to conditions (3) the
following condition holds

a, > (1 + f2Z3)(p + hi3)Z3. (16)

e The(EP) P, =(0, 0, Ls, L,) exists if the following equations have a positive solution

as (1—ﬂ)+ﬂ—(d+m4)+ o, (17)

K C+anA (0+Ly)Ls -
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vy _ _
BLy— 8~ L-=0. (18)
From Eq.(18), we have
_ y—o(BL3=6)
L, = oL (19)

Now, by substituting Eq.(19) in Eq.(17), we obtain the following equation

GL} + G,L3 + GsLs + G, = 0, (20)
where

G, = B(C + anA)[B?c%K + as;(Bo? — )],

G, = y((C+ anA)[BK (az — d) + a3(8 + Bo)] + C;nAKB),

Gy = ((C + and)[—(Kyd(as — d) + az(y? + yo8 + 02B?)) — BKab(a6 —y)| — ClnAKy(S),

G, = —Kys(C+ anA)(y + 06) < 0.
Which has unique positive solution say L if the next condition with condition (3) are hold
¥y < Ba?. (21)
So, the (EP) P, = (0, 0, L;, L,) where L, = L,(L;) exists if in addition to condition (3,21)
the following conditions hold
BL, > 6, (22)
y > cs(Blv,3 — 6). (23)

o The (EP) Py = (L, L,, L3, 0) exists if the following equations have a positive solution

a; _ Bily  _
1+f1Ls biLy C+anA+L, 0, (24)
1_:;;3 —byL, — (p+ hL3)L; =0, (25)
L C1(L1+7n4)
as (1 - ;3) F SN L (o + hlg)l, —d = 0, (26)
From Eq.(26), we have
L3 _ —K[(Cl+a3—d)L1+C2p(C+oc71A+L1)L2+(a3—d)(C+oan)+ClnA]. (27)

(C+anA+L,)(CyhKLy—a3)
Now, by substituting Eq.(27) in Equations (24 and 25), we obtain the following equations.
My(Ly, Ly) = (C + anA + Ly)[ay — by Ly] + b1 f1[(C+ anA + L)Ly +

B ] (K[(Cl+a3 —d)L1+C,p(C+anA+L4)Ly+(az—d) (C+oan)+Cl77A])
1 (C+anA+L,)(C;hKLy—az)

(28)

—K[(Cl+a3—d)L1+C2p(C+omA+L1)L2+(a3—d)(C+anA)+C1nA])2 — 0
(C+anA+L,)(C;hKLy—as) ’

A
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M, (Ll:Lz) =a, —b,L, + [bzszz + p] (K[(C1+a3—d)Ll+C2p(C+anA+L1)L2+(a3—d)(C+(x17A)+C177A]) _

(C+anA+L,)(C,hKLy—a3)

2 —K[(C1+a3—d)L1+C2p(C+omA+L1)L2+(a3—d)(C+anA)+ClnA])2
[fop® + A] ( (C+anA+Ly)(C;hKLy—a3) +

hf (K[(Cl+a3—d)L1+CZp(C+otr]A+L1)L2+(a3—d)(C+omA)+ClnA])3 — 0
2 (C+anA+Ly)(CohKLy—as) -

(29)
Now from Eq.(28), we notice that, when L; —» 0, then L, — L} is a positive root of the
equation

TiL3+ T,L, + T3 =0, (30)
where

T, = C2K?(C + anA)?[a;h*(C + anA) + pB;(h + pf1)] > 0

T, = C,K(C + anA)[—as(C + anA)[2a,h(C + anA) + pB,] + KBy (h — 2pf)[(as —

d)(C + anA) + C;nAl],

K
T; = (a1a3(C + anA)® + KB, ((C+0’;17A) - a3) [(ag — d)(C + anA) + Clr)A]).

Moreover, from Eq.(28) we have o= = — <(ai) / ("i)> So , 9 < 0 if one of the following

aL, oL,

sets of conditions hold

Ga)>0(Gn) >0 or (52) <0 (3) <o (31)
As well as, from Eq.(29) we notice that, when L; — 0 then L, — L% is a positive root of the
equation
Ui L% + U, L3 + Usls + UyL, + Us = 0, (32)
where

U, = C3K3h?b,(C + anA)[h(C + and)? + pf,] > 0

U, = C2K?h ((c + anA)? [a,C;h%K + azb, |2 pfy — h| + Cp? (h +K[2pf, +h]+

pKfz)] + hKb,f,[(az — d)(C + anA) + ClnA]),

Us = C,K(a3(C + anA)*[h(3azb, + C,p%K) — (3a,C,Kh? + pash,f, + C,Kp*f,)] + (C +
anA)[(a; — d)(C + anA) + C;nAl(C,hK?p(C + anA)[3f,p + h] + 2C,hK?pas[frp? +
hD),

Uy = a3(C + anA)? [3a,C;hK — az(ash, + C;Kp?) + [(a5 — d)(C + and) + CinA] ((C +

and)[azKb, £, (C + anA) + 2pC,hK?az + [fop% + h](C.hK 3 — 2a,(C + and)) +

3f2 CzPhK3])]’
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Us = —a,a3(C+ and) + K[(az — d)(C + anA) + C;nAl(foh + a3p(C + and)? — azK (p? +

h)(C+ anA)).
Furthermore, from Eq.(29), we have T2 = — <(%) / (%)) So, 2 £ > 0 if one of the following

sets of conditions hold

(i) > 0.(Gir) <0 or (G) <0.(5) >0, (33)
Then the two isoclines (28) and (29) intersect at a unique positive point (Zl, Zz) in the
Int.R? of L,L, — plane.
So, the (EP) Pg = (ll, L,, Ls, O), where Ly = L3(Z1,z2) exists if in addition to condition (3)

the following conditions hold

2
h < Min {prl, —pfz}, (34)
a; > Max {(Cf it CZhKLz} (35)
h(3asb, + C,p%K) > (3a,C,Kh? + pasb,f, + C,Kp*f,), (36)
foh+a2p(C+ and)? < azK(p? + h)(C + anA), (37)
I} > I3. (38)

[l

e The (EPs) Py = (il, 0, f3, L:) and Py, = (fl, 0, Ls, 54) exists if the next equations

have a positive solution

aq _ _ BlL3 _
1+f1L3 blLl C+(XT)A+L1 - 0’ (39)
_ L3+L4 Cl(Ll‘I'T]A)
a3 (1 K ) + C+anA+L, —(d+BLy)+ (G+L )L (40)
f— fR— y e
BL; — 6 v 0. (41)
From Eq. (41), we have
L, = y—o(BLs—6) (42)

(BL3-6)
Now, by substituting Eq.(42) in Equations (39 and 40), we obtain the following equations.
Hy(Ly,L3) = Ly(a; — by [(C+ anA + Ly) + f,(C+ anA)Ls + f,L,L3]) — B, (1 +
fil3)Ls + a;(C+ anA) =0, (43)
Hy (Ly,Ls) = Ly(y[—asB(C + anA + L)L + [(a; — d)(C + anA)KB + (C, + a3 —
d)KBL, + a3;(6 + 0B)[C + anA + L,] + C;nAKB]L; — [K§(a; — d)(C + anA) + a;(C +
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anA)(y + a8) + (as(KS +y + 08) + dKS)L, + C,KS(A + L))]| + az086%L,) — yKS(y +
o8)[C+ and + L,] = 0. (44)

Now from Eq.(43), we notice that, when L; —» 0, then L; - f,l3 is a positive root of the equation
lelL% + Bng - al(C + O(nA) = 0 (4‘5)

Moreover, from Eq.(43) we have Z—: =— <(Z—IZ:) / (3—12)) .So , ZL: < 0 if one of the following

sets of conditions hold

(52)>0(52) >0 or (52)<0,(52) <0 (46)

oLy Ly oL,

~ :2
As well as, from Eq.(44) we notice that, when L; - 0 then L; —» I3 or L; — L; are roots of the

equation

Y,L3 + Y,12 + YsLs + Y, = 0, (47)
where

Y, = —a3yB(C + and) <0,

Y, = y((C + anA)[(a; — d)KB + a;(6 + oB)]| + ClnAKB),

Yy, = —y((C + and)[(az — d)KS + a3 (y + 08)] + C;nAKS),

Y, = —yK&(C + anA)(y + ¢d) < 0.

Clearly, according to the Descartes’s rule, either Eq.(47) has no root or there are two roots say

(i% E%) if condition (3) holds.

Furthermore, from Eq.(45), we have dLl =— <(%) / (%)) So, ﬂ > 0 if one of the following

sets of conditions hold

("’HZ) >0, ("’HZ) <0 OR (‘”’2) <0, (‘”’2) > 0. (48)

aL3 aLl aL3 oL
Then the two isoclines (43) and (44) intersect at a positive point (il, i3) in the Int.R2 of
L,L; — plane.
52
Similarly, for L.

S0, the (EPs) Py = (il’ 0, Ly, i‘*) and Pyp = (il 0, L, i}) where L, = Ly(Ly, I5) and 15,4 =

Ly (Zg,l i3) exists if in addition to condition (3) the following conditions hold
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BL, > 6, (49)
y > o(Bi3 - 5), (50)
IL > I2. (51)

o The(EPs) Py = (0, Ly, L3, Ly) and Py, = (0, Ly, Ls, L,) exists “if and only if” the next

equations have a positive solution

az

Tt hls b,L, — (p + hL3)L; = 0, (52)
L3+L4_ ClnA ]/L4 _

a3 (1 - T) + C+(XT)A + Cz(p + hL3)L2 - (d + BL4_) + (0'+L4)L3 - O, (53)

BL; — & — GIL4 = 0. (54)

From Eq. (52), we have

_ a—(1+f,L3)(p+hl3z)Ls
L2 = by (1+f2L3) ' (55)
And from Eq. (54), we have
_ y—o(BL3—6)
L, = GL8) (56)
Now, by substituting Equations (55 and 56) in Eq.(53), we obtain the following equation
ZoLL + ZoLS + Z3 L3 + Z4 L% + ZLy + Zgl3 + Z, L + Zg = 0, (57)

where
Z, = —C,f,Koh?B?(C + and)[1 + 0] < 0,
Z, = ChKB(C + anA)[Bo(f,p + h)[o — 1] — hf,],

5
Zs3 = C,hK(C + and) [paBz(a -1 +vf (E — Zp) — yB],
Zy = (C + anA)[-B(asb,fy + C;Ka[2hy + pfyy + 4haé]) + C,hKS8(hy + fop[2y + 06])],

1)
aZB)]ﬁ

o=~ and) ooy (as [ (= 2) o (5= )+ (5= D]+ BroB — ) -

1) 1 [ 1
dK (; - E)) + C,K(8(hayy + 2p%0 + p?y) — aszB)] — CinAKbyy (; - f—z).
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1

)
Z,=—y ((C + anA) [azbz(y + dd8) + K& [bz(a3 —d) + C,pa, + b,o (E - f_z) +

Vbzfz]] + C171AKb25>'

Zg = —yKb,6(C + anA)(y + dd) < 0.
Clearly, by Descartes’s rule, Eq. (57) has no root or there are two roots say (Ls, L3), if in

addition to condition (3) the following conditions hold

o<1, (58)
1 65

E < E < Zp, (59)
C,hK8(hy + fop[2y + 08]) < B(asb,foy + C,Ka[2hy + pf,y + 4had)), (60)

So, the (EP) Py; = (0, L,, L3, L,) where L, = L,(L3) and L, = L,(L3) exists if in addition to
conditions (3,58 — 60) the following conditions hold

ay > (1+ foL3)(p + hL3)Ls, (61)
BL; > 6, (62)
¥y > o(BL; — §). (63)

Similarly for P, = (0, Ly, Ls, Ly).

e The (EPs) P;3 = (L3, L5, L5, L,) and Py, = (L7, LY, LY, Ly") exists “if and only if” the next

equations have a positive solution

a, Bily
s b G, = O 64)
1:;;3 —byL; — (p + hL3)L; =0, (65)
Ly+Ly C1(Li+nA) YLy
a; (1-=2 ) + IR 4 Cop + hLy)L, — (d + BLy) + 55 =0, (66)
vy __
BL; =8 ——-=0. (67)
from Eq.(65), we have
_ ax—(1+f,L3)(p+hl3z)Ls
Ly = by (1+f,L3) (68)
And from Eq.(67), we have
_ y—o(BL3=6)
Ly = (BL3—8) (69)

Now, by substituting Equations (68, 69) in Eq.(66) we obtain the following equations



14
INAAM IBRAHIM SHAWKA, AZHAR ABBAS MAJEED

Ay(Ly, L3) = Li(ag — by [(C+anA + L) + f1(C + anA)L; + f1L1L3]) — By(1 + f1L3)Ls +
a,(C + anA) = 0, (70)

Ay(Ly,L3) = yLs | —C,f,KBh?[c + anA + L ]L5 + C,hK <2psz +(5- 7)) [c + anA +
2

L)% <a2b2sz + C,K(p2f,B — h28) — 2C,Kph (- %)) [c+anA + L,]L3 +

<[Kb2f2B(a3 —d)+(5- jé) [ash, + C,Kp?] + C,Kh[2p8 + azB]] [c+anA+ L]+
2

C1bofoBK[Ly + nA]) <(c + and) [(— - —) (sz(a3 d)(1 —0) + C,K(p?5 + ay(pB — h6)) —

a3b2(6 + Ly + 06)))] + ( (g — —) [(as —d)Kb, + 2C1Kb,] + a3b2[5 + fz(ch —(y+ 06))] +

1)
C,Kp(Ba, + p6)> L, — CinAb,K (— — —)) Ls + ((C + anA) [ Kb, (E - %) (y + 06) —azb,(y +
S5 1
06) — K(C,a,p6 + Bbyy)| - [Kbas0f, (5 - E) + Kby6(as — d) + azby (v + 06)| Ly —

Clr]AszS) — Kby6(y + a8)[c + anA + L), (71)

Now from Eq.(70), we notice that, when L; — 0, then L; — L' is a positive root of the
equation that follows

fiB1L4 4+ B;L; — a;(C + and) = 0 (72)

Moreover, from Eq.(70) we have dL1 =— <(%)/(%)> So , dL1 =<0 if one of the following

sets of conditions hold

G) >0 G)>0 or (G2) <0 (G) <o 73)

As well as, from Eq.(71) we notice that, when L; — 0, then Lz — L3? or Ly — L%, are roots
of the equation
F,L8 + F,L5 + F3l% + F,13 + Fsl2 + F,Ls + F, = 0, (74)
where
F, = —C,f,KByh?(C + anA) < 0,

F, = —C,hK(C + anA) <20sz h (E B é))
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Fy = —(C + anA) <a2bzsz + C,K(pf,B — h28) + 2C,Kph (% - %))

F,=y [(C + anA) (szsz(a3 —d) - (% - g) [ash, + C,Kp?] + C,KR[2p8 + azB]) +
CinAb,f,BK|,

Fo=v [(c + anA) [(fl - g) ((a3 — d)(1 — 0)Kb, + C,K(p?8 + ay(pB — h8)) — azh, (5 +
fo(y +06)))| + CinAb,K (B - 51,)]

Fo = 7| (C +ana) |[=Kb, (= = 3) (v + 08) + asb,(y + 08) + K(C,a206 + Bbyy)| -

ClnAszS]
F, = —Kb,6(C + anA)(y + 66) <0
Clearly, according to the Descartes’s rule, either Eq.(74) has no root or there are two roots say

(L¥, L5?), if in addition to reversing condition (59), conditions (3, 58) and the following

conditions hold

h28 s
B > Max {pzfz' —}, (75)

(a3 — d)(1 - o) (fl - g) Kb, + CZK(p26 +a,(pB — h8)) > azh,(6 + fo(y + 6)),  (77)

Furthermore, from Egq. (71), we have Z—:= —((%)/(3%)) So, ﬂ>0 if one of the

following sets of conditions hold

Gi) >0 G) <0 or (5)<0(G)>0 e

AL OL3

Then from the two isoclines (70) and (71) intersect at a unique positive point (L7, L3) in the
Int.R? of L,L; — plane.
Similarly, for (L%, L3")
So, the (EPs) Pys = (L3, L3, L5, Ly) and Py, = (L3, Ly, Ly, L) where Ly = Ly(LY), Ly = Ly(L})
and Ly = L,(L5"), Ly = L,4(L3") exists if in addition to reversing condition (59), condition
(3,58,75 — 77) the following conditions hold

az > (1+ f2L3)(p + hL3)L3. (79)

BL3 > 6, (80)
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¥ > o(BL; — §), (81)
L > L2 (82)

4. LOCAL STABILITY ANALYSIS (LSA)
In this section, the (LSA) around each of the (EPs) is discussed by calculating the Jacobian
matrix (JM), J(L4,L,, L3, L) and found the eigenvalues of system (1) at each of them.

Note that, we used the symbols 4;;,., A;1,, 4;., and A;,, to symbolize the eigenvalues of (JM)

Ji; i = 0,1,... 14 that represent the dynamics in L,-direction , L,-direction, Ls-direction and

L,-direction respectively, where the (JM), J(L,,L,, L3, L,) of the system (1) at each of them can

be written as J = [by],_,,

(C+anA)B,L3

—a1f1lq ByL,
b, =0, bj;=—2 -
(C+anA+L,)2’ 12 » 13

L
b1 2byLy (1+f1Lz)?2  (C+anA+Ly)

T 1+filg

<0, by =0,

—a,foL
by; =0, by = ﬁ — 2byL, — (P + hL3)L3; b,; = uj;ﬁ - (P + 2hL3)L2, b,y =0,

_ C(C+nA(a-D)L _
b3y == e @ Psz = Ca(p + hls)Ls,

C1(L1+n4)

(C+anA+Ly) + C,(p + 2hL3)L, — (d + BL,),

b33 = a3 _%(2L3 + L4,) +

b34=_(%+B)L3+(L bsy =0, by =0, byy=BLy by =BLy—8——"L

o+Ly)? (0+Ly)?"

e |tis easy to verify that, the (JM) of system (1) at P, = (0,0,0,0) can be written as:

a, 0 0 0
0 a 0 0
Jo=JP) =10 0 az+ Coard) - (83)
Y
0 0 0 - (6 + ;)

Then the characteristic equation of J, is given by

(al—l)(az—A)(a3+%—d—l)(—(6+g)—l):O

then the eigenvalues of ], are

C177A
(C+anA)

Aor, = a1 >0, Ao, =0z >0, Ags, = a3+ —d and Ao, =—(6+%) <0,
so, the equilibrium point P, is unstable.

e The (JM) of system (1) at P, = (%,0, 0, 0) can be written as
1
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[ -a® a,B;
a 0 by a;+(C+anA)b, 0
0 a, 0 0
Ji=J(P) = 0 0 as+ Ci(a1+nAby) Y (84)
a1+(C+anAd)b, o
)4
0 o0 0 ~(s+Y)]

Then the characteristic equation of J; is given by

(—a, = D@y = ) (a5 + =220 g — ) (= (5 +2) = 1) =0

a;+(C+and)b,
then the eigenvalues of J, are

C,(a,+nAb,)

/‘llLl = —aq <0, AlLZ =a, >0, AlL3 = das +m

_ Y
—d and Ay, = —(5+;) <0,
so, the equilibrium point P; is unstable.

e The (JM) of system (1) at P, = (0, % 0, 0) can be written as
2

ra, 0 0 0
0 —a —az(azfr+p) 0
2 b,
Jo=J](P) = CinA a262p Y (85)
0 0 (a3 + (C+anA) + b, d) o
Y
0 0 0 ~(s+Y)]

Then the characteristic equation of J; is given by

(al—A)(—az—A)(ag+(£—%+%—d—z)(—(5+g)—z)=o

then the eigenvalues of J; are

— — _ CinA azCzp _ y
/‘lZL1 — a1 > 0, AZLZ —_— _a2 < 0, /12L3 —_— (a3 +(CT¢‘I]A)+T_d) and)lZL4 — _(8+;) < 0,

so, the equilibrium point P, is unstable.
e The (JM) of system (1) at P; = (0,0,L3,0) can be written as
Ja=J(P3) =[], , (86)

BiL3

__a
Qll_(1+fli3) (C+ana)’

le = O, Ql3 = O, Q14 = O, QZl = O,

a _ Cl(C+nA(a—1))Z3

)_ (p + hZ3)Z3, Qy3=0, Qy =0, Q3; = (Coa)?

QZZ = (1+fZZ3

)

— \— az — CinA
Q37 = Co(p +AL,)L;, Q33 =a; — 22 Ly +

= _(& 7.+t
3 (C+w7A) —d ! 934 - (K + B) L?’ + o

Q1 =0, Qp=0, Q=0 Q4y=5L~(5+ Z)
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Then the characteristic equation of J; is given by:

( a, ByLy /1) (L — (p + hZ3)Z3 — /1)

(1+£iL5)  (C+ana) (1+£,L3)

~d-2)(BL; - (s +%)-1) =0,

_98y , _CGnA
(a3 2 K Ly+ (C+anA)

then the eigenvalues of J; are

ai  Bils

A — 2_ — az ClnA
3L1 ™ (1+f,Ly)  (C+ana) 3la ™ (14£,13)

(C+an4d)

—(p+hL3)L3, A3, = az — 2%Z3 +

and A3, = BL; — (5 + g) then P; is (LAS) if in addition to condition (3) and the following

conditions hold

a, BiLs
(1+f1L3)  (C+ana)’ (87)
a, - NT
T < (p + hL3)Ls, (88)
ClnA 2(13 -
az —d+ < La, (89)
BL, < (5 +1). (90)
otherwise P; is unstable.
e The (M) of system (1) at P, = (% % 0, 0) can be written as
1 2
[ -ai*f a,B;
—h 0 by N a,+(C+anA)b, 0
0 —a, —a; (‘szz +p) 0
— — 2
Ja=J(P) = 0 o ( Culartnaby) | axCep d) - (91)
3 a+(C+anA)b, b, o
Y
0 0 0 ~(s+Y)]
Then the characteristic equation of J, is given by
L o C,(a;+nAby) axCp 4 ) (_( Z) _ ) _
(—a; — D(—ay — 1) (a3+a1+(c+w)b1+ 2 —a-2)(-(6+%)-2)=0
then the eigenvalues of J, are
—_ _ _ C1(a;+nAby) axCp
A4L1 - al < 0, 2,4[12 - az < 0, 2,4[13 - (a3 + a1+(C+anA)b1 bz d) aIld
Aoz, = —(6+%) <0, then P, is (LAS) if the following condition holds
as Cy1(a;+nAby) aCzp <d, (92)

a1+(C+(XT]A)b1 b2

otherwise P, is unstable.
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e The (JM) of system (1) at P; = (Ly, 0, L3, 0) can be written as

Js =](Ps) = [Cij]4x4- (93)
a; T (C+anA)B,Ls —ayfiLly ByLy
= Zb L - ) = 01 = = - T
NMTTRL O T Craasty)” 2T BT (ip, ) (Cranatiy)
€14 =0, €21 =0, ¢3= m - (P + hL3 )Ls; €3 =0, €0 =0,
_ C(C+nA(a—1))L; . =\7F _ o037 C1(L1+nA) .
C31 = (Croma+iy)’ C32 = CZ(P + hL3)L3 , C33=az—2 K Ly (Crana+iy) )
a = y = %
C34=_(?3+B)L3 +;: c41=0, ¢42=0, €43 =0, C44=BL3_5_;-

Then the characteristic equation of J5 is given by
(c22 = D(caa = D[A* = (c11 + €33)A + 11633 — €13€31] = 0, (94)
Then, either (c;; —4) = 00r (c4q —A) = 0, which gives A5, = 22, A5y, = Caa.

Or [/12 - (Cll + C33)/1 + C11C33 — C13C31] = O, which giVCS

_ _ T+ _ (C+and)ByLs _ C1(L1+n4)
Asi, + 451, = <1+f1i3 2Ly (C+anA+i1)2>+(a3 2% L3 (C+anA+Ly) d)

_ as T+ _ (c+and)B,Ls C1(L,+n4) _
/15L1-/15L3 B <1+f1l=43 ZblLl (C+anA+i1)2> ( 2 L3 (c+ana+L,) d) +

a1f1i1 + Blil _ Cl(C+7]A(C(—1))i3
(1+f1i3)2 (C+anA+Ly) | (C+anA+i1)2

then P5 is (LAS) if the next conditions hold

ai

= fz - < (p + hL;)Ls, (95)
BL; <6 +1, (96)
(C+anA)B L3
1+f1 3 < ZblLl (c+ana+L,)?’ ©7)
_ C1(L1+nA) a7
a;—d+ —(C+0u7A+L j <22 L (98)
a>1. (99)

Therefore, under the above conditions, all of /s eigenvalues have negative real parts , and as a
result Ps is (LAS), otherwise Ps is unstable.
e The (JM) of system (1) at P, = (0, L,, L3, 0) can be written as

Jo =J(Ps) = [dyj], ,, where (100)
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a BL;
dig = T. ’
1+f1L3 (C+anA)

d12 = 0, d13 = 01 d14 = 0! d21 = 0’

~ N oL ~ N
dzz —_ m - 2b2L2 (p + hL3)L3, d23 = - ((]i‘-’:fﬁ + (p + ZhLS)Lz) < 0
_ Cy(C+nA(a-1))L PN
_ a C1nA _ a ~ y
d33—a3_2?3l4 +(C+1 A)+C2(p+2hL3)L2 d, d34—_(?3+B)L ;

d41 == 0, d42 == 0, d43 = 0, d44 = BZ3 - 6 - g.

Then the characteristic equation of J¢ is given by

(d11 = A (das — D[A* = (dpz + d33)A + dppdsz — dp3dsy] = 0. (101)
Then, either (dy; —2) = 0 or (dgy —A) = 0, which give Agy, = d11, Aer, = daa.
Or [/12 - (dzz + d33)2 + d22d33 - d23d32] = 0, which give

Aow, + Aer, = —2b,L, — (p + hZ3)Z3) + (a3 —22 L+ 2t G(p +

(1+f I, 3 7 (C+anad)

2hL5)L, - d),

Aor,-Aor, = (m 2b,L, — (p + hZB)Zg) (a3 —2%2 0, + (chZ:A) +Cy(p + 2hL,)L, - d)

+ ( azszzz + (p + 2hZ3)z2) (Cz(p + hz3)Z3),

(1+f;L3)?
then Pg is (LAS) if in addition to condition (3,16) the next conditions hold
a, BiLs
1+f123 (C+(XT]A), (102)
BL, <6 + g (103)
1+f2 — (p + hL;)L; < 2b,1L,, (104)
CinA
Otherwise Pg is unstable.
e The (/M) of system (1) at P, =(0, 0, L3, L,) can be written as
J; =J(P7) = [ey],,,, where (106)

a; B L3
1+fiL;  (C+anA)

——(p + hLs)Ls,

€12 = €3 =¢€4 =206 =0, €2 = T+hL,

€11 =

C1(C+nA(a-1))Lz

€3 =0, €,,=0, e3 = (C+ana)?

, €33 = CZ(P + hza)lvq;
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- - C.nA -
633 = a3 - % (2L3 + L4) + (C-:ZT]A) - (d + BL4_), 634_ = — ( + B) L3 ﬁ )
€41 = O, €42 = 0, €43 = BZ4 > 0, €44 = BL3 6 -

(a+L4)2
Then the characteristic equation of J, is given by
(er1 —M(exz — ) [/12 — (e33 + e44)A + e33€44 — €3443] = 0 (107)
Then, either (811 - A) =0 or (922 - A) = 0, which giVe /17L1 = é11 )17L2 = €32.
Or [A* — (e33 + €44)A + €33644 — €34€43] = 0,
which gives

C1nA

(C+an4)

;17L3 + ;17L - <a3 - _(2L3 + L4) + (O’+Z4)2 )

—(d+ BZ4)> + (BZ3 -5- L)

T I, = <a3 (2L 4 L) + 2 (44 BZ4)> (BL—6- 27 )

(0+Ly)?
- (— (% + B) L+ (V—L)) (BL,),

then P, is (LAS) if in addition to condition (3,22) the next conditions hold

1+()lfllz3 (cilj;A)' (108)
1+sz3 <(p+hL3)Ls, (109)
—d+ (CC:”;‘A) <22l +%L,+BL, (110)
BLy — 8 < 17 < (% + B) L. (111)
otherwise P, is unstable.
e The (M) of system (1) at Py = (Ly, L, Ls, 0) can be written as
Js = J(Pe) = [fij],,,, Where (112)
fi1 = ﬁ Zbl 1 %' fi2=0, fiz= (:}1{%32 - (C+§:;il+ll) <0, f1a=0,
f21=0, frz = 1+fL — 2b,L, — (P + hZ3)l~,3, foz =— (%4‘ (P + ths)zz) <0
f24=0, f31 = %» f32 = Cz(P + hZ3)Z3 > 0,
as C1(Ly+n4)

fas=a3 =220 + +Cy(p +2nL,)L, — d, f34=—(%+B)Z3+§,

(C+anA+Lq)

ﬁll:ﬁQ:ﬁB:o; ﬁ}4.:BZ3—5—£.
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Then the characteristic equation of Jg is given by

(fas = DA+ 60,22+ 0,1+ 03] =0, (113)
then either (fy, — ) = 0 which gives Ag, = fu,, or [ +6,4* + 60,4+ 63] =0
where

01 = —(fi1 + faz + f33),

02 = f11(faz + f33) + fazfas — fiafs1 — fasfsz

03 = —(fi1feafss = frafrsfsa — fazfrafs1)-

Hence, according to the Routh-Hurwitz criterion, all the eigenvalues of Eq.(113), have negative

real parts if and only if §; >0, i = 1,3and 4 = (6,6, — 65)0; = 4,65,

where 4, = 6,6, — 65 > 0.

Clearly, we have 6, >0, 6; >0, and
Ay = —f&(far + f33) = fo(fir + f33) = [ (fis + fa2) = 2fiafoafss + fisfar(fir + f33) +
fo3f3a(faz + f33) > 0

If in addition to conditions (3,99) and the following conditions hold

BL, <6+ g (114)
a, = (C+anAd)B;Ls
1+f1L3 <2b L, + (C+anA+L,)2’ (115)
a _ e
1+ij3 < 2byL, + (p + hL3)Ls, (116)
_ C1(L1 +n4) ~ N\~ as 7
a3 —d+ s+ Co(p + 2hL3)L, <22 L5 (117)

Therefore, under the above conditions, all of Jg's eigenvalues have negative real parts , and as a

result Pg is (LAS), otherwise Pg is unstable.

e The (JM) of system (1) at Py = (Zl, 0, Ls, L) and can be written as

Jo=J](P)=[gy],,, where (118)
ai 7 (C+0“’IA)B1i3 —a1f11z'1 B1i1
=———2b, L ———=, =0, = — — —~ <0, =0,
911 1+f05 1L (C+anA+Z1)2 912 913 (1+f123)2 (C+OmA+L1) 914
= \T ¢, (C+nA(a-1))L

921 =0, gz = 2 (P + hL3)L3; 923 = 924 = 0, 931 = 1(17—0(:23'

1+foL3 (c+anA+L1)

= \= - = a= = Cl(Z1+‘nA) =

93a =~ (% + B) Lo+ (0124)2; 9i1=0912=0, a3 =BLi gus=BLs—5- (GI;)Z.
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Then the characteristic equation of J4 is given by

Then, either (g,, —4) = 0, which gives Ag;, = g,,.

Or [/13 FK A+ KA+ K3] =0,
where
K; = —(g11 + 933 + gaa)

K, = 911(933 + 9aa) + 933944 — 913931 — 932943

K3 = —(911[944 — 934943] — 913931944)
Hence, according to the Routh-Hurwitz criterion, all the eigenvalues of Eq.(119), have negative

real parts if and only if K; >0, i =1,3 and 4 = (K,K, — K3)Ks = 4,Ks,
where 4, = K;K, — K5 > 0.
Clearly, we have K; >0, K; > 0 and
4 = _931(933 + 944)_953(911 + 944)_91214(911 + 933) —2911944933 913931(911 T3+

2044) + 934943(933 + 944) > O,

If in addition to conditions (3,49,99) the following conditions hold

a2 = =
i < (p + hLs)Ls, (120)

G_ < op, L, + DB L (121)
1+f1l3 (C+anA+Z1)

Cl(l:,1+17A) az = as ¥ =
a; —d+ (Cramsehy) <222L3+ 214+ BLy, (122)
Bl, -6 < —(UI: ? (% + B) L. (123)
4

Therefore, under the above conditions, all of J4’s eigenvalues have negative real parts , and as a
result P, is (LAS). Similarly for (EP) Py, = (1,0, Ls, Ly).

Otherwise, Py and P;, are unstable.

e The (JM) of system (1) at P;; = (0, Ly, L3, L,) can be written as
Jin = J(Piy) = [ny], , where (124)

o aq BiL3
T 1+fil;  (C+anAd)

Nq1 Ny =MNy3 =Ny =0, Ny, =0,
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N —afyl C o
Ny = 1+f I sz — (p+ hL3)Ls, Ny = ﬁ — (p + 2hL3)L,, Ny, =0,
C1(C+nA(a-D)L e
M1 = ((c—nm) Ny = Colp + RL3)L; > 0,
CinA C .
Ng3 = a5 = 272 Ly = 2Ly + s+ Co(p + 2hLy)L, — (d + BLy),

“ ) Vo . . yo
n34 = — (;3 + B) L3 + m, n4-1 = Tl42 = 0; n4-3 = BL4, n4-4- = BL3 - 5 B (0'+L.4)2.

Then the characteristic equation of J;; is given by

Then, either (ny; —4) = 0, which gives 4,1, = ny;.
Or [/13 + N AT+ NoA+ N3] =0,

where
Ny = —(ng; + N3z + nys),
Ny = n3(N33 + Nyy) + Ng3May — Np3Nap — N3aMys,
N3 = — (N3, (N33M4s — N34Mu3) — Np3MiarNas).
Hence, according to the Routh-Hurwitz criterion, all the eigenvalues of the second part of
Eq.(125), have negative real parts if and only if N; >0, i = 1,3 and
A= (N;N, — N;)N; = A;N; > 0 where A,= N;N, — N,
Clearly, we have N; > 0, N; > 0 and
Ay= —n3, (33 + n4s) —n33(Nzp + Nag) —NGa (N2 + N33) — 2npaN33M4s + Np3nizy (g +
N33) + nayynyz(nzz3 +nyy) > 0, provided that condition (3,61,62) and the following

conditions hold

a; BiL3

1+f;L3 (C+anA)’ (126)
1+f L - (p + hL3)L3 < 2b2 (127)
CinA .
—d+ (C:(Z 5+ G+ 2hL5)Ly < 222 L3 + 2Ly + By, (128)
. _ yo & .
BLy =0 < i < (K + B) Ls. (129)

Therefore, under the above conditions, all of J;,’s eigenvalues have negative real parts , and as a
result Py, is (LAS). Similarly for (EP) P,, = (0, L,, L3, Ly).

Otherwise, P;; and P;, are unstable.

e Finally, the (JM) of system (1) at P53 = (L3, L%, L3, L,) can be written as
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Jiz = J(Pi3) = [Xij]4x4: where (130)
=% _ « _ (Crand)Bils — _ —wfili _ _ Bilj _
X1 = g 2b1l (Cranarip? X127~ 0. 113 = HL)?  (Cramary o A14 T 0,
—azf3L5

X21 =0, X2 =—2—-2b,L5— (p+ hLYL} Xp3 = —(p+ 2hL3)L;, Y20 =0,

1+£,13 (1+f£,13)?

_ ¢(C+nA(a—1))L3

X3 = (C+ana+L))? ' Xz2 = C2(p + hl3)Ls > 0,
j— _ E * % * C1(L1+UA) * * *
= _(% L _ _ _ pr* S . £
X3a = (K + B) Lz + @t1)?’ Xa1=Xa2 =0, X43=BLy Xaa=BL3 =6 G+1)2"
Then the characteristic equation of J;3 is given by
M+ E A3+ EA+EA+E, =0, (131)

where
Ey = =11 + X22 + X33 + Xaa)
Ey = x11((22 + X33 + Xaa) + X22(X33 + Xaa) + X33Xaa — X13X31 — X23X32 — X34Xa3
E; = _(){11)(22()(33 + Xaa) T X33Xaa(a1 + X22) — X13X31(X22 + Xaa) — X23X32(X11 + Xaa) —
X3aXaz3(X11 + Xzz))

Ey = X11X22(X33Xa4 — X34X43) — Xaa(X11X23X32 + X22X13X31)
Hence, according to the Routh-Hurwitz criterion, all the eigenvalues of Eq.(131), have negative

real parts if and only if E; >0, E; >0, E, > 0and 45 = (E,E, — E3)E; — E?E, > 0.
Clearly, we have E; >0, E; >0, E, > 0and
2 = (w1 + W) (w3 + w,) >0,

where
w; = —(X11 + Xo2 + X33 + X44)2(—X13X31X22X44 — X11(X22X34X43 + X23X32X44 —
X22X33X44))'
Wy = ((Xn + X22) X34 X3 — X33Xaa] + X23X32(X11 + Xaa) + X13X31 (22 + Xaa) —
X11X22 (X33 + X44))'
w3 = —(X11 + X22) X3aXa3 — X33Xaal — X23X32 (011 + Xaa) — X13X31 M2z + Xaa) +
X11X22 (X33 + Xaa),
wy = —(Y11 + X22 + X33 + X44)(_X13X31 — X23X32 T X22X33 — X3aXa3 + X22Xaa + X33X2a +

X112z + X33 + X44))’
if in addition to conditions (3,79,80,99) the following conditions hold
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a, (C+anA)B, L3

1+£, L} <2b L+ (C+anA+L})?’ (132)
1+‘2L§ — (p + hLYL; < 2b,L3, (133)
Cl (L; + r]A) a3 a3
- C 2RLELL < 2— 15 + — L + BL;, 134
3 (C+ar)A+L’{)+ 2(p + 2hL3)L; K 3+K 4t BLy (134)
. _ yo as .
BL; —6 < oL < (K + B) L3, (135)
Wy > Ws. (136)

Therefore, under the above conditions, all of J;5’s eigenvalues have negative real parts , and as a
result P;5 is (LAS). Similarly for (EP) Py, = (L7, L5, L5, Ly).
Otherwise, P;; and P, are unstable.

5. GLOBAL STABILITY ANALYSIS (GSA)

In this section the (GSA) for the (EPs), which are (LAS) of system (1) have been determined
analytically through the application of Lyapunov method demonstrated by the following theorems.
Theorem 2. The (EP) P, = (0, 0, L,, 0) of system (1) is (GAS) in the sub region vy, c R}
if the following condition holds

9, <9, (137)
where

- _ a1L1 a2L2 C17’]AL3 B ¥ Cﬂ]AZp,

$1= 14f,L3  1+f,L3 = C+anA+L + (K T B) LsL, + C+anA’

—  __aslsl, C1(L1+nA)L; - CinAL3 yLs

P="%x T C+anA+Ly +Cap + hlz)LyLs + C+anA + ((0+L4)L3 + 5) Ls-

Proof. Consider the following function V,(L,,L,,L3,L,) =Ly + L, + (L3 —Ly;—Lsln ;—3) + L,
3

Clearly, V;:R% >R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating V; with respect to time t, provides
that

avy _ aql4 2 (B1—Ci)LiLs aLy

dt  1+fiLs "1 CtanA+l;  1+fols

—b,L5 — (1 —C,)(p + hL3)L,Ls +

T —a3L3—a3L4 _ a3Z3 _ C17']A Clle3 =
(L3 = L3) [( K ) BLy + = C+omA] + C+anA+L, +Co(p + hils)lyls +

122 _ _ YL4
(0'+L4)L3 + BL3L4 8L4 o+L,

Now, due to the biological facts ¢; < B;, €, <1 SO
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dV1 ailq ayL, CinAL3 (B )_ C17’]AZ3 _ (CL3L3L4 C1 (L1+7']A)Z3
< <1+f1L3 T 1+f,L3 T C+anA+Lq K +B L3L4 T C+anA K + C+anA+Lq t Cz(p T

+ |, CinAls L3
hL3)LyLs + <= aa T ((0+L4)L3 + 8) L4)’

= @1~ ¢,
Hence by condition (137), % < 0 in the region ¥4, then Vjis strictly Lyapunov function (LF).
Consequently, P; is a (GAS) in the region ; c R}.
Theorem 3. The EP P, = (Z—i Z—z 0, 0) of system (1) is (GAS) in the sub region ¥, c R%
if the following condition holds
P, <, (138)

where

o aily ai® | aly | ap? a1Bl3 a CinA y
=—4 4 == 4L 15 + hL3)L 3+ + +
P1 14f,Ls by 1+f,L3 by bl(C+anA+L1) (p 3)ls + crand+L) 3 7 \o+L,

B) Ly,

7= (i o ()
<p2 - <b1(1+f1L3) + a1L1 + b2(1+f1L3) + asz + dL3 + X + B L3L4

Proof. Consider the following function

An)b)

Vz(Ll,Lz,L3,L4) = (Ll - Zl - Zl lné_i) + (Lz - L - L2 ln ) +L3 + L4

.=
Where L, = b, , L, bz
Clearly, V,:R% - R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating V, with respect to time t, provides
that

dv, as(L1—Lq)

_ _ T2 _
dt ~ 1+fils by(Ly = L)

by(L, —Ly)? — (1 = Cy)(p + hL3)LyLs + (p + hL3)L,Ls — ay(Ly — L) + azlz —

(B1—C1)L1L3 BiLiL3

a(L,-Ly) _

—a;(Ly— L) +

;2 _ 9
2157 — 2Ll +

CinAL3
C+(XT]A+L1

—dLy — BLyL, + 222 *+ BLaLy — 8Ly — VL4

G+L4_

Now, due to the biological facts ¢; < B;, C, <1 S0

av, _aly oa? azl; a? a1B,L3 az ( CinA ) ( y
a < (1+f1L3 t by + 1+f,L3 + by + bl(C+omA+L1) (p +hls)ls + + C+anA+L, Ly + G+Ly +

(H)—/L4) L4)’

3
B)L3L4) (m+a1L1 +m+a2L2+dL3+(K +B)L3L4+(8+

[

= @1 — @y,
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Hence by condition (138), % < 0 in the region Y5, then V, is strictly (LF). Consequently, P, is

a (GAS) in the region ¥, c R}.
Theorem 4. The EP P; = (L, 0, L3,0) of system (1) is (GAS) in the sub region ¥; c R} . If
the following condition holds

?, <9, (139)
where

= _ ailq azLy (Bll=q+C177A)L3 alil

_ (C1nA+B4Ly)L3
P4 1+f1L3  1+f,L3 (C+anA+Ly) 1+fL3

C+ot77A+i1

+ %L4f3 + BL3L, +

Cl(Ll +14)Ly | C1(Ly+nA)Ls
C+anA+L, C+anA+Lq

= _ alil a1L1
?2 1+f,L3  1+f,L3

+ L3 4 + Cz(p + hL3)L2L3 + —

oL )L L3L,.
Proof. Consider the following function

V3(L1,L2,L3,L4)—(Ll—Ll—Llln )+L2 (L3 L,—Lylnk )+L4

Clearly, V5:R% - R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating V; with respect to time t, provides
that

dvs _ ai(L1-Ly) = N2 (B—CpLylLs ByLiL3 a;(L1-Ly)  (By—C)IL L3 asL, 2
-, - - .. - bl(L1 - Ll) - - = - = - b2L2 -
dt 1+f1L3 C+anA+L, C+anA+L, 1+f1L3 C+anA+L, 1+f,L3
_ _az _F\2 as 5 CinA(Ls=Ls)  CilyLs
(1 CZ)(’D + hL3)L2L3 K (L3 L3) K (L3 L3)L4 + C+anA+Ly C+anA+L,
7 7 L3k, C1(L1+nA)Ls | (CiNA+ByLy)L; _
C2 (P + hL3)L2L3 + BL3L4 (o+Ly)L3 C+anA+L, C+oanA+L, 6L4
Now, due to the biological facts ¢; < B;, C, <1 S0
avs a;ly azLy (BiL1+CinA)Ls aily as; 7 T (C1nA+ByLy)Ly _ aily
dt (1+f1L3 T 1+f,L3 = (C+anA+Ly) 1+f,L3 LsLs + BLyLy + C+anA+L, 1+f,L3
aly as C1(L1+77A)Z3 C1(Ly+n4)Ls
1+f4L3 T Lalat C+anA+L, C+anA+L, + Ca(p + hlLa)LoLy t o, L3L4
= 51 - 521

hence by condition (139), % < 0 in the region Y3, then V5 is strictly (LF). Consequently, Ps is
a (GAS) in the region 5 c R}.
Theorem 5. The EP Py = (0,L,,L5,0) of system (1) is (GAS) in the sub region y, c R} if
the following condition holds

0, <, (140)
where
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CinAL
) L2 1M 3 +
C+anA+L,

~ a,L a,L
1= #1; + 1+2f22 + (p + hL3)LyLs + (p + hLy)L,Ls + (

C1 77AL3

%Z3L4 +BLsLy + 2+ Co(p + hL3) L,

~  _ Qyly aL, CinAL3 C1(L1+nA)L3 T
P2 =t T e +22 2 Laly + G2 (p +hL3)LsLs + L+ G(p + ALy Ls +
(c+L A L3L4 + 8L,.

Proof. Consider the following function
-~ -~ L
Vally, Loy LayLa) = Ly + (Ly — L — Ly n2) + (Ly = Iy — Ly In ) + Ly
2

Clearly, V,:R% - R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating v, with respect to time t, provides

that

az(L-Ly)
1+f,L3

avy _ aily 2 (Bi=CyLiLz | az(Ly— Lz)_ R Y _ _
a1l b, Ly — cramatl, T 1ifiL, bo(Ly — L) — (1= Cp)(p + hL3)L,Ls

(p + hZ3)(L2 - Zz)Z3 + (p + hL3)Z;2L3 - %(L3 - zg)z - %(Lg - ZS)LI} + % —_

CinA(Ls—L3)  CilyLs
C+anA C+anA+L,

— Cy(p + hL3)(Ls — L3)L3 — Cy(p + hLy)LyLs — V L 3Ly + (BLs — 8)L,

Now, due to the biological facts ¢; < B;, €, <1 S0

Vs ( by | Golo (p+ hL3)LoLs + (p + hL3)L,Ls + ( 7 )Zz 4 _Camdls

dat 1+f1L3 1+f,L3 C+anA+L,
as C177 L3 azL; a,Ly as CinALz
% Lsly +BLaly + 22 4 Cyp + his)E, ) — (m P+ Pl h 2l Gp+
N 7 CLy+nA)ls 7
hL3)L3L3 + m + Cz(p + th)L2L3 + — (o+L )L L3L4_ + 6L4_)
= (2\)1 - (2\)21

hence in addition to condition (16) condition (140) holds, % < 0 in the region ¥, thenV, is

strictly (LF). Consequently, P is a (GAS) in the region ¥, c R%.
Theorem 6. The EP P, = (0, 0, L3, L,) of system (1) is (GAS) in the sub region 5 c R} if
the following condition holds

P, <Py (141)
where

(p _aqlq azLy az(L3Ly+Ls3L,) C1nAL3 CinAL3 yLy YLy
17 14ALs | 1+fLs K CtanA+L, ' C+anA = o+L, = o+L,
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«  _ ag(Lalytlsly) | CinAlg YLsly C1(Ly+n4)L3 ¥
2 K + C+anA + (o+Ly)L3 + C+anA+Lq + CZ(p + hLB)L2L3 +

yLl3Ls
(0'+L4,)L3 )

Proof. Consider the following function
Ve(Ly, Ly, Ly, Ly) =Ly + L +(L —I,-1L lnL—3)+(L ~I,-L lnL—”‘)
5\~ M2, 23, 04) — L1 2 3 3 3 E3 4 4 4 I

Clearly, Vs:RY > R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating Vs with respect to time t, provides
that

avs _ asl, 2 _ (B1=Cy)L1L3 azL;

dt ~ 1+fiLs 151 Ctana+L, ' 1+fls

> \2
—byL3 — (1= C)(p + hL3)LoLy =2 (Ls — L3)" +

> —azL CinA asLy CinA CyLiLs & yLzL, yLzL,
L;—L [3”‘ L —_—— ]— - L3)LyLy — ———— —_—
( 3 3) K +C+oc17A+L1+ K Ct+anAl  crapa+r, Ca(p + hLl3)LoLs (6+Ly)L3 (c+LyL;
YL VL4
o+L, O+L,
Now, due to the biological facts ¢; < B;, €, <1 S0
avs ( ALy azL, as(L3Lly+Lsly) CinALs cinAly | yL, YLy ) _ (aS(L3L4+Z3Z4) CinAL3 +
dt 1+fils  1+f,L3 K C+anA+L,; C+anA = o+L, o+, K C+anA

YLsLs Cy(Li+nA)Ls
(6+L4)Ls C+onA+L,

¥ vy
+ CZ (p + hL3)L2L3 + (O'+L4)L3)’

= (2/)1 - (2/)21
hence by condition (141), % < 0 in the region 15, then Vs is strictly (LF). Therefore, P, is a
(GAS) in the region Y5 c R}.
Theorem 7. The EP Py = (L, L,, L3, 0) of system (1) is (GAS) in the sub region ¢, c R} if
the following condition holds

9, <9, (142)
where
~ aily BiliL; azL, 5 ¥ ¥ azLy (C1nA+B1L1)Ls
17 14f,Ls  1+f,ls  CHagA+l; = 1+f,Ls + (p + hlg)lals + (p + hlg)lyLs + 1+£,13 CH+anA+L
C1nAL3 aslsly + BI.L
CtanA+L, K 3t
5 = a1L1~ aly azLZ~ azly azlsL, n Cl(Z1+77A2L3 C1(a1L1+n4)L3 +c, (p n hZ3)Z2L3 4
2 1+f1L3 1+f1L3 1+f2L3 1+f2L3 K C+(XJ]A+L1 C+(XJ]A+L1
¥ YLsLs
Cz(p + hL3)L2L3 + m + 8L4

Proof. Consider the following function

Vo(Ly Ly Ly, Lg) = (Ly = Ly — Iy lné—i) (Lo - L L) + (Ls — Ly~ L ln;_:) ‘L,
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Clearly, V4:R% - R isa C! positive definite function.
Now, using some algebraic manipulation and differentiating V. with respect to time t, provides
that

av (B;—C1)L4L BiL,L BiL,L (B;—Cy)L4L
6_(L1 1)[ ] bl(Ll Ll)_ 1~C1)ak3 113~ 1tabz  \D1 11~3
1+f1L3 1+f1 C+anA+L, C+anA+L4 C+anA+Lq C+anA+L,

— L) [1+f2L3 1+f2L3] by(Lz — Lz) — (1= C)(p + hLy)LyLy + (p + hL3)L,L5 +

(p+hL3)L,Ls — (1 — Cz)(P + hZ3)Z2Z3 - % (L3 - Z3)2 - (L3 - Z3) [aj(h - C+Z;11L1] -

C111AZ3 C1Z123
C+anA+L;  CH+anA+Lq

Cy(L1+nA)L;
C+oanA+L,

- Cz(p + hZ3)z2L3 - Cz(p + hL3)L2Z43 + (B - ﬁ) E3L4 + - 8L4_

Now, due to the biological facts ¢; < B;, €, <1 S0

- ( o b Bulaly Galz L L 7 azly (CinA+B;Ly)Ls
dt 1+fils  1+filz = C+anA+L; = 1+foL; + (p + hL3)L2L3 +(p+hLy)L,Ls + 1+f,L5 C+anA+L,
C1nAL; asLlzL, + BL.L )_( ail, a;Ly a,L, a,L, n aslsly, . Ci(L;+nA)Ls
C+anA+L, K 3bg 14f1ls  1+fils  1+fol;  1+fLs K C+anA+L,
C1(Li+nA)Ls - N~ _ yIsLa
= @1 - @21

hence by condition (142) —=2 < 0 in the region 1, then V; is strictly (LF). Consequently, Py is

a (GAS) in the region Y Ri.

Moreover, two equilibrium points (P and P;,) that are situated inside R¥ and have different
beginning point neighborhoods but the same local stability criteria cannot be examined for global
stability using the Lyapunov function. As a result, we will examine it numerically rather than
analytically, as shown in the earlier theorems.

Similarly for (P;; and P;,), and (P,5 and P;,).

6. NUMERICAL ANALYSES

In order to confirm our obtained analytical results and examine the impact of changing the
values of each parameter on the dynamical behavior of the system, the dynamical behavior of
system (1) is numerically analyzed using Mathematica.
Figure (1) illustrates that system (1) has a (GAS) positive equilibrium point for the subsequent
set of default parameters that satisfy the positive (EP) stability requirements.
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a1 = 07, az = 07, a3 = 08, fl = 03, fz = 05, bl = 02, bz = 02,

B;=07,¢c=1, a=2,1n=05 A=0.03, p=04, h=01, K=1.7, (143)
;=06 C,=02,d=05 B=04, y=0.01, 0 =03, § =0.15
@) (b)
4 4r
5
s g3
s i
3 o
2 — L11=03] |© — L21=07
[=) o
=3 1 — L2=06]| |3 1 — L22=04
3 &
& L13=08| | L2305
4 5
i 2
12
1 Il 1 1 0 1 L 1 Il 1 1
40 60 80 100 0 20 40 60 80 100
Time Time
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o c
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3 05/ /) 2 05+
g U N—— 3
g £
(2]
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Time Time

Figure -1 The trajectories of system (1) that started from three different initial points (0.3, 0.7, 0.38,
0.6), (0.6, 0.4, 0.45, 0.3) and (0.8, 0.5, 0.4, 0.7) for the data given in (143). (a) the trajectory of
L, as a function of time, (b) trajectory of L, as a function of time, (c) trajectory of L3 as a function
of time, (d) the trajectory of L, as a function of time, approaches to P;3 = (2.761, 2.05, 0.396,
0.863).

As the solution of system (1) approaches asymptotically to the positive equilibrium point P;; =

(2.761, 2.049, 0.396, 0.863), Figure (2) clearly demonstrates that system (1) possesses a (GAS).
@)

5

4l

| = FirstPrey

(3

— Second Prey
J =8 ptible Predator

Population
N

Infected predator

-

s . . . . .
0 20 40 60 80 100
Time

Figure -2 The trajectories of system (1) for the data given in (143) has a (GAS) positive equilibrium point
Pz = (2.761, 2.05, 0.396, 0.863).
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Now, to discuss how the parameters, affect the system's dynamical behavior, we changed one
parameter at a time while maintaining the other parameters as data in (143). The results are

displayed in Table 2.
Table 2. The dynamic behavior of system (1) at every parameter
Range of Parameter Stable Point
0.01 < a; <0.306 Py
0306 <a, <2 Py
0.01 < a, <0.23 Py
023<a,<2 Py
001<a3;<5 Pi3
0.001 < f; < 3.869 Py
3869<f, <5 P,
001<f,<73 Py
7.3<f, <10 Py
001<h <1 Py
001<h, <1 Py
061<B; <1 Py
0l1<ax<2 Pi3
0.001<n<1 Pis
0.001<A<1 Pi3
0.001 < K < 0.02 P,
0.02 < K < 0.42 Py
042 <K <3 Py
0.01 <h <262 Py
262<h<3 Py
1<c=<?2 Pi3
0.001 < C; < 0.69 Py
0.0001<C, <1 Py
0.01<p <141 Py
141<p<2 Py
01<d<1 Py
0.001 < B < 0.1716 Pg
0.1716 < B < 0.175 Py
0.175<B<1 Py
0.001 < § < 0.3623 Py
0.3623 < § < 0.174 Py
0174 <6< 1 Pg
0.001 <y < 0.143 Py
0143 <y <1 Py
0.01<0<3 Py
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The effect of varying the growth rate of the first prey population in the range 0.01 < a; < 0.306
is examined, it is found that system (1) approach to P;;, however increasing this parameter
further 0.306 < a; < 2 it is observed that the system still approach asymptotically to the positive

equilibrium point P;5; as shown in Figure (3).

@) (b)

2
2

S
IS

| — FirstPrey | — FirstPrey

—— Second Prey

©
©

—— Second Prey
— 8 ptible Predator

] — s tible Predator
Infected predator F Infected predator
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Figure -3. (a) Time series of the solution of system (1) which approaches to
P;; = (0, 1.987,0.413, 0.347) when a; = 0.1, (b) Time series of the solution of system (1) which
approaches P;; = (1.728,2.044,0.397,0.792) when a;=0.5.

The effect of varying the conversion rate of food to the predator and top predator respectively in
the range 0.001 < B < 0.1716 is examined, it is found that system (1) approach to Pg, however
increasing this parameter further 0.1716 < B < 0.175 system (1) approach to P;, moreover

increasing this parameter in the range 0.175 < B <1 system (1) approach to P;3, as shown in

Figure (4).
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Figure -4. (a) Time series of the solution of system (1) which still approaches to Pg = (0.179,
0.238,0.892,0) when B =0.1, (b) Time series of solution of system (1) which approaches
Py = (1.083, 0,0.979,0.242) when B =0.172, (c¢) Time series of the solution of system (1) which
approaches to P;3 = (3.2067, 2.90627,0.160455,0.656438) when B = 1.
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The effect of varying the death rates of infected predator in the range 0.001 < § < 0.3623 is
examined, it is found that system (1) still approach to P;;, however increasing this parameter
further 0.3623 < § < 0.374 system (1) approach to Py, moreover increasing this parameter in

the range 0.374 < 6§ <1 system (1) approachto P;3, asshown in Figure (5).
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Figure -5. (a) Time series of the solution of system (1) which still approaches to P;3 = (1.897,
0.641,0.783,0.451) when & = 0.3, (b) Time series of the solution of system (1) which approaches to Py =
(1.107, 0,0.976,0.182) when & = 0.37, (c) Time series of solution of system (1) which approaches to Pg =

(0.179, 0.238,0.892,0) when § = 0.38.

The effect of varying the growth rate of the first and second prey populations and the death rate of
the infected predator is examined, and it is found that system (1) will approach to the (EP) P

as it shows in Figure (6).
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Figure -6 (a)-Time series of solution of system (1) for the data given in (143) approaches to P; =

(0, 0, 0.656, 0) when a; = 0.3, a, = 0.2, and § = 0.374.
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The effect of varying the growth rate of the susceptible predator population, the death rate of the
susceptible predator, and the internal competition rate of first prey is examined, and it is found that

system (1) will approach to the (EP) P, as it shows in Figure (7).

@

5

1 — FirstPrey
—— Second Prey

1 —— Susceptible Predator

4l

(2]

Population
N

Infected predator

-

L L . L L L
0 200 400 600 800 1000
Time

Figure -7 (a)-Time series of solution of system (1) for the data given in (143) approaches to P, =

(1.4, 3.5, 0, 0) when a3 =0.3, d =0.95, and b; = 0.5.

The effect of varying the growth rate of the susceptible second prey population, the internal
competition rate of the first prey, the attack rate of the susceptible predator to the second prey, and
the death rate of the infected predator is examined, and it is found that system (1) will approach

to the (EP) Ps as it shows in Figure (8).
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Figure -8 (a)-Time series of solution of system (1) for the data given in (143) approaches to Ps =

(0.155, 0, 0.819, 0) when a, =0.2, b =0.5, p=0.5and § = 0.3.

The effect of varying the growth rate of the first prey and second prey population, the attack rate
of the susceptible predator to the second prey, the maximum growth rates of the predator when it
consumes the prey and additional food, and the death rate of the infected predator is examined,

and it is found that system (1) will approach to the (EP) Pﬁ\ as it shows in Figure (9).
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Figure -9 (a)-Time series of solution of system (1) for the data given in (143) approaches to P, =

(0, 0.208, 0.680, 0) when a; =2.9, a;, =0.3, p=0.2, a=1.1and § = 0.25.

The effect of varying the growth rate of the first prey and second prey populations, and the attack
rate of the susceptible predator to the second prey is examined, and it is found that system (1)

will approach to the (EP) P,| as it shows in Figure (10).
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Figure -10 (a)-Time series of solution of system (1) for the data given in (143) approaches to

P, = (0,0, 0.433, 0) when a, = 2.25, a, = 0.2, and p = 0.5.

7. THE CONCLUSIONS AND DISCUSSIONS
In our present work, we proposed and analyzed an eco-epidemiological model consisting of
four species two prey’s, one predator with disease, the first and second prey are growth logistic
with fear of the susceptible predator, while the susceptible predator’s population growth logistic
with additional food and hunting cooperation and the infected predator involving treatment. The
objectives of our work are to study:
e The impact of fear in the first and second prey populations on the survival of prey’s and
predator.
e The contribution of additional food and hunting cooperation to the survival of susceptible
predator.
e The benefit of treatment for the infected predator and its impact on the rate of recovery from

the disease.
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It is observed that system (1) has fifteen equilibria, three are unstable (P, P;, P,), while the other

are locally and globally asymptotically stable under suitable conditions. Finally, we verified our

analytic result numerically for the data given in (143) and which are summarized.

1. The parameters a,, a,, fi, f2,K, p , B, h, y,and§ have an important effect in
controlling the stability of system (1).

2. The parameters a;, C, by, by, By, C;, C;, a, n, A, g, and d the solutions still
approach to the positive equilibrium point.
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