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Abstract. Particle distribution that occurs in waste stabilization ponds is a phenomenon that can be formulated using 

mathematics. The proposed model is a two-dimensional advection and diffusion model. We develop the model using 

differential equations that consider the 𝑥-axis and 𝑦-axis. We will solve the equation with the crank nicolson-

alternating direction implicit finite difference method. the goal is to show the stability analysis of the method used to 

solve the proposed model. The results obtained show that the method used obtains unconditional stability. 
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1. INTRODUCTION 

Environmental pollution in densely populated settlements is a matter of concern. The denser a 

settlement, the more environmental pollution increases, especially household waste or domestic 
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liquid waste. Water is the most important aspect of life [1]. Three percent of the water on Earth is 

freshwater, but only about (0.01%) of this pure water can be used by humans [2]. This forces 

humans to treat polluted water and reuse it to meet needs [3]. Therefore, wastewater treatment can 

be used as a way to reduce water scarcity [4]–[7]. One example of the application of treated 

municipal wastewater is agricultural irrigation [4]. Farmers can use water sources that come from 

wastewater that has been fully or partially treated [8]. Improper wastewater treatment methods can 

be harmful to crops, soil, and the health of farmers and consumers [9], [10]. 

Improperly treated wastewater when continuously discharged into the soil results in changes in 

soil quality due to bacterial pollution, organic matter, and mineral pollution and structural 

degradation [11], [12]. In addition, the amount of salt, chlorine, and nitrate in groundwater 

increases as a result of long-term irrigation with untreated or poorly treated sewage [13]. 

Improving water quality requires proper wastewater treatment procedures so that the water can be 

used for agriculture [14], [15]. It is important to prevent possible environmental pollution and 

protect public health from related hazards [16]–[18]. One way to control water pollution is to create 

wastewater ponds that are useful for treating domestic wastewater [19]–[21]. In Indonesia, there 

are several cities that have provided sewage ponds, such as Yogyakarta, located in Sewon, Bantul. 

This wastewater treatment system is called a wastewater treatment plant (WWTP), and it is built 

to treat domestic wastewater by utilizing pipelines [22]. 

Domestic wastewater that flows daily to the WWTP may contain particles harmful to the 

environment. Therefore, research on the movement of Biochemical Oxygen Demand (BOD) 

particles in the pond needs to be done. BOD is an important parameter in assessing water quality. 

The BOD parameter is used to understand and determine the effect of wastewater conditions on 

the degradation process of organic matter [22]. 

Various studies have been conducted related to sewage stabilization ponds, including research by 

[22], which monitors water quality by measuring BOD concentration using machine learning 

methods such as random forest (RF), support vector regression (SVR), and multilayer perceptron 

(MLP) to get the best model in predicting BOD pollutants. A novel system is proposed to integrate 
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microbial fuel cells (MFCs) with algae for organic matter degradation, nutrient removal, and 

bioenergy production simultaneously. This study also utilized mathematical models for simulation 

related to the performance of the proposed system [23]. Research on the analysis of secondary 

purification of wastewater treatment plants (WWTP) through activated sludge with the aim of 

knowing the settling velocity and describing the relationship between factors that affect the settling 

velocity. This study developed and predicted a one-dimensional model (1-D model) based on a 

complete experimental study conducted at the WWTP [24]. Numerical simulation of the 

advection-diffusion mechanism of BOD concentration used as an effluent indicator in only one 

flow direction of the effluent stabilization pond (1-dimensional (1-D)). This model is represented 

in a partial differential equation of order 2. The numerical method used to solve this model is the 

finite difference method with the Forward Time Central Space scheme [25]. Research on 

wastewater treatment with the help of bacteria has been conducted [26]. In this study, the 

development of WWTP water treatment was carried out, namely with a rapid infiltration system 

through three stages. The mathematical model of the rapid infiltration system was developed and 

calibrated by incorporating a biokinetic model so as to predict changes in water quality. 

Changes in water quality can be assessed by the distribution of BOD particles. In [27], the BOD 

particle distribution model is described as an advection-diffusion mechanism that represents a 

partial differential equation. This study used the finite difference method to solve the 1-

dimensional to 3-dimensional model. Research conducted by [28] used a mathematical model to 

observe the interaction between Dissolved Oxygen (DO) and BOD in open flow. The proposed 

model is represented by partial differential equations solved by the finite volume method. Research 

[29] presents a mathematical model related to water pollution by organic matter, DO, and BOD, 

which are important indicators in monitoring water quality. This study presents a two-dimensional 

mathematical model through a system of non-linear differential equations with Holling type III 

kinetic reaction between DO and BOD solved by the central finite difference method for space 

discretization and the Crank-Nicolson method for time discretization. 

The exact solution of partial differential equations is difficult, so numerical methods are used to 
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solve these equations [30]. In [31] and [32], numerical methods such as the finite element method 

were used to solve partial differential equations. Research [30] used fine particle hydrodynamics 

and a one-dimensional finite difference method to model the distribution of chemical pollutants. 

A higher-order time discretization method for solving stochastic partial differential equations was 

studied by [33]. The solution of the groundwater flow diffusion equation using a modified center 

finite difference method with a backward finite difference was conducted by [34]. Research on 

pollutant distribution based on the advection-diffusion equation using the forward time center 

space (FTCS) finite difference method was conducted by [27]. [35] used an implicit scheme with 

the alternating direction implicit (ADI) method to solve the two-dimensional fractional diffusion 

equation. 

Implicit methods have the advantage of producing stable and convergent solutions, this is used to 

overcome the weaknesses of explicit methods that have conditions on their stability [36]. Solving 

the solution of differential equations with implicit schemes in two-dimensional space takes a long 

time. One way to overcome this shortcoming is to use a solver method. This method is known as 

the ADI method. The ADI method is one of the implicit methods that can be used to solve partial 

differential equations that are parabolic, hyperbolic, and elliptic. Using the ADI method, the 

differential equation will be broken down into a simpler structure to solve it efficiently with the 

tridiagonal matrix algorithm. 

Based on the quality of wastewater that is affected by BOD concentration, research will be 

conducted on the distribution of BOD particles in the effluent stabilization pond. Particles are 

represented by BOD concentrations measured horizontally and vertically with respect to changes 

in time and space. Changes in BOD concentration over time and space can be represented by partial 

differential equations. The proposed model considers a two-dimensional advection-diffusion 

process that will be solved using the Crank Nicolson-Alternating Direction Implicit (CN-ADI) 

method. This study aims to describe the phenomenon of BOD particle distribution in the effluent 

stabilization pond. 
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2. ADVECTION-DIFFUSION MODEL 

In this study, we propose a particle distribution model for a waste stabilization pond. Our model 

describes the distribution in one dimension and two dimensions. The particle transfer equation 

takes into account the inflow, outflow, and motion of particles in the water. To clarify the 

description of the phenomenon that occurs, it can be seen in Figure 1. 

 

FIGURE 1. Particle distribution in dimension one 

In Figure 1, wastewater flows into the pond with a flow velocity u in a straight direction in the 𝑥-

axis. We assume that the length of the pond is ∆𝑥, so the following mathematical formulation is 

obtained 

(1) 𝜕𝐶

𝜕𝑡
= −𝑢

𝜕𝐶

𝜕𝑥
+ 𝐷𝑚𝑥

𝜕2𝐶

𝜕𝑥2
 

 

FIGURE 2. Particle distribution in dimension two 

Figure 2 shows that the particle displacement moves along the 𝑥-axis and 𝑦-axis, with the same 

pool length ∆𝑥. Therefore, the mathematical formulation of the particle distribution in the second 

dimension is obtained as follows 

(2) 
𝜕𝐶

𝜕𝑡
= −𝑢

𝜕𝐶

𝜕𝑥
− 𝑣

𝜕𝐶

𝜕𝑦
+ 𝐷𝑚𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑚𝑦

𝜕2𝐶

𝜕𝑦2
 

Where 
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𝑢  : Advection coefficient for 𝑥-axis 

𝑣  : Advection coefficient for 𝑦-axis 

𝐷𝑚𝑥  : Diffusion coefficient for 𝑥-axis 

𝐷𝑚𝑦 : Diffusion coefficient for 𝑦-axis 

3. DISCRETIZATION OF THE MODEL  

To solve the advection-diffusion equations in equations (1) and (2) we use the Crank Nicolson 

method to discretize time and the Alternating Direction Implicit (ADI) method to discretize space. 

The numerical scheme of the two-dimensional advection-diffusion equation using the ADI method 

is carried out by performing a second-order central difference approach. The two-dimensional 

advection-diffusion equation is given as follows 

(3) 
𝜕𝐶

𝜕𝑡
= −𝑢

𝜕𝐶

𝜕𝑥
− 𝑣

𝜕𝐶

𝜕𝑦
+ 𝐷𝑚𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑚𝑦

𝜕2𝐶

𝜕𝑦2
 

The main idea of the ADI method in solving the two-dimensional diffusion advection equation is 

to divide the scheme into two steps. The first step aims to obtain the values from 𝑡 to 𝑡 +
∆𝑡

2
 by 

discretizing the derivative of 𝐶 with respect to 𝑥 through an implicit central difference approach, 

while the derivative of 𝐶 with respect to 𝑦 through an explicit central difference approach.    

The first step approach in equation (3) is as follows 

 

(4) 
𝐶

𝑖,𝑗

 𝑛+
1
2 − 𝐶𝑖,𝑗

 𝑛

∆𝑡
2

= −𝑢 (
𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 𝐶

𝑖−1,𝑗

 𝑛+
1
2

2∆𝑥
) − 𝑣 (

𝐶𝑖,𝑗+1
 𝑛 − 𝐶𝑖,𝑗−1

 𝑛

2∆𝑥
)

+ 𝐷𝑚𝑥 (
𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 2𝐶

𝑖,𝑗

 𝑛+
1
2 + 𝐶

𝑖−1,𝑗

 𝑛+
1
2

(∆𝑥)2
) + 𝐷𝑚𝑦 (

𝐶𝑖,𝑗+1
 𝑛 − 2𝐶𝑖,𝑗

 𝑛 + 𝐶𝑖,𝑗−1
 𝑛

(∆𝑦)2
) 

 

(5) 
𝐶

𝑖,𝑗

 𝑛+
1
2 − 𝐶𝑖,𝑗

 𝑛 = −𝑢
∆𝑡

4∆𝑥
(𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 𝐶

𝑖−1,𝑗

 𝑛+
1
2) − 𝑣

∆𝑡

4∆𝑥
(𝐶𝑖,𝑗+1

 𝑛 − 𝐶𝑖,𝑗−1
 𝑛 )

+ 𝐷𝑚𝑥

∆𝑡

2(∆𝑥)2
(𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 2𝐶

𝑖,𝑗

 𝑛+
1
2 + 𝐶

𝑖−1,𝑗

 𝑛+
1
2)

+ 𝐷𝑚𝑦

∆𝑡

2(∆𝑦)2
(𝐶𝑖,𝑗+1

 𝑛 − 2𝐶𝑖,𝑗
 𝑛 + 𝐶𝑖,𝑗−1

 𝑛 ) 
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To simplify Equation (5), the following is done: 

We assume 𝑞𝑥 = 𝑢
∆𝑡

4∆𝑥
  𝑞𝑦 = 𝑢

∆𝑡

4∆𝑦
   𝜆𝑥 = 𝐷𝑚𝑥

∆𝑡

(∆𝑥)2    𝜆𝑦 = 𝐷𝑚𝑦
∆𝑡

(∆𝑦)2 , then equation (5) 

becomes 

 

(6) 
𝐶

𝑖,𝑗

 𝑛+
1
2 − 𝐶𝑖,𝑗

 𝑛 = −𝑞𝑥 (𝐶
𝑖+1,𝑗

 𝑛+
1
2 − 𝐶

𝑖−1,𝑗

 𝑛+
1
2) − 𝑞𝑦(𝐶𝑖,𝑗+1

 𝑛 − 𝐶𝑖,𝑗−1
 𝑛 )

+ 𝜆𝑥 (𝐶
𝑖+1,𝑗

 𝑛+
1
2 − 2𝐶

𝑖,𝑗

 𝑛+
1
2 + 𝐶

𝑖−1,𝑗

 𝑛+
1
2) + 𝜆𝑦(𝐶𝑖,𝑗+1

 𝑛 − 2𝐶𝑖,𝑗
 𝑛 + 𝐶𝑖,𝑗−1

 𝑛 ) 

The discretization results in the first step are as follows 

(7) 
(1 + 2𝜆𝑥)𝐶

𝑖,𝑗

 𝑛+
1
2 + (𝑞𝑥 − 𝜆𝑥)𝐶

𝑖+1,𝑗

 𝑛+
1
2 + (−𝑞𝑥 − 𝜆𝑥)𝐶

𝑖−1,𝑗

 𝑛+
1
2

= (1 − 2𝜆𝑦)𝐶𝑖,𝑗
 𝑛 + (−𝑞𝑦 + 𝜆𝑦)𝐶𝑖,𝑗+1

 𝑛 + (𝑞𝑦 + 𝜆𝑦)𝐶𝑖,𝑗−1
 𝑛  

Furthermore, the second step discretization of the ADI method aims to obtain values from 𝑡 +
∆𝑡

2
 

to 𝑡 + 1   by discretizing the derivative of 𝐶  with respect to 𝑦  through an implicit central 

difference approach, while the derivative of 𝐶  with respect to 𝑥  through an explicit central 

difference approach.  

The second step approach in equation (3) is as follows 

 

(8) 
𝐶𝑖,𝑗

 𝑛+1 − 𝐶
𝑖,𝑗

 𝑛+
1
2

∆𝑡
2

= −𝑢 (
𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 𝐶

𝑖−1,𝑗

 𝑛+
1
2

2∆𝑥
) − 𝑣 (

𝐶𝑖,𝑗+1
 𝑛+1 − 𝐶𝑖,𝑗−1

 𝑛+1

2∆𝑥
)

+ 𝐷𝑚𝑥 (
𝐶

𝑖+1,𝑗

 𝑛+
1
2 − 2𝐶

𝑖,𝑗

 𝑛+
1
2 + 𝐶

𝑖−1,𝑗

 𝑛+
1
2

(∆𝑥)2
) + 𝐷𝑚𝑦 (

𝐶𝑖,𝑗+1
 𝑛+1 − 2𝐶𝑖,𝑗

 𝑛+1 + 𝐶𝑖,𝑗−1
 𝑛+1

(∆𝑦)2
) 

With similar steps, the second discretization for equation (8) is obtained as follows 

(9) 
(1 + 2𝜆𝑦)𝐶𝑖,𝑗

 𝑛+1 + (𝑞𝑦 − 𝜆𝑦)𝐶𝑖,𝑗+1
 𝑛+1 + (−𝑞𝑦 − 𝜆𝑦)𝐶𝑖,𝑗−1

 𝑛+1

= (1 − 2𝜆𝑥)𝐶
𝑖,𝑗

 𝑛+
1
2 + (−𝑞𝑥 + 𝜆𝑥)𝐶

𝑖+1,𝑗

 𝑛+
1
2 + (𝑞𝑥 + 𝜆𝑥)𝐶

𝑖−1,𝑗

 𝑛+
1
2  

4. STABILITY ANALYSIS WITH VON NEUMANN 

The focus of this study is to demonstrate the stability of the CN-ADI method in solving the two-
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dimensional diffusion advection equation. The stability of a numerical method can be tested using 

the Von Neumann technique. An equation will be said to be stable if the value of 𝛼 ≤ 1 , by 

replacing 𝐶𝑖,𝑗
𝑛 = 𝛼𝑛𝑒𝑖𝛽∆𝑖𝑗 in equation (7) obtained 

 

(10) (1 + 2𝜆𝑥)𝛼𝑛+
1
2𝑒𝑖𝛽1𝑖𝑗  + (𝑞𝑥 − 𝜆𝑥)𝛼𝑛+

1
2𝑒𝑖𝛽1(𝑖+1)𝑗 + (−𝑞𝑥 − 𝜆𝑥)𝛼𝑛+

1
2𝑒𝑖𝛽1(𝑖−1)𝑗

= (1 − 2𝜆𝑦)𝛼𝑛𝑒𝑖𝛽1𝑖𝑗 + (−𝑞𝑦 + 𝜆𝑦)𝛼𝑛𝑒𝑖𝛽1𝑖(𝑗+1)

+ (𝑞𝑦 + 𝜆𝑦)𝛼𝑛𝑒𝑖𝛽1𝑖(𝑗−1) 

To obtain the value of 𝛼, the second equation segment is multiplied by 
1

𝛼𝑛𝑒𝑖𝛽1𝑖𝑗, so that we get 

(11) 
(1 + 2𝜆𝑥)𝛼

1
2  + (𝑞𝑥 − 𝜆𝑥)𝛼

1
2𝑒𝑖𝛽1𝑗 + (−𝑞𝑥 − 𝜆𝑥)𝛼

1
2𝑒−𝑖𝛽1𝑗

= (1 − 2𝜆𝑦) + (−𝑞𝑦 + 𝜆𝑦)𝑒𝑖𝛽1𝑖 + (𝑞𝑦 + 𝜆𝑦)𝑒−𝑖𝛽1𝑖  

 

(12) 𝑞𝑥𝛼
1
2(𝑒𝑖𝛽1𝑗 − 𝑒−𝑖𝛽1𝑗) − 𝜆𝑥𝛼

1
2(𝑒𝑖𝛽1𝑗 + 𝑒−𝑖𝛽1𝑗) + (1 + 2𝜆𝑥)𝛼

1
2

= (1 − 2𝜆𝑦) − 𝑞𝑦(𝑒𝑖𝛽1𝑖 − 𝑒−𝑖𝛽1𝑖) + 𝜆𝑦(𝑒𝑖𝛽1𝑖 + 𝑒−𝑖𝛽1𝑖) 

Equation (12) contains the following Euler formula: 

𝑒𝑖𝛽𝑥 = cos(𝛽𝑥) + sin(𝛽𝑥) 

𝑒−𝑖𝛽𝑥 = cos(𝛽𝑥) − sin(𝛽𝑥) 

To simplify equation (12), we substitute Euler's formula into equation (12), thus obtaining 

(13) 
𝑞𝑥𝛼

1
2(2𝑖 𝑠𝑖𝑛(𝛽1𝑗)) − 𝜆𝑥𝛼

1
2(2 cos(𝛽1𝑗)) + (1 + 2𝜆𝑥)𝛼

1
2

= (1 − 2𝜆𝑦) − 𝑞𝑦(2𝑖 sin(𝛽1𝑖)) + 𝜆𝑦(2 cos(𝛽1𝑖)) 

Equation (13) contains trigonometry and it is known that cos(𝛼) = (1 − 2𝑠𝑖𝑛2 (
𝛼

2
)). By 

substituting the trigonometric function in equation (13), we get 

(14) 
𝑞𝑥𝛼

1
2(2𝑖 𝑠𝑖𝑛(𝛽1𝑗)) − 𝜆𝑥𝛼

1
2(2 cos(𝛽1𝑗)) + (1 + 2𝜆𝑥)𝛼

1
2

= (1 − 2𝜆𝑦) − 𝑞𝑦(2𝑖 sin(𝛽1𝑖)) + 𝜆𝑦(2 cos(𝛽1𝑖)) 

 

(15) 𝛼1 = (
1 − 4𝜆𝑦𝑠𝑖𝑛2 (

𝛽1𝑖
2

) − 2𝑞𝑦𝑖 sin(𝛽1𝑖)

1 + 4𝜆𝑥𝑠𝑖𝑛2 (
𝛽1𝑗
2

) + 2𝑞𝑥𝑖 𝑠𝑖𝑛(𝛽1𝑗)
)

2
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The same steps are taken to obtain the value of 𝛼 in the second discretization, by replacing 𝐶𝑖,𝑗
𝑛 =

𝛼𝑛𝑒𝑖𝛽∆𝑖𝑗 in equation (9), we obtain 

(16) 

(1 + 2𝜆𝑦)𝐶𝑖,𝑗
 𝑛+1 + (𝑞𝑦 − 𝜆𝑦)𝐶𝑖,𝑗+1

 𝑛+1 + (−𝑞𝑦 − 𝜆𝑦)𝐶𝑖,𝑗−1
 𝑛+1

= (1 − 2𝜆𝑥)𝐶
𝑖,𝑗

 𝑛+
1
2 + (−𝑞𝑥 + 𝜆𝑥)𝐶

𝑖+1,𝑗

 𝑛+
1
2 + (𝑞𝑥 + 𝜆𝑥)𝐶

𝑖−1,𝑗

 𝑛+
1
2  

 

 

(17) 
(1 + 2𝜆𝑦)𝛼𝑛+1𝑒𝑖𝛽2𝑖𝑗 + (𝑞𝑦 − 𝜆𝑦)𝛼𝑛+1𝑒𝑖𝛽2𝑖(𝑗+1) + (−𝑞𝑦 − 𝜆𝑦)𝛼𝑛+1𝑒𝑖𝛽2𝑖(𝑗−1)

= (1 − 2𝜆𝑥)𝛼𝑛+
1
2𝑒𝑖𝛽2𝑖𝑗 + (−𝑞𝑥 + 𝜆𝑥)𝛼𝑛+

1
2𝑒𝑖𝛽2(𝑖+1)𝑗

+ (𝑞𝑥 + 𝜆𝑥)𝛼𝑛+
1
2𝑒𝑖𝛽2(𝑖−1)𝑗 

In the same way, equation  

(17) is multiplied by 
1

𝛼
𝑛+

1
2𝑒𝑖𝛽1𝑖𝑗

 to obtain the value of 𝛼 

 

(18) 𝑞𝑦𝛼
1
2(𝑒𝑖𝛽2𝑖 − 𝑒−𝑖𝛽2𝑖) − 𝜆𝑦𝛼

1
2(𝑒𝑖𝛽2𝑖 + 𝑒−𝑖𝛽2𝑖) + (1 + 2𝜆𝑦)𝛼

1
2

= (1 − 2𝜆𝑥) − 𝑞𝑥(𝑒𝑖𝛽2𝑗 − 𝑒−𝑖𝛽2𝑗) + 𝜆𝑥(𝑒𝑖𝛽2𝑗 + 𝑒−𝑖𝛽2𝑗) 

Substitute the euler value into equation  

(18), we get 

(19) 𝑞𝑦𝛼
1
2(2𝑖 sin(𝛽2𝑖)) − 𝜆𝑦𝛼

1
2(2 cos(𝛽2𝑖)) + (1 + 2𝜆𝑦)𝛼

1
2

= (1 − 2𝜆𝑥) − 𝑞𝑥(2𝑖 sin(𝛽2𝑗)) + 𝜆𝑥(2 cos(𝛽2𝑗)) 

Since cos(𝛼) = (1 − 2𝑠𝑖𝑛2 (
𝛼

2
)), we obtain 𝛼 is 

(20) α2 = (
1 − 2qxi sin(β2j) − 4λxsin2 (

β2j
2

)

2qyi sin(β2i) + 4λysin2 (
β2i
2

) + 1
)

2

 

 

Based on equation  

(15) and equation (20), it can be seen that α is never negative and α ≤ 1, so it can be concluded 

that the ADI scheme for the two-dimensional advection-diffusion equation is always 

unconditionally stable. 
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5. CONCLUSIONS 

A particle distribution process can be represented by a mathematical formula with a advection- 

diffusion model. The advection- diffusion model can be solved by the Crank Nicolson-Alternating 

Direction Implicit method with respect to the x-axis and y-axis. The Crank Nicolson-Alternating 

Direction Implicit method is a numerical method that needs to be sought for stability. to prove the 

stability of the method we use the Von Neumann method. The results show that the two-

dimensional advection-diffusion model with the Crank Nicolson-Alternating Direction Implicit 

method is unconditionally stable 
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