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Abstract: Food image classification is a challenging problem with significant potential benefits for real-world 

applications such as nutritional and energy estimation. Most prior research has proposed various Convolutional Neural 

Network (CNN) architectures to tackle this issue. However, given the large size and diverse nature of food image 

datasets, there remains considerable room for improvement, particularly in terms of accuracy and training speed. 

Typically, neural networks trained on small image classification datasets benefit from using pre-trained weights from 

large-scale image classification datasets like ImageNet. In this study, we explore the balance between using pre-trained 

networks as feature extractors and fine-tuning networks for food image classification. By leveraging transfer learning 

with EfficientNetV2B0, we achieve higher accuracy in food image classification. On the largest publicly available 

food image dataset, FOOD-101, our proposed method improves the previous best accuracy from 77.40% to 81.62%, 

while maintaining a prediction speed of 23 ms on a GPU. 
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1. INTRODUCTION 

This Identifying food ingredients is an easy activity for humans. It is human nature to 

recognize various characteristics and patterns, both simple and complex [1]. Recognizing foods 

marks the first step to maintaining a nutritious diet, preparing recipes and making dietary 

suggestions. When a person recognizes a particular food, they can then look up information about 

its nutritional content. This helps in consistently monitoring the nutrients consumed and required 

by the human body. Additionally, it allows the person to explore recipes associated with a 

particular food [2]. 

Humans can easily identify food ingredients, but food recognition systems can do more than 

just that. They can also inform people about the nutrients in food. This could lead to apps that track 

our daily nutrition, suggest foods or drinks to eat, and even suggest good recipes. Since most fitness 

apps don't have this feature, adding it would be a great way to compete with other fitness apps. In 

simpler terms, food recognition systems can be used to create apps that can help people track their 

diet and make healthier choices. This would be a valuable addition to most fitness apps, as it would 

give them a competitive advantage over other apps [3]. 

Convolutional neural networks (CNN) algorithm have significantly bolstered performance 

enhancements in classifying images based on objects. Ever since AlexNet [4] was presented in 

2012, Deep Convolutional Neural Networks (DCNNs) have become the most popular approach 

for solving image classification tasks. This is due to their ability to achieve high accuracy levels 

by utilizing extensive labeled datasets and their millions of parameters. After achieving success, 

numerous other studies, including VGG16 [5], InceptionNet [6], and ResNet[7], have investigated 

various network architectures to enhance performance in terms of accuracy, memory efficiency, 

and speed of inference. Deep Convolutional Neural Networks (DCNNs) consist of multiple 

convolutional, linear, and non-linear layers, and are frequently used in computer vision tasks due 

to their convolution operation's translation equivariant property. CNNs are known for their ability 

to recognize patterns in images by applying a series of convolutional operations that detect features 

at different scales and orientations [8]. 

Training convolutional neural networks presents challenges for both small and large datasets. 

While large datasets require extensive manual annotation, small datasets struggle to provide 

enough training data [9]. The significant computational resources needed for training further 

complicate the process. Transfer learning emerges as a valuable tool for overcoming these 

limitations, particularly for working with smaller datasets [10].  
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To extract high-level semantic features from images, address data limitations, and achieve 

higher accuracy in food image recognition tasks, this paper proposes a method based on transfer 

learning [11]. This approach leverages the capability of convolutional neural networks to 

automatically extract image features. Pre-trained convolutional neural network models 

EfficientNet [9] from the ImageNet dataset are fine-tuned using the food-101 dataset. 

Experimental data is used to compare the performance of individual models on the food image 

dataset. The proposed method has demonstrated promising results, showcasing the feasibility of 

applying model transfer and combination strategies to food image recognition. 

 

2. RELATED WORK 

Le Bu and Xiuliang Zhang's paper proposed a food image recognition method using transfer 

learning and ensemble learning [12]. They extracted generic image features from pre-trained 

convolutional neural network models (VGG19, ResNet50, MobileNetV2, AlexNet) on the 

ImageNet dataset. Chang Liu et al. [13] developed a Convolutional Neural Network (CNN) based 

algorithm for food image recognition to tackle challenges in this field. Introduces DeepFood, a 

system that uses deep learning for food image recognition, aiming to improve computer-aided diet 

assessment accuracy, and shows promising results on real datasets. They applied the algorithm to 

two real food image datasets, UEC-256 and Food-101, and achieved outstanding results. 

Metwalli et al.[14] introduces DenseFood, a food classification model using a densely 

connected convolutional neural network architecture. It leverages a combination of softmax and 

center loss to minimize intra-category variation and maximize inter-category variation. Then, fine 

tune pre-trained DenseNet121 and ResNet50 models to extract features from the dataset. Hasan et 

al. [15] propose a novel approach utilizing a genetic algorithm to automatically select blocks of 

layers, rather than individual layers. This method leverages the recently introduced metric, 

[16]OTDD, to assess the significance of these blocks in feature extraction. By applying OTDD, 

they quantify the contribution of each block towards identifying relevant features. Their research 

evaluates the effectiveness of this method using three diverse datasets: Food-101, CIFAR-100, and 

MangoLeafBD. For their CNN architecture, they employ pre-trained EfficientNet [17] models on 

the ImageNet dataset. 

From these previous works, we can get some key information. Firstly, all those studies rely 

on neural network training to achieve the best results. Secondly, Transfer Learning can 

significantly improve classifier performance on small and large datasets. However, there is no 
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comprehensive study on applying Transfer Learning using EfficientNetV2 [9] on the largest food 

dataset, FOOD-101. The purpose of this study is to compare the results of Transfer Learning with 

different networks and different training strategies. 

 

3. MATERIALS AND METHODS 

In this section, we will first explain the transfer learning techniques, followed by the networks 

used in the experiments, including the EfficientNet architecture, and the training procedures 

employed, which involve Transfer Learning training. Next, we will provide a detailed explanation 

of the experimental techniques used for developing the food recognition model. 

3.1. Transfer Learning 

Training convolutional neural networks is data-hungry, requiring extensive labeled datasets. 

This data acquisition process is time-consuming and tedious, relying on manual annotation. 

Moreover, training these networks demands significant computational power, often beyond the 

reach of many individuals. Recent advancements in transfer learning offer a potential solution [18]. 

This technology allows models to learn from a source domain and apply that knowledge to a new, 

target domain. By transferring existing labeled data to unlabeled data, it enables the creation of 

deep learning models tailored to specific tasks, reducing the need for extensive manual annotation 

and computational resources [19].  

 

 

FIGURE 1. Transfer learning based EfficientNet model architecture for Food Recognition. 

Figure 1 illustrates the overall architecture of a convolutional neural network (CNN), where 

the convolutional base is derived from a pre-trained EfficientNet, excluding its original classifier, 

and the classifier has been replaced with newly added layers specifically designed for food 

recognition. Repurposing a pre-trained deep convolutional neural network (DCNN) involves two 

main steps: replacing the original classifier with a new one and fine-tuning the model. The new 
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classifier typically consists of one or more fully connected dense layers. In transfer learning, it is 

crucial to select an appropriate pre-trained model and to establish a size-similarity matrix for fine-

tuning [20]. There are three common strategies for fine-tuning: training the entire model, training 

some layers while leaving others frozen, and training only the classifier while keeping the 

convolutional base frozen. For tasks that are similar to the original task, training only the classifier 

and/or a few layers is sufficient. Conversely, for tasks that are dissimilar, training the entire model 

is necessary. Fine-tuning is therefore conducted on the added classifier and either a selected portion 

or the entirety of the convolutional base. Selecting the appropriate portion for fine-tuning and the 

best training methods is a complex process that is handled in this study through a pipeline strategy 

to achieve an optimal food recognition model [21]. 

3.2. EfficientNet 

EfficientNet is a convolutional neural network that is created to scale a network's depth, width, 

and resolution in proportion to a compound coefficient. This means that by increasing 

computational resources with a coefficient ϕ, we can increase the network's depth by α, width by 

β, and image size by γ, with α, β, and γ being constant coefficients determined through a small grid 

search. The initial study [17] introduced 8 variations of scaled networks. In this research, our focus 

is solely on the network with an image input size of 224 × 224 to ensure a fair comparison with 

other approaches. 

EfficientNetV2 enhances the performance of EfficientNetV1 in terms of computational 

efficiency, network size, and predictive accuracy. To accelerate training and reduce the network's 

size, it limits the maximum image scaling size to 480 × 480 and eliminates unnecessary search 

options like pooling skip operations that were found in the original EfficientNetV1. Paper [9] also 

introduces the concept of progressive learning, where the networks gradually enhance 

regularization as they learn over an extended period. 

Overall, based on the testing results shown in Table 1 and Figure 5, it can be concluded that 

the proposed LSTM model using input type 4 was the best among all other input types. The LSTM 

model using input type 4 was the best at predicting TDS and water temperature, while the LSTM 

model using input type 2 was the best at predicting water pH. A quick glance at Figure 5 shows 

that the LSTM model using input type 1 failed to predict all water quality parameters, including 

pH, TDS, and temperature, by only resulting in a horizontal straight line. In our analysis, the 

prediction may not be good enough due to the data tending to be pattern less without containing 

any pattern such as seasonality, and due to the characteristic of the dataset depicted in PCC values 
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not containing any strong correlation but only containing negligible, weak, and moderate 

correlation. In our conjecture, the data may not be large enough to make the predictive model learn. 

We also assumed the dataset used in our research may contain noise because the data was obtained 

from sensors, which makes predicting water quality more challenging using this dataset. 

3.3. The Recognition Method for Food Images based on Transfer Learning 

 

FIGURE 2. The Whole process of food image recognition based on Transfer Learning with 

EfficientNet Model. 

The research presents a food image recognition method using transfer learning, involving 

three key stages: data preprocessing, network pre-training, and fine-tuning. A visual overview of 

the method is depicted in Figure 2. In the data preprocessing phase, food images are enhanced 

primarily through data augmentation techniques. For network pre-training and fine-tuning, pre-

trained (EfficientNet) convolutional neural networks from ImageNet datasets are chosen. These 

models are adapted to the food image dataset, refining them based on extracted common image 

features. While some feature layers remain fixed, the rest, along with all final layers, are fully 

retrained. Following additional training and predictive analysis, the final recognition output is 

obtained. The discussion of the research results obtained can be presented in the form of theoretical 

description, both qualitatively and quantitatively. In practice, this section can be used to compare 

the results of the research obtained in the current research on the results of the research reported 

by previous researchers referred to in this study. Scientifically, the results of research obtained in 

the study may be new findings or improvements, affirmations, or rejection of a scientific 

phenomenon from previous researchers.  

3.4. Data Preprocessing 

 Data preprocessing serves as the cornerstone for analyzing digital images in machine vision. 

Its primary aim is to eliminate different types of noise from images, enhance their quality, facilitate 
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the retrieval of valuable information, and simplify subsequent tasks like feature extraction, image 

segmentation, and image recognition. This ultimately boosts the reliability of digital image 

analysis and processing. In this approach, image preprocessing consists of two steps: data 

augmentation and data standardization [22]. 

 

FIGURE 3. Example of data augmentation. 

Data augmentation is an effective technique for increasing the sample size of a dataset. With 

a larger number of training samples, convolutional neural networks can learn a wider range of 

image features, which enhances the model's generalization capabilities. The data augmentation 

methods employed in this study include: 1) random cropping, 2) horizontal flipping, 3) vertical 

flipping, 4) 180˚ rotation, 5) affine transformations, and 6) conversion to grayscale. An example 

of data augmentation applied in this method can be seen in Figure 3. Data standardization refers 

to the process of normalizing each channel of an image (224 × 224). This technique aids in 

improving the convergence of the model during training. 

3.5. Networks Fine-tuning 

 In image classification tasks, the number of labeled classes often differs between a large 

dataset and a smaller one. Consequently, the first step in fine-tuning a pre-trained deep neural 

network (EfficientNet) involves modifying the last output layer so that it matches the number of 

classes in the target dataset. This step is akin to using the convolutional layers as feature extractors 

while only updating the fully connected layer. This initial training of the classifier is crucial for 

ensuring stable training during the subsequent step, where the entire network is fine-tuned. The 
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training process is illustrated in Figure 2. The top portion of the figure shows a network pre-trained 

on the ImageNet dataset [23]. The weights from the convolutional layers are reused in the middle 

network, where only the fully connected layer is trained. The lower network displays the fine-

tuning of the entire model, with both the convolutional and fully connected layers being trained 

end-to-end. Typically, a lower learning rate is employed during the fine-tuning process. 

3.6. Hyper-parameters Setup 

Training deep networks is often time-consuming and resource-intensive, with hyperparameter 

tuning being a significant contributing factor. To streamline this process, we avoided extensive 

hyperparameter searches by assigning reasonable values to some of them. Specifically, we 

configured the batch size to 64 and chose the Adam optimizer as our stochastic optimizer due to 

its effectiveness in training deep neural networks [24]. For the feature extraction training and the 

last fully connected layer, we set the learning rates to 1 × 10−3, with β1 and β2 values of 0.9 and 

0.999, respectively. When fine-tuning the networks, we lowered the learning rates to 1 × 10−5 to 

avoid making significant changes to the weights. Throughout the training, we allowed the networks 

to learn for 10 epochs. Finally, the weight decay was set to 5 × 10−4. 

3.7. Loss Function 

Let 𝑦 be a one-hot ground-truth label vector, 𝑦′ represent the predicted probabilities for each 

class from the networks and let 𝑐c denote each possible class. We employed the widely used multi-

class cross-entropy as our loss function. Mathematically, it is defined as: 

𝐿(𝛾, 𝑦′) =  − ∑ 𝑦𝑐

𝑐

log 𝑦𝑐′ 
(1) 

4. EXPERIMENT RESULTS AND ANALYSIS 

In this section, we present the results of our experiments on food recognition utilizing transfer 

learning with EfficientNet architectures. We provide a detailed analysis of the performance metrics, 

including accuracy, precision, recall, and F1 score, to evaluate the effectiveness of our models. 

Additionally, we discuss the training duration for each experiment, highlighting the computational 

resources required and any challenges encountered during the process. Furthermore, we offer 

observations regarding the model's behavior, including its strengths and weaknesses in recognizing 

different types of food, as well as insights into how the transfer learning approach impacted the 

overall performance. This comprehensive evaluation aims to provide a better understanding of the 

capabilities of EfficientNet in the context of food recognition tasks.  



9 

FOOD RECOGNITION SYSTEMS FOR HEALTH MONITORING 

4.1. Experiment Setup 

We outline the setup for our experiments, which focused on two main architectures: 

EfficientNetB0 and EfficientNetV2B0. For both experiments, we adopted a two-step training 

process. Initially, the models were trained using a feature extraction approach, allowing us to 

leverage pre-trained weights while adapting the models to our specific dataset. Following this, we 

performed fine-tuning on the entire model to improve its performance and learning capability 

further. 

To prepare the data, both the training and validation datasets underwent comprehensive 

preprocessing, including normalization and resizing of images. We also applied various data 

augmentation techniques, such as rotation, flipping, and color adjustment, to enhance the diversity 

of the training set and mitigate overfitting. This thorough experiment setup aimed to maximize the 

effectiveness of the EfficientNet architectures in the food recognition tasks. 

4.2. Feature Extraction Results 

The EfficientNetB0 model was trained for a total of 5 epochs with a batch size of 32. The 

results of the training process are summarized in Table 1. The model achieved a peak validation 

accuracy of 73.36% at the 5th epoch, indicating a reasonable performance in food recognition tasks 

using transfer learning.  

TABLE 1. EfficientNetB0 Feature Extraction Results 

 

Epoch 
Training Loss 

Training 

Accuracy 

Validation 

Loss 

 Validation 

Accuracy 

1 1.7167 58.16% 1.1158 70.60% 

2 1.2005 68.95% 1.0270 71.88% 

3 1.0553 72.39% 1.0047 72.62% 

4 0.9587 74.78% 0.9684 72.83% 

5 0.8893 76.45% 0.9713 73.36% 

 

In a similar manner, the EfficientNetV2B0 model was also trained for 5 epochs, and the results are 

summarized in Table 2. 
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TABLE 2. EfficientNetV2B0 Feature Extraction Results 

 

Epoch 
Training Loss 

Training 

Accuracy 

Validation 

Loss 

 Validation 

Accuracy 

1 1.7470 57.61% 1.1461 69.65% 

2 1.2120 68.57%   1.0396 72.64% 

3 1.0638 72.09% 0.9921 73.46% 

4 0.9674 74.63% 0.9720 73.89% 

5 0.8976 76.24% 0.9605 74.42% 

 

The EfficientNetV2B0 model demonstrated slightly improved performance compared to 

EfficientNetB0, achieving a peak validation accuracy of 74.42%. This suggests that the 

EfficientNetV2B0 architecture may provide enhancements suitable for food recognition tasks, 

supporting the effectiveness of transfer learning in this domain. 

4.2. Fine-Tuning Results 

After the initial feature extraction, both EfficientNetB0 and EfficientNetV2B0 models 

underwent a fine-tuning process to further enhance their performance on the food recognition tasks. 

This fine-tuning involved strategies such as learning rate reduction and early stopping to mitigate 

overfitting. The fine-tuning process for EfficientNetB0 was carried out for up to 100 epochs, and 

the results are summarized in Table 3. 

TABLE 3. EfficientNetB0 Fine-Tuning Results 

 

Epoch 
Training Loss 

Training 

Accuracy 

Validation 

Loss 

 Validation 

Accuracy 

1 0.7953 78.28% 0.7972 77.07% 

2 0.4783 86.57% 0.8014 78.50% 

3 0.2594 92.59% 0.8485 78.68% 

4 0.0616 98.56% 0.9499 80.32% 

 

The fine-tuned EfficientNetB0 model achieved a peak validation accuracy of 80.32% at the 

4th epoch, indicating a significant improvement in performance compared to the feature extraction 

phase. EfficientNetV2B0 Fine-Tuning Similarly, the fine-tuning process for EfficientNetV2B0 

was also conducted for up to 100 epochs. The results are detailed in Table 4. 
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TABLE 4. EfficientNetV2B0 Fine-Tuning Results 

 

Epoch 
Training Loss 

Training 

Accuracy 

Validation 

Loss 

 Validation 

Accuracy 

1 0.7990 78.14% 0.7310 79.85% 

2 0.4608 87.02% 0.7419 80.72% 

3 0.2328 93.32% 0.8700 79.24% 

4 0.0450 99.01% 0.9090 81.62% 

The EfficientNetV2B0 model reached its peak validation accuracy of 81.62% at the 4th epoch, 

demonstrating a greater enhancement in performance compared to EfficientNetB0. Overall, the 

fine-tuning phase significantly enhanced the models' capabilities in food recognition tasks, with 

EfficientNetV2B0 outperforming EfficientNetB0 in terms of validation accuracy. This 

demonstrates the effectiveness of fine-tuning in optimizing transfer learning models for specific 

applications. The fine-tuned EfficientNetB0 model achieved a peak validation accuracy of 80.32% 

at the 4th epoch, reflecting a substantial improvement in performance compared to the feature 

extraction phase. 

 

5. DISCUSSION 

The results indicate that both EfficientNetB0 and EfficientNetV2B0 architectures are effective 

for food recognition tasks when fine-tuned. Fine-tuning significantly improved the validation 

accuracy, with EfficientNetV2B0 achieving the highest accuracy of 81.62%. Our results are 

consistent with previous research that demonstrates the effectiveness of transfer learning and fine-

tuning in improving model performance for image classification tasks. The high accuracy achieved 

by the models suggests that they can be effectively used in real-world food recognition applications, 

such as automated dietary monitoring and food tracking systems. 

 

6. CONCLUSIONS 

In this study, we explored the effectiveness of transfer learning using EfficientNet 

architectures for food recognition tasks, specifically employing EfficientNetB0 and 

EfficientNetV2B0 to classify images into 101 food categories. Both models demonstrated strong 

performance, with EfficientNetV2B0 slightly outperforming EfficientNetB0, achieving peak 

validation accuracies of 81.62% and 74.42%, respectively, after fine-tuning. The fine-tuning 
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process significantly enhanced model performance, improving validation accuracies compared to 

the initial feature extraction phase. EfficientNetV2B0 showed superior results both in the initial 

training phase and after fine-tuning, suggesting that the newer architecture benefits from advanced 

features and optimizations. The improvements observed through fine-tuning, such as using a lower 

learning rate and early stopping, contributed to better generalization and reduced overfitting. 

The results are consistent with existing literature on transfer learning in image classification 

tasks, supporting the utility of these models in practical applications such as automated food 

recognition systems. The high performance of these models highlights their potential for real-

world use in dietary tracking and food recognition. Future research could focus on exploring 

advanced or hybrid architectures, expanding datasets, and incorporating data augmentation 

techniques to further enhance model accuracy and efficiency. Overall, EfficientNet architectures, 

particularly EfficientNetV2B0, prove to be a robust framework for food recognition, effectively 

addressing complex image classification challenges. 
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