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Abstract. This paper proposes a new extension of the Exponentiated Inverted Weibull distribution using the Modi

family, called the Modi Exponentiated Inverted Weibull (MEIW) distribution that adds an extra shape parameter,

allowing for a wider range of shapes for failure rates. Mathematical properties were developed, including hazard

rate, survival function, reversed hazard rate, quantile function, moments, order statistics, and Rényi Entropy. Maxi-

mum Likelihood Estimation is employed for parameter estimation, with the performance of the estimators assessed

through Monte Carlo simulation. The new distribution is fitted to the two real data sets and compared with some

existing distributions such as Exponentiated Inverted Weibull (EIW), Inverse Weibull (IW), and Weibull (WE) dis-

tributions. The goodness-of-fit statistics and information criteria values demonstrated that the new distribution fits

better the two real data sets than the other distributions.
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1. INTRODUCTION

The Weibull distribution, introduced by Waloddi Weibull in 1939, is one of the most rec-

ognized and widely used probability distributions for analyzing lifetime data. It has found
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extensive application across various fields, including engineering, hydrology, biology, and eco-

nomics, to model phenomena such as material strength, product reliability, and failure times [1].

Numerous studies have investigated the properties and applications of the Weibull distribution.

[2] focused on parameter estimation techniques relevant to electric breakdown phenomena, em-

phasizing both graphical methods and Maximum Likelihood Estimation (MLE).

Despite its popularity, the Weibull distribution has limitations in accurately modeling certain

types of data, particularly in contexts like wind speed analysis [3]. To address these short-

comings, researchers have proposed new distributions that offer greater flexibility in modeling

hazard rate shapes. One of the extensions is the Exponentiated Weibull distribution, introduced

by [4], which accommodates non-monotonic failure rates. The Inverse Weibull distribution

was also developed to handle increasing failure rates, with applications in reliability analysis,

medical sciences, and mechanical component degradation [5]. However, the Inverse Weibull

distribution often struggles to capture more complex hazard rate patterns, such as those that

exhibit bathtub curves.

Generalizations of the Inverse Weibull distribution have emerged as a way to overcome these

limitations. For instance, the Generalized Inverse Weibull (GIW) distribution, introduced by

[6], offers unimodal and decreasing failure rates. The Modified Inverse Weibull (MIWD) distri-

bution enhances the flexibility of failure rate patterns [7]. The Kumaraswamy Modified Inverse

Weibull [8] and the Marshall-Olkin Extended Inverse Weibull [9], both of which have been

used in modeling complex failure rate patterns. In particular, the Marshall-Olkin Extended In-

verse Weibull has demonstrated the capability to model wind speed data more efficiently than

traditional Weibull and Inverse Weibull distributions.

Further developments include the Exponentiated Inverted Weibull distribution [10] and the

Weibull Exponentiated Inverted Weibull distribution [11]. These advancements illustrate the

ongoing evolution of Inverted Weibull models, enhancing their applicability and accuracy in

various domains.

Researchers have explored various properties of these distributions, including moments,

moment-generating functions, and order statistics. Parameter estimation has been conducted

using both maximum likelihood and Bayesian methods.
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A key focus in the literature has been on developing more flexible distributions that can be

applied to a broader range of data. Many of these models achieve this flexibility by introducing

additional parameters, allowing them to capture more complex failure rate behaviors. However,

many remain limited to specific hazard rate patterns, such as unimodal or decreasing rates,

which can be restrictive when dealing with more complex datasets, particularly those exhibiting

increasing or bathtub-shaped hazard rates.

Thus, this paper proposes a new distribution based on the Modi family of distributions, envis-

aged to offer greater flexibility than the Exponentiated Inverted Weibull distribution. The newly

proposed model has been found to capture both monotonic (increasing and decreasing) and

non-monotonic hazard rate shapes, that the standard Exponentiated Inverse Weibull distribution

cannot overcome.

This paper is organized as follows: Section 2 discusses the Modi family and the baseline

distribution, while Section 3 introduces the Modi Exponentiated Inverted Weibull distribution

and its cumulative distribution function (CDF), probability density function (PDF), hazard rate

function, survival function, cumulative hazard function, reversed hazard rate function, and odds

function. Statistical and mathematical properties include quantile function, Skewness and kur-

tosis, Moments, order statistics, and Rényi Entropy of the proposed distribution are also derived

as shown in section 3. The parameter estimation process for the Modi Exponentiated Inverted

Weibull distribution is detailed in Section 4. Section 5 exhibits a Monte Carlo simulation to

evaluate the performance of the proposed distribution vis-a-vis the traditional models. Section

6 demonstrates the model’s goodness-of-fit using two real-world data sets.

2. MODI FAMILY AND BASELINE DISTRIBUTION

2.1. Modi Family. The Modi family of distributions was developed and explored by [12], It

is adaptable and may be used to model data from a variety of phenomena in several disciplines,

such as engineering, economics, and finance.

The cumulative distribution function (CDF) of the Modi generator is defined as :

(1) F(x) =
(1+αβ )S(x)

αβ +S(x)

while the associated probability density function f (x) is given by:
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(2) f (x) =
(1+αβ )(αβ s(x))
(αβ +S(x))2

For all x > 0, α > 0, and β > 0, where S(x) and s(x) are respectively the cumulative distribution

function (CDF) and the probability density function (PDF) of the distribution to be modified.

2.2. Exponentiated Inverted Weibull distribution. According to [10]. A random variable

X has Exponentiated Inverted Weibull (EIW) distribution with two shape parameters if its cu-

mulative distribution function (CDF) is given by:

(3) F(x,δ ,θ) =
(

e−x−δ
)θ

for all x,θ ,δ > 0

Consequently the probability density function f (x) is given by:

(4) f (x,δ ,θ) = θδx−(δ+1)
(

e−x−δ
)θ

for all x,θ ,δ > 0

The following additional functions are associated with the Exponentiated Inverted Weibull

distribution:

Survival function:

S(x,δ ,θ) = 1−F(x,δ ,θ),

= 1−
(

e−x−δ
)θ

(5)

Hazard rate function:

h(x,δ ,θ) =
f (x,δ ,θ)

1−F(x,δ ,θ)
,

=
θδx−(δ+1)

(
e−x−δ

)θ

1−
(

e−x−δ

)θ

(6)

Cumulative hazard function:

H(x,δ ,θ) =− logS(x,δ ,θ),

=− log
[

1−
(

e−x−δ
)θ
](7)
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Reverse hazard rate function:

r(x,δ ,θ) =
f (x,δ ,θ)
F(x,δ ,θ)

=
θδx−(δ+1)

(
e−x−δ

)θ

(
e−x−δ

)θ

= θδx−(δ+1)

(8)

odds function:

O(x,δ ,θ) =
F(x,δ ,θ)
S(x,δ ,θ)

=

(
e−x−δ

)θ

1−
(

e−x−δ

)θ

(9)

3. MODI EXPONENTIATED INVERTED WEIBULL DISTRIBUTION AND ITS PROPERTIES

In practice, a common approach to modifying a distribution is adding a parameter to increase

flexibility. This technique allows for modeling a wider variety of data types, which can be

especially useful in data analysis [13].

3.1. Cumulative Distribution Function and Probability Density Function. From equation

(1) and (3), the cumulative distribution function of the Modi Exponentiated Inverted Weibull

distribution is defined as:

(10) F(x,α,β ,θ ,δ ) =
(1+αβ )

(
e−x−δ

)θ

αβ +
(

e−x−δ

)θ

and its probability density function(PDF) is obtained from equation (10) as follows:

(11)

f (x,α,β ,θ ,δ ) =
∂

∂x
F(x,α,β ,θ ,δ )

=
∂

∂x
(1+αβ )(e−x−δ

)θ

αβ +(e−x−δ
)θ

=
θδαβ x−(δ+1)

(
e−x−δ

)θ

(1+αβ )[
αβ +

(
e−x−δ

)θ
]2
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for all x > 0, α > 0, β > 0, θ > 0, and δ > 0.

3.2. Survival Function and Hazard Rate Function. From equation (10), the survival func-

tion for Modi Exponentiated Inverted Weibull distribution is given as:

(12)

S(x,α,β ,θ ,δ ) = 1−F(x,α,β ,θ ,δ )

= 1−

[
(1+αβ )(e−x−δ

)θ

αβ +(e−x−δ
)θ

]

=
αβ

[
1− (e−x−δ

)θ

]
[
αβ +(e−x−δ

)θ

]
The hazard rate function is derived from equation(11) and (12)

(13)

h(x,α,β ,θ ,δ ) =
f (x,α,β ,θ ,δ )

1−F(x,α,β ,θ ,δ )

=
f (x,α,β ,θ ,δ )

S(x,α,β ,θ ,δ )

=
θδx−(δ+1)

(
e−x−δ

)θ

(1+αβ )[
αβ +

(
e−x−δ

)θ
][

1− (e−x−δ
)θ

]
3.3. Some Useful Functions of MEIW distribution. Additional functions related to the

MEIW distribution, such as the cumulative hazard function, the reversed hazard rate function

calculated as the ratio of the PDF to the CDF, and the odds function defined as the ratio of the

CDF to the survival function are provided below:

The Cumulative hazard function:

(14)

H(x,α,β ,θ ,δ ) =− logS(x,α,β ,θ ,δ )

=− log
αβ [1− (e−x−δ

)θ ][
αβ +(e−x−δ

)θ

]
The reversed hazard rate function:

(15)

r(x,α,β ,θ ,δ ) =
f (x,α,β ,θ ,δ )

F(x,α,β ,θ ,δ )

=
θδαβ x−(δ+1)[

αβ +
(

e−x−δ

)θ
]
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Odds function:

(16) O(x,α,β ,θ ,δ ) =
F(x,α,β ,θ ,δ )

S(x,α,β ,θ ,δ )
=

(1+αβ )(e−x−δ

)θ

αβ

[
1− (e−x−δ

)θ

]
Figures 1 and 2 illustrate a range of possible shapes of the MEIW probability density function

(PDF) and hazard rate function (HRF) for different parameter settings. The MEIW PDF may

display right skewness or symmetry, while the MEIW HRF can exhibit decreasing, increasing,

or reversed J-shaped.
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3.4. Statistical and Mathematical Properties of Modi Exponentiated Inverted Weibull

Distribution.

3.4.1. Quantile Function. The quantile function is crucial in simulating random samples from

a specified distribution. Additionally, it serves to describe key distribution characteristics, such

as the median, skewness, and kurtosis.

Let X be a random variable such that X ∼ MEIW(α,β ,θ ,δ ). Then the quantile function

Q(u) is given by:

(17) Q(u) = xu = F−1(u;α,β ,θ ,δ ) =

− log

(
uαβ

(1+αβ )−u

) 1
θ

−
1
δ

,

where F−1(·) denotes the inverse of the cumulative distribution function (CDF) and u∼U(0,1)

is a random variable uniformly distributed on the interval (0,1).

Proof: The quantile function is derived from the inverse of the Cumulative Distribution Func-

tion (CDF) of the Modi Exponentiated Inverted Weibull distribution, defined in equation (10).

Let F(x;α,β ,θ ,δ )=u
(1+αβ )(e−x−δ

)θ

αβ +(e−x−δ
)θ

= u

(1+α
β )(e−x−δ

)θ = u[αβ +(e−x−δ

)θ ]

(1+α
β )(e−x−δ

)θ = uα
β +u(e−x−δ

)θ

(1+α
β )(e−x−δ

)θ −u(e−x−δ

)θ = uα
β

(e−x−δ

)θ [(1+α
β )−u] = uα

β

(e−x−δ

)θ =
uαβ

(1+αβ )−u

(e−x−δ

) =

(
uαβ

(1+αβ )−u

) 1
θ

x−δ =− log

(
uαβ

(1+αβ )−u

) 1
θ

Q(u) = xu = F−1(u;α,β ,θ ,δ ) =

− log

(
uαβ

(1+αβ )−u

) 1
θ

−
1
δ
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By applying the quantile function and substituting u by 1/4, 1/2, and 3/4, one can obtain the

values of the lower quartile, median, and upper quartile, respectively.

The lower quartile:

(18) Q
(

1
4

)
=

− log

(
αβ

3+4αβ

) 1
θ

−
1
δ

The median:

(19) Q
(

1
2

)
=

− log

(
αβ

1+2αβ

) 1
θ

−
1
δ

The upper quartile is:

(20) Q
(

3
4

)
=

− log

(
3αβ

1+4αβ

) 1
θ

−
1
δ

3.4.2. Skewness and Kurtosis. Galton Skewness and Moors Kurtosis of MEIW distribution

are defined by:

(21) S =
Q
(3

4

)
+Q

(1
4

)
−2Q

(1
2

)
Q
(3

4

)
−Q

(1
4

)
(22) K =

Q
(7

8

)
−Q

(5
8

)
+Q

(3
8

)
−Q

(1
8

)
Q
(3

4

)
−Q

(1
4

)
where the value of the quartile is indicated by Q(.).

3.4.3. The rth Moments of Modi Exponentiated Inverted Weibull Distribution. Moments play

a crucial role as they allow for calculating key characteristics and properties of a probability

distribution, including the mean, variance, skewness, and kurtosis.

A random variable where x∼MEIW distribution, the rth moment is given by:

(23) µ
′
r = E(xr) =−θα

β

(
1+α

β

) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

Γ

(
−r+δ

δ

)
(θ +θk)(

−r+δ

δ
)

Proof: The mathematical expression for the rth moment of the MEIW distribution given by:

(24) µ
′
r = E(xr) =

∫
∞

0
xr f (x;α,β ,θ ,δ )dx

where f(x;α,β ,θ ,δ ) is the pdf of the distribution.
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By substituting (11) in (24), we get

E(xr) =
∫

∞

0
xr

θδαβ x−(δ+1)
(

e−x−δ
)θ (

1+αβ

)
[

αβ +
(

e−x−δ

)θ
]2 dx

= θδα
β

(
1+α

β

)∫ ∞

0
xr−δ−1

(
e−x−δ

)θ
[

α
β +

(
e−x−δ

)θ
]−2

dx

By using the binomial expansion

(25) E(xr) = θδα
β

(
1+α

β

) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

∫
∞

0
xr−δ−1

(
e−x−δ

)θ+θk
dx

To evaluate the integral
∫

∞

0 xr−δ−1
(

e−x−δ
)θ+θk

dx, where r, δ , θ , and k are constants.∫
∞

0
xr−δ−1

(
e−x−δ

)θ+θk
dx =

∫
∞

0
u
−r+δ+1

δ

(
e−u)θ+θk

(
− 1

δ
u−1− 1

δ

)
du

∫
∞

0
xr−δ−1

(
e−x−δ

)θ+θk
dx =− 1

δ

∫
∞

0
u(−r/δ )(e−u)θ+θkdu

By using gamma function the integral becomes:

Γα

qα
=
∫

∞

0
uα−1e−qudu

where α = (−r/δ +1)/ and q = (1+ k)θ , get the result

(26)
∫

∞

0
xr−δ−1

(
e−x−δ

)θ+θk
dx =− 1

δ
·

Γ

(
−r+δ

δ

)
(θ +θk)(

−r+δ

δ
)

By combining with equation (25) and (26), we get

(27) =−θα
β

(
1+α

β

) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

Γ

(
−r+δ

δ

)
(θ +θk)(

−r+δ

δ
)

Table 1 presents the value of the quantile function and Table 2 displays values of the statistical

properties of the MEIW distribution for various parameter sets. It reveals how these parameters

influence the central tendency (mean), spread (standard deviation and coefficient of variation),

and shape (skewness and kurtosis) of the MEIW distribution. The coefficient of skewness (CS)

values indicate that distribution can exhibit right skewness, left skewness, and nearly symmet-

rical while the coefficient of Kurtosis(CK) suggests that the distribution can be leptokurtic,

mesokurtic, and platykurtic.
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Table 1: Quantiles of the MEIW distribution for some parameter

values.

I II III IV V

Parameters (0.6, 0.7, 0.5, 1.5) (0.8, 0.7, 0.5, 1.5) (0.6, 0.9, 0.5, 1.5) (0.6, 0.7, 2.0, 1.5) (0.6, 0.7, 0.5, 2.5)

0.1 0.04289860 0.05043890 0.07091319 0.4550956 0.03497424

0.2 0.07187697 0.08798341 0.11885597 0.5178220 0.05584017

0.3 0.10874485 0.13773121 0.17976977 0.5742592 0.08099235

0.4 0.16086638 0.21063036 0.26592171 0.6333093 0.11499087

0.5 0.24181114 0.32756888 0.39973284 0.7012598 0.16557358

0.6 0.38254812 0.53739001 0.63237908 0.7864637 0.24980698

0.7 0.67073073 0.98081665 1.10876911 0.9049933 0.41467581

0.8 1.45134103 2.22179455 2.39916052 1.0975965 0.83980822

0.9 5.43572129 8.78485508 8.98557753 1.5269009 2.88919956

TABLE 2. First five moments, skewness, and kurtosis of the MEIW distribution across

various parameter values.

(0.3, 0.5, 1.53, 0.2) (2.5, 0.5, 1.53, 0.2) (0.3, 2.5, 1.53, 0.2) (0.3, 0.5, 2.95, 0.2) (0.3, 0.5, 1.53, 1.09)

M1 0.403893080 0.39693344 0.13902131 0.5439761 0.40010721

M2 0.239531851 0.24248416 0.11703517 0.3952054 0.21105970

M3 0.158565057 0.16428139 0.10040203 0.2975646 0.12729172

M4 0.114279772 0.12044007 0.08751231 0.2314681 0.08569205

M5 0.087747869 0.09362082 0.07730885 0.1853670 0.06273140

SD 0.276409535 0.29142409 0.31258318 0.3151116 0.22577406

CV 0.684363138 0.73418879 2.24845505 0.5792747 0.56428390

CS 0.004883662 0.02463796 1.86512597 -0.8132627 0.17857458

CK 2.179273584 1.99124224 4.62256971 2.3306431 3.00741144

3.4.4. Order Statistics. Let x1, x2,... xn be a random sample drawn from a probability den-

sity function, and define kth order statistics. X(1) denotes the minimum value, the smallest

observation, while X(n) represents the maximum value, the largest observation.

The probability density function (PDF) for the kth order statistic, where 1≤ k≤ n is expressed

as follows:
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(28) f (k;n)(x) =
n!

(k−1)!(n− k)!
f (x)F(k−1)(x)(1−F(x))(n−k)

by substituting Equations (10) and (11) in (28), the expression for the probability density func-

tion (PDF) of the kth order statistic for MEIW is as follows:

(29)

f(k:n)(x) =
n!θδαβ x−(α+1)

(
e−x−δ

)θ (
1+αβ

)
(k−1)!(n− k)![αβ +

(
e−x−δ

)θ

]2

(1+αβ )
(

e−x−δ
)θ

[αβ +
(

e−x−δ

)θ

]


k−1

×

1−
(1+αβ )

(
e−x−δ

)θ

[αβ +
(

e−x−δ

)θ

]


n−k

=
n!θδαβ x−(α+1)

(k−1)!(n− k)![αβ +
(

e−x−δ

)θ

]

 (1+αβ )
(

e−x−δ
)θ

αβ +[1−
(

e−x−δ

)θ

]


k

×

αβ +[1−
(

e−x−δ
)θ

]

αβ +
(

e−x−δ

)θ


n

The probability density function (PDF) attains its minimum for the smallest order statistic in

the MEIW distribution when k equals 1. This can be represented as:

(30) f(1:n)(x) =
nθδx−(α+1)

αβ +
(

e−x−δ

)θ
×

(1+αβ )
(

e−x−δ
)θ

[1−
(

e−x−δ

)θ

]

×

αβ [1−
(

e−x−δ
)θ

]

αβ +
(

e−x−δ

)θ

]


n

The probability density function (PDF) attains its maximum for the largest order statistic in

the MEIW distribution when k equals n. This can be represented as:

(31) f(n:n)(x) =
nθδαβ x−(α+1)

αβ +
(

e−x−δ

)θ
×

(1+αβ )
(

e−x−δ
)θ

αβ +
(

e−x−δ

)θ


n

3.4.5. Rényi Entropy of Modi Exponentiated Inverted Weibull distribution. If X is a continu-

ous random variable with a probability density function f (x), the Rényi entropy of order α is

defined as:

(32) Rα(x) =
1

1−α
log
(∫

∞

0
f (x)α dx

)
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with α > 0 and α 6= 1 and f (x) is the pdf of the distribution. Then by substituting the pdf of

MEIW distribution given in Equation (11) into Equation (32), we have

(33)

Rα(x) =
1

1−α
log
∫

∞

0

θδαβ x−(δ+1)
(

e−x−δ
)θ

(1+αβ )[
αβ +

(
e−x−δ

)θ
]2


α

dx

=
1

1−α
log

((
θδα

β

)α (
1+α

β

)α
∫

∞

0

(
x−(δ+1)

(
e−x−δ

)θ
[

α
β +

(
e−x−δ

)θ
]−2
)α

dx

)
By using the binomial expansion[

α
β +

(
e−x−δ

)θ
]−2

=
∞

∑
k=0

(
−2
k

)
(αβ )−2−k

(
e−x−δ

)θk

substituting in the integral

(34) Rα(x) =
1

1−α
log

([
θδα

β

(
1+α

β

) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

]α ∫
∞

0

[
x−(δ+1)

(
e−x−δ

)θ+θk
]α

dx

)

Let’s make the substitution u = x−δ , so du =−δx−δ−1dx. Therefore:

dx =− du

δu
δ+1

δ

Since

x = u−
1
δ , then x−α(δ+1) = u

α(δ+1)
δ

(35) Rα(x) =
1

1−α
log

([
θδα

β

(
1+α

β

) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

]α

1
δ

∫
∞

0
u

α−1
δ

(δ+1)e−αu(θ+θk) du

)
by using the Gamma function:

(36) Γ(z) =
∫

∞

0
tz−1e−t dt

z =
α−1

δ
(δ +1)+1

t = α(θ +θk)u

Substitute u = t
α(θ+θk) and du = dt

α(θ+θk) into (35)

(37)

Rα (x) =
1

1−α
log

([
θδα

β
(

1+α
β
) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

]α

1
δ

(
1

α(θ +θk)

) α−1
δ

(δ+1)+1 ∫ ∞

0
t

α−1
δ

(δ+1)e−t dt

)

Rα (x) =
1

1−α
log

([
θδα

β
(

1+α
β
) ∞

∑
k=0

(
−2
k

)
(αβ )−2−k

]α

· 1
δ

(
1

α(θ +θk)

) α−1
δ

(δ+1)+1
Γ

(
α−1

δ
(δ +1)+1

))
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4. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

This section discusses estimating the parameters of MEIW distribution by using the approach

called the maximum likelihood method.

Consider a random sample x1, x2,... xn drawn from the MEIW distribution. The correspond-

ing log-likelihood function is given by:

(38) l = logL =
n

∑
i=1

f (xi,α,θ ,δ ,β ) =
n

∑
i=1

log

θδαβ x−(δ+1)
i

(
e−x−δ

i

)θ (
1+αβ

)
[

αβ +
(

e−x−δ

i

)θ
]2



(39)

l = logL = n logθ +n logδ +n logα
β − (δ +1)

n

∑
i=1

log(xi)+θ

n

∑
i=1

log
(

e−x−δ

i

)
+n log(1+α

β )−
n

∑
i=1

log[αβ +
(

e−x−δ

i

)θ

]2

Hence,

logL = n logθ +n logδ +nβ logα− (δ +1)
n

∑
i=1

log(xi)+θ

n

∑
i=1

log
(

e−x−δ

i

)
+

n log(1+α
β )−2

n

∑
i=1

log[αβ +
(

e−x−δ

i

)θ

]

By taking partial derivatives of equation (39) with respect to each parameter and setting them

equal to zero gives

(40)
∂

∂α
(logL) =

nβ

α
+

nβαβ−1

1+αβ
−2

n

∑
i=1

βαβ−1

αβ +
(

e−x−δ

i

)θ
= 0

(41)
∂

∂β
(logL) = n logα +

nαβ logα

1+αβ
−2

n

∑
i=1

αβ logα

αβ +
(

e−x−δ

i

)θ
= 0

(42)
∂

∂θ
(logL) =

n
θ
+

n

∑
i=1

log
(

e−x−δ

i

)
−2

n

∑
i=1

(
e−x−δ

i

)θ

log
(

e−x−δ

i

)
αβ +

(
e−x−δ

i

)θ
= 0

(43)

∂

∂δ
(logL) =

n
δ
−

n

∑
i=1

log(xi)+θ

n

∑
i=1

x−δ

i log(xi)−2
n

∑
i=1

θ

(
e−x−δ

i

)θ−1
(e−x−δ

i )x−δ

i log(xi)

αβ +(e−x−δ

i )θ

= 0
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The equations derived from the partial derivatives of the log-likelihood function (log L) cannot

be solved analytically. The Broyden Fletcher Goldfarb Shanno (BFGS) [14]–[15]–[16]–[17] al-

gorithm was used to compute the MLE estimates of parameters of Modi Exponentiated Inverted

Weibull distribution.

5. SIMULATION STUDY

This section presents the results of a Monte Carlo simulation study to evaluate the accu-

racy and precision of the Maximum Likelihood Estimates (MLEs) for the Modi Exponentiated

Inverted Weibull (MEIW) distribution parameters. The study was conducted by generating ran-

dom samples of varying sizes n= 100,200,300,...900 using the quantile function of the MEIW

distribution (equation 17). 1000 iterations were performed for each sample size, and the param-

eters α,β ,θ ,δ were estimated using the MLE method.

To assess the accuracy of the parameter estimates, we computed the Average Bias (AB), and

the Root Mean Square Error (RMSE). These metrics were calculated for two different sets of

parameter values:

I:(α,β ,θ ,δ )=(0.7,1.5,2.0,2.5)

II:(α,β ,θ ,δ )= (1.0, 2.0, 2.5, 3.5).

The formulas for AB and RMSE are as follows as discussed by [24].

(44) AB(µ) =
1
N

N

∑
i=1

(µ̂i−µ)

(45) RMSE(µ) =

√
1
N

N

∑
i=1

(µ̂i−µ)2

Where:

• µ is the parameter to be estimated which is estimated by µ̂

• µ̂i is the estimate at the ith replication for each sample size .

• N is the number of replications.

The following table shows the MLE, AB, and RMSE values of the parameters α , β , θ , and δ

for various sample sizes.
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The simulation results for Maximum Likelihood Estimates (MLEs), Absolute Biases (ABs),

and Root Mean Squared Errors (RMSEs) are presented in Table(3) for the parameters of the

Modi Exponentiated Inverted Weibull (MEIW) distribution across various sample sizes. As

the sample size increases, the MLEs for all parameters converge toward their true values,

indicating improved accuracy. Specifically, the Absolute Biases (ABs) and Root Mean Squared

Errors (RMSEs) of the parameter estimators decrease as the sample size (n) increases. This

suggests that the MLEs are asymptotically unbiased and consistent [18].

Table 3: Simulation results for Modi Exponentiated Inverted

Weibull distribution for set I and set II

Parameters n MLE AB RMSE MLE AB RMSE

α

100 1.573466 0.8762656 1.955696 1.838351 0.844351 1.873193

200 1.221563 0.5306635 1.463882 1.537638 0.542638 1.512544

300 1.115144 0.4221442 1.247748 1.405990 0.407990 1.185192

400 1.003324 0.3075244 0.9860199 1.329766 0.333766 1.098763

500 0.8602882 0.1665882 0.6968065 1.198620 0.200620 0.838410

900 0.7927518 0.0962518 0.4467724 1.060381 0.0403812 0.6310727

β

100 3.791234 2.297234 4.749120 5.044935 3.056935 5.917864

200 3.021905 1.541405 3.923528 4.441930 2.451930 5.484266

300 2.593628 1.108628 3.267595 4.004234 2.008234 4.999613

400 2.389260 0.8982599 3.002846 3.504246 1.512246 4.305954

500 1.918429 0.4319295 1.987725 3.050492 1.054492 3.669937

900 1.642172 0.1496724 0.8160815 2.074646 0.2346459 2.262524

θ

100 2.188649 0.1966485 1.113958 2.682166 0.197166 1.011578

200 2.127721 0.1537214 0.9405196 2.664733 0.177233 0.913070

300 2.075677 0.0956766 0.6981591 2.609982 0.094982 0.693173

400 2.068445 0.0804446 0.6660829 2.582079 0.072079 0.684903

500 2.059965 0.0729647 0.6018207 2.572128 0.071128 0.624396

900 2.006174 0.0161740 0.4077951 2.504760 0.014760 0.405306
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Parameters n MLE AB RMSE MLE AB RMSE

δ

100 2.629302 0.0393016 0.6401635 3.583366 0.043667 0.752927

200 2.579676 0.0121763 0.5361607 3.567535 0.034965 0.659687

300 2.557630 0.0120300 0.4469868 3.541950 0.015195 0.390667

400 2.537462 0.0116624 0.4171399 3.534192 0.008192 0.019815

500 2.529313 0.0108127 0.3772815 3.531503 0.004497 0.017885

900 2.500385 0.01038853 0.2774086 3.500217 0.001016 0.011475

6. APPLICATION TO REAL DATA SET

This section applied the Modi Exponentiated Inverted Weibull distribution to two real

datasets. The distribution’s flexibility was compared to well-known distributions, including

the Weibull distribution, Inverse Weibull distribution, and Exponentiated Inverted Weibull dis-

tribution. The Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov tests were used

to evaluate the goodness of fit. The Akaike Information Criterion, Hannan-Quinn Information

Criterion, Consistent Akaike Information Criterion, and Bayesian Information Criterion were

used to select the best-fitting model.

The distributions to which the MEIW distribution was compared in this section are the Weibull

distribution(We)[[19]], Inverted Weibull distribution (IW)[[6]], Exponentiated Inverted Weibull

distribution (EIW)[[10]] with the respective pdfs:

(46) We : f (x;α,θ) = αθxθ−1 exp(−αxθ )

(47) IW : f (x : α,β ) = βα
β x−(β+1) exp

(
−
(

α

x

)β
)

(48) EIW : f (x,δ ,θ) = θδx−(δ+1)
(

e−x−δ
)θ

6.1. Data set I: Fatigue Life Analysis of 6061-T6 Aluminum Coupons Data Set. Data set

I: This data is from [20] and contains information on the fatigue life of 6061-T6 aluminum

coupons cut parallel to the rolling direction and oscillated at 18 cycles per second. 70, 90, 96,

97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114,

116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130,
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130, 131, 131, 131, 131, 131, 132,132, 132, 133, 134, 134, 134, 134, 136, 136, 137, 138, 138,

138, 139, 139, 141,141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151,

151,152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174,

201, and 212.

Figures 3-6 show The TTT, histogram, violin, and box plots for the fatigue life of 6061-T6

aluminum coupons cut parallel to the rolling direction and oscillated at 18 cycles per second

data set. The concave-up shape of the TTT plot suggests an increasing hazard rate in the data.

The histogram suggests a right-skewed distribution with a concentration of data around the peak

and a longer tail to the right. The box plot indicates some outliers and the violin plot illustrates

that values are concentrated around the median.

Figure 7 and 8 illustrate the estimated PDF and CDF of the MEIW distribution for the fa-

tigue life of 6061-T6 aluminum coupons cut parallel to the rolling direction and oscillated at 18

cycles per second data set, Figure 9 and 10 depict the Kaplan-Meier and PP plots. The Kaplan-

Meier curve closely approximates the survival function of the model, and the two distributions

also exhibit proximity in the PP plot. Furthermore, Figure 11 shows the plot of fitted pdfs of

the distributions considered in this study with the histogram of the observed data.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)

FIGURE 3. TTT Plot for Fatigue Life Analysis of 6061-T6 Aluminum Coupons

data set
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FIGURE 4. Histogram for Fatigue Life Analysis of 6061-T6 Aluminum
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FIGURE 5. Violin plot for Fatigue Life Analysis of 6061-T6 Aluminum

Coupons data set
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FIGURE 6. Box plot for Fatigue Life Analysis of 6061-T6 Aluminum Coupons

data set
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FIGURE 7. Plot of estimated PDF of Fatigue Life Analysis of 6061-T6 Alu-

minum Coupons data set
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FIGURE 8. Plot of estimated CDF of Fatigue Life Analysis of 6061-T6 Alu-

minum Coupons data set
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FIGURE 9. Plot of Kaplan-Meier of Fatigue Life Analysis of 6061-T6 Alu-

minum Coupons data set
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FIGURE 10. PP Plot of Fatigue Life Analysis of 6061-T6 Aluminum Coupons

data set
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FIGURE 11. Estimated fitted densities of Fatigue Life Analysis of 6061-T6 Alu-

minum Coupons data set for various distributions

Table 4 offers the descriptive statistics for data set I. The positive skewness (0.3772) indicates

a slight rightward asymmetry, and the kurtosis (1.24) suggests a distribution with lighter tails

than a normal distribution.

Table 5 and 6 display the AIC, BIC, HQIC, and CAIC values used to evaluate and compare

different models. The Modi Exponentiated Inverted Weibull distribution consistently has the

lowest values in these criteria, indicating the best fit to the data [21]. It also excels over the other

models with the lowest K-S, W*, and A* values, the highest log-likelihood, and the highest P-

value for the K-S statistic [22].
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TABLE 4. Descriptive statistics of Fatigue Life Analysis of 6061-T6 Aluminum

Coupons data set

Minimum Maximum Mean Median Mode Variance Skewness Kurtosis

70 212 133.8 132.5 142 511.36 0.3772 1.24

TABLE 5. Goodness-of-fit statistics, log-likelihood and maximum likelihood es-

timates of the model parameters for data set I

Distributions Estimates (SEs) Log-Likelihood (l) w* A* K-S (p-value)

MEIW (α,β ,θ ,δ )

α = 0.02043(0.0054)

β = 8.61333(1.9714)

θ = 112.925(10.222)

δ = 0.2487(0.0434)

-456.21 0.0754 0.4449 0.0863 (0.4456)

EIW (δ ,θ)
δ = 196.2023(45.947)

θ = 1.11817(0.0513)
-465.12 0.0863 0.5008 0.10413 (0.21625)

IW (α,β )
α = 120.7264(2.5438)

β = 5.0426(0.3265)
-470.93 0.4134 2.4023 0.1330 (0.05789)

WE (α,θ)
α = 1.44426(3.8768)

θ = 5.95531(0.9854)
-562.79 0.5219 3.7653 0.22546 (0.04657)

TABLE 6. Values of Information Criteria for various distributions for data set I

Distributions AIC BIC CAIC HQIC

MEIW 920.42 921.63 920.54 918.528

EIW 934.24 939.450 934.363 936.348

IW 945.86 951.07 945.983 947.97

WE 1129.58 1134.79 1129.703 1131.68

6.2. Data set II: March Precipitation Observations in Minneapolis/St. Paul (in inches).

Data set II: The second real-life data was first documented by Hinkley (1977). Data consisting

of 30 observations of the March precipitation (in inches) in Minneapolis/ St Paul is available in

[23]: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,

1.31, 0.32, 0.59 , 0.81 , 2.81 , 1.87 , 1.18 , 1.35, 4.75, 2.48 ,0.96 , 1.89 , 0.90 , and 2.05.
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Figures 12-15 depict the TTT, histogram, violin, and box plots for March precipitation (in

inches) in the Minneapolis/St. Paul dataset. The TTT plot indicates an increasing hazard rate,

while the histogram reveals a right-skewed distribution of precipitation data. The box plot

suggests the presence of outliers, and the violin plot illustrates a concentration of values around

the median.

Figures 16 and 17 illustrate the estimated probability density function (PDF) and cumulative

distribution function (CDF) of the Modi Exponentiated Inverted Weibull (MEIW) distribution

for March precipitation (in inches) in the Minneapolis/St. Paul dataset. Figures 18 and 19 de-

pict the Kaplan-Meier and PP plots. The Kaplan-Meier curve closely approximates the model’s

survival function, and the two distributions also exhibit proximity in the PP plot. Figure 20

shows a plot of the fitted PDFs of the distributions considered in this study, overlaid with the

histogram of the observed data.
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FIGURE 12. TTT plot of March precipitation data set
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FIGURE 14. Violin plot of March precipitation data set
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FIGURE 15. Box plot of March precipitation data set
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FIGURE 16. Plot of estimated PDF of March precipitation data set
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FIGURE 17. Plot of estimated CDF of March precipitation data set
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FIGURE 18. Box plot of March precipitation data set
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FIGURE 19. PP Plot of March precipitation data set
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FIGURE 20. Estimated fitted densities of March precipitation (in inches) data

set for various distributions

Table 7 offers the descriptive statistics for data set II. A skewness value is 1.145 which

indicates that the distribution is positively skewed and the kurtosis of 1.665 suggests that the

distribution is platykurtic.

Tables 8 and 9 present the AIC, BIC, HQIC, and CAIC values used to evaluate and

compare different models. The Modi Exponentiated Inverted Weibull distribution consistently

demonstrates the lowest values in these criteria, suggesting the best fit to the data [11].

Additionally, it outperforms the other models with the lowest K-S, W, and A* values, the

highest log-likelihood, and the highest P-value for the K-S statistic.

TABLE 7. Descriptive statistics of the March precipitation

Minimum Maximum Mean Median Mode Variance Skewness Kurtosis

0.32 4.75 1.675 1.47 0.81 1.001233 1.145 1.665
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TABLE 8. Goodness-of-fit statistics, log-likelihood and maximum likelihood es-

timates of the model parameters for data set II

Distributions Estimates (SEs) Log-Likelihood (l) w* A* K-S (p-value)

MEIW (α,β ,θ ,δ )

α = 0.13943(0.3201)

β = 15.71258(0.00751)

θ = 31.95127(39.473)

δ = 0.08877(0.112101)

-39.1796 0.0393 0.2524 0.0751 (0.9958)

EIW (δ ,θ)
δ = 1.02525(0.1978)

θ = 1.54959(0.2026)
-42.9170 0.0417 0.2628 0.1506 (0.6556)

IW (α,β )
α = 1.016224(0.1272412)

β = 1.549595(0.2026504)
-42.9203 0.1260 0.7721 0.1523 (0.4893)

WE (α,θ)
α = 0.315464(0.0906148)

θ = 1.808877(0.2491126)
-43.92 0.1419 0.8693 0.2412 (0.4567)

TABLE 9. Values of Information Criteria for various distributions for data set II

Distributions AIC BIC CAIC HQIC

MEIW 86.35935 91.96412 87.95935 88.15237

EIW 89.83402 92.63641 90.27846 90.73050

IW 89.84060 92.64299 90.28504 90.73711

WE 91.84000 94.64200 92.28400 92.73600

7. CONCLUSION

This paper applies a new four-parameter model known as the Modi Exponentiated Inverted

Weibull distribution(MEIW) to two real datasets. We explore the mathematical and statisti-

cal properties of this distribution, deriving expressions for its cumulative distribution function,

probability density function, survival function, hazard rate function, Cumulative hazard func-

tion, reversed hazard rate function, Odds function, quantile function, moment, order statistics,

and Rényi Entropy. To estimate the parameters of the MEIW distribution, we utilize maximum
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likelihood estimation (MLE). Monte Carlo simulations are employed to evaluate the perfor-

mance of the MLEs. Our study finds that the MLEs are both accurate and reliable in estimating

model parameters. As the sample size increases, the MLEs converge to the true parameter val-

ues, as evidenced by the reduction in average biases (ABs). Additionally, root mean square

errors (RMSEs) decrease with larger sample sizes. The analysis reveals that the MEIW distri-

bution surpasses existing distributions in modeling the datasets used in this study. Moreover,

various plots show that the MEIW distribution can adapt to different shapes, highlighting its

flexibility in fitting diverse data sets.
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