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Abstract. Tuberculosis poses a major public health challenge due to its widespread prevalence and severe health

impact, necessitating the development of effective therapeutic agents. This study analyzes the structural and

physicochemical characteristics of 13 anti-tuberculosis drugs, including Isoniazid, Levofloxacin, and Bedaquiline,

using distance-based topological descriptors, particularly the Mostar index. A computational approach involving

the Mostar index and Quantitative Structure-Property Relationship (QSPR) analysis was employed to predict crit-

ical drug properties like melting point and molar mass. The findings revealed strong correlations (melting point

R > 0.990, molar mass R > 0.970), demonstrating the predictive potential of the Edge Mostar index. These results
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offer valuable insights into the structural properties of anti-tuberculosis drugs, supporting the development of novel

agents by leveraging the Mostar index for improved drug design.

Keywords: mycobacterium; tuberculosis drugs; structural descriptors; QSPR analysis; regression models; corre-

lation coefficients.
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1. INTRODUCTION

Tuberculosis (TB) is a contagious bacterial infection caused by Mycobacterium tuberculosis,

primarily affecting the lungs, but it can also spread to other organs through the bloodstream. It

is one of the top 10 causes of death worldwide, especially in low- and middle-income countries.

TB spreads through airborne droplets when an infected person coughs, sneezes, or talks. Symp-

toms include a persistent cough, chest pain, fever, night sweats, and weight loss. The disease

is particularly dangerous for immunocompromised individuals, such as those with HIV/AIDS.

Treatment involves a combination of antibiotics over a long duration, typically six months, but

drug-resistant strains pose significant challenges to TB control. Efforts such as early detection,

vaccination (BCG), and improved public health strategies are crucial in curbing its spread. Ac-

cording to the World Health Organization, TB claimed 1.5 million lives in 2020, making it a

persistent global health threat [1, 2].

The management of tuberculosis (TB) entails a regimen of multiple drugs, each serving a

distinct function in suppressing the proliferation of Mycobacterium tuberculosis, the bacterium

that causes TB. Isoniazid (S1) is a highly effective first-line medication that inhibits bacterial

cell wall formation. Pyrazinamide (S2) and Ethionamide (S3) are essential in early treatment

by impairing bacterial metabolism, particularly during the latent phase of tuberculosis [3, 4, 5].

Fluoroquinolones such as Levofloxacin (S4) and Ofloxacin (S6) impede bacterial DNA replica-

tion, whereas Amikacin (S5) and Kanamycin (S12), classified as aminoglycosides, function by

obstructing protein synthesis in bacteria. These medications are crucial for cases of multidrug-

resistant tuberculosis, in which the germs exhibit resistance to standard therapies [6, 7, 8, 19].

Additional second-line medications are essential for managing more intricate or drug-

resistant tuberculosis cases. Cycloserine (S7) disrupts cell wall production, whereas 4-

aminosalicylic acid (S8) functions as a bacteriostatic agent, impeding bacterial proliferation.
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Ethambutol (S9) impedes cell wall synthesis and is frequently employed in combination ther-

apy to avert resistance. Ciprofloxacin (S10), a fluoroquinolone, inhibits bacterial DNA gyrase,

resulting in bacterial mortality [9, 10, 11]. Bedaquiline (S11) is a novel pharmaceutical agent

designed for drug-resistant tuberculosis, functioning by obstructing ATP generation in the bac-

terium. Streptomycin (S13), an antiquated antibiotic, is predominantly utilized against more

resistant types of tuberculosis, functioning by obstructing bacterial protein synthesis. The ap-

propriate utilization of this drug combination is essential for the successful treatment of tuber-

culosis, especially in complex or resistant cases [12, 13, 14].

Topological indices are numerical values derived from the structural properties of molec-

ular graphs and have found extensive applications in chemistry and materials science. They

serve as essential tools in Quantitative Structure-Property Relationship (QSPR) and Quanti-

tative Structure-Activity Relationship (QSAR) studies, enabling researchers to predict a wide

range of physicochemical, biological, and pharmacological properties of chemical compounds

without the need for exhaustive experimental testing. For instance, valency-based and spectrum-

based descriptors have proven effective in predicting physical and pharmacological properties of

polycyclic compounds, aiding in drug discovery and development [15, 16]. Moreover, topolog-

ical indices such as distance-based entropy measures have been utilized to explore the structural

characteristics of dendrimers, enhancing the understanding of their chemical behavior [17]. Ad-

ditionally, newly introduced topological invariants have demonstrated significant correlations

with the properties of polycyclic compounds, further broadening their applicability in chemical

and mathematical studies [18].

Streptomycin, a well-known antibiotic used to combat bacterial infections, serves as an ex-

cellent candidate for topological analysis. By examining the molecular graph of Streptomycin

through the lens of the Mostar and edge Mostar indices, we aim to uncover how the drug’s

structure correlates with its function. The Mostar index is determined by comparing the num-

ber of vertices closer to each endpoint of an edge, highlighting the local asymmetry within the

graph. The edge Mostar index extends this concept, focusing specifically on the edge-based

asymmetry.
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During the year 1947, Harold Wiener made the initial suggestion for topological indices,

which was subsequently mentioned in Wiener’s work [20]. Over the course of the succeeding

time period, he proceeded to publish a series of articles that shed light on the relationship

between the wiener index and the physicochemical properties of carbon-based compounds [21].

According to the reference [22], this decade of the 20th century saw the computation of a

considerable number of topological indices that are connected to the Wiener index. These

indices were computed during the final decade of the century. Researchers have been estimating

irregularity topological indices for a variety of chemical structures [23] from the beginning of

the 21st century and continuing to do so during the second decade of the century. A number of

new banhatti indices were introduced in the year 2016 by V. R. Kulli [24]. These new banhatti

indices included modified Banhatti indices, super K Banhatti indices, and K Banhatti indices.

A lot of people in the area of chemical graph theory have been interested in studying degree-

based, irregular, and distance-based topological indices in the last ten years. These indices

have recently attracted a lot of attention from researchers looking to better understand molec-

ular structures. As an example, A. Fahad and M. I. Qureshi [25, 26] examined polynomials of

Poly(EThyleneAmidoAmine) (PETAA) dendrimers and eccentricity-based topological indices

in 2019. Their research brought attention to novel methods for describing molecular graphs. In

November 2020, A. Fahad further investigated the topological characteristics of PETIM den-

drimers, contributing important information to this expanding area of study. In the same year,

M. I. Qureshi shifted his attention to the Zagreb connection index, particularly as it pertained

to chemical structures associated with drugs. Adding to our understanding of the behavior of

these structures, Yu-Ming Chu continued to investigate topological indices in 2021 by comput-

ing irregular indices for specific metal-organic frameworks [27, 28].

Also, bond-additive topological descriptors are being used more and more to describe the

features of chemical graphs and the parts that make them up. The Wiener index is a new bond-

additive index that gives each bond an input based on the number of atoms on both sides. This

gives a clear measure of how connected molecules are. Since this start, many better descriptors

have been created, such as the Szeged, revised-Szeged, PI, irregularity, and Zagreb indices [29].

The Mostar index is a new bond-additive topological measure that was just released by Došlic
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and his colleagues [30]. This index gives information about how peripheral certain bonds are,

and then adds up their effects to make a full measure of peripherality in the chemical structure.

Understanding the peripherality of bonds is important in chemistry because it has a big effect on

predicting the physicochemical features of molecules, which in turn changes how they behave

in different situations. Tratnik significantly advanced [32] by demonstrating that the Mostar

index of a weighted graph may be determined by comparing it to the quotient graphs. This

discovery simplified index calculation for complex-weighted structures. According to [33],

Arockiaraj and his team accurately calculated the Mostar index for molecular shapes like carbon

nanocones and coronoid structures. The exact numbers revealed new aspects of these unusual

molecular configurations. Arockiaraj et al. extended on their work in [34] by determining

weighted Mostar indices for molecular peripheral forms. These indices can be employed in

graphene, graphyne, and graphdiyne nanoribbons. Došlic et al. calculated the edge Mostar

index for benzenoid systems using the techniques outlined in [30]. They also found exceptional

Mostar index values for trees and unicyclic networks. This improved their understanding of

this index for more molecule forms. Later, [31] introduced formulas for bicyclic graph Mostar

index. These extended graph analysis to more complex structures. In [35], Hayat and Zhou

made a big addition by finding the extreme edge Mostar index values for cacti and structures

that look like trees. They showed how mentioned index can be used to look at different types of

molecular graphs and how extremal behavior works in both simple and complex structures.

Although the above literature review discusses extensive work related to the Moster and Edge

Moster index, this research primarily focuses on its mathematical aspects. Mathematicians have

extensively studied the mathematical properties of the Edge Moster index, exploring its theo-

retical foundations and implications within pure mathematics. However, our work is the first

to investigate the chemical applicability of the Edge Moster index. We achieved this by per-

forming a detailed sensitivity analysis to evaluate its behavior and subsequently conducting a

QSPR (Quantitative Structure-Property Relationship) analysis to explore its relevance in chem-

ical studies. The Mostar index of a graph G is defined as

Mo(G) = ∑
uvεE(G)

|nu−nv|(1)
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where nu and nv are the number of vertices of G closer to u than v and the number of vertices of

G closer to v than u respectively. The edge version of mostar index is defined as

Moe(G) = ∑
e=uvεE(G)

|mu−mv|(2)

where mu and mv are the number of edges of G closer to u than v and the number of edges of G

closer to v than u respectively.

In this paper, we derive explicit formulas for both indices as applied to Streptomycin and

discuss their implications in terms of molecular structure and drug activity, but before this, we

analyzed the implacability of these descriptors by applying Smoothness, Abruptness and QSPR

regression analysis. This analysis contributes to the broader application of topological indices

in pharmaceutical chemistry, providing insights that may assist in the development of more

effective drugs. In our work, Matlab is utilized for mathematical calculations and verifications

whereas Maple is used for graphically analyzing and plotting these results and ChemSketch is

used to draw the molecular graphs.

2. STRUCTURE-SENSITIVITY ANALYSIS

Several parameters were introduced to reduce randomness in constructing a new topolog-

ical index. One key parameter is smoothness, which ensures a molecular descriptor’s value

changes uniformly with gradual structural changes [36, 37, 38]. However, assessing smooth-

ness is challenging and often overlooked by researchers. This section explores the smoothness

of some novel degree-based topological indices and compares them with existing results. Two

graph structural measures, denoted as structural sensitivity (Ψs) and abruptness (∆a), were pro-

posed to evaluate smoothness. The structural sensitivity of eigenvalue-based indices and the

smoothness of graph energy in chemical graphs have been studied. An existing algorithm for

calculating Ψs and ∆a is also outlined.

(1) Initialize Variables:

• Matrices for trees, GED, topological indices, and results are initialized.

• Tree set Ω and GED for all trees are computed using a Python package.

(2) Calculate TIs for Each Tree:

• Loop through each tree Ti in the dataset.
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• Compute structure sensitivity Ψs(Ti,TIs) and abruptness ∆a(Ti,TIs) for each TI.

• Store all Ψs and ∆a values for each tree.

(3) Final Calculation for the Dataset:

• Compute the average Ψs and ∆a for all trees in Ω.

• Output the results for all trees in the dataset.

The structure sensitivity and abruptness of a topological index T for a graph G can be as-

sessed through the following mathematical formulas:

To measure the structure sensitivity:

Ψs(T ,G ) =
1

|S (G )| ∑
H ∈S (G )

∣∣∣∣T (H )−T (G )

T (G )

∣∣∣∣
And to capture the abruptness:

∆a(T ,G ) = max
H ∈S (G )

∣∣∣∣T (H )−T (G )

T (G )

∣∣∣∣
In these equations, |S (G )| denotes the total number of graphs within the set S (G ). By

calculating the average values of Ψs (structure sensitivity) and ∆a (abruptness) for a topological

index T across all graphs in a given class Ω, we obtain the overall structure sensitivity and

abruptness of T for that class of connected graphs. Specifically,

Ψs(T ) =
1
|Ω| ∑

G∈Ω

Ψs(T ,G )

and

∆a(T ) =
1
|Ω| ∑

G∈Ω

∆a(T ,G )

where |Ω| is the total number of graphs in the set Ω. Numerous topological indices are men-

tioned in Table 1. Utilizing these (TIs) and definitions of sensitivity and abruptness, we gener-

ated the Table 2 for better understanding of applicability of Edge Moster index. We used the

following algorithm to generate the mentioned tables.
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Algorithm 1 A MATLAB-based algorithm to compute structure sensitivity (SS) and abruptness

(Abr) for topological indices (TIs) of a tree data set.
Require: Ω = {Set of all trees with a given number of vertices}

1: A← Zeros(|Ω|,23)

2: B← Zeros(|Ω|,23)

3: C← Zeros(1,23)

4: D← Zeros(1,23)

5: for i = 1 to |Ω| do . For each tree Ti in Ω

6: S←{Trees with GED = 2 from Ti} . GED computed using Python’s networkx package

7: E← [23 TIs for tree Ti]1×23 . Step 1: Compute TIs for Ti

8: F ← [23 TIs for trees in set S]23×|S| . Step 2: Compute TIs for all trees in S

9: G← Zeros(23, |S|)

10: H← Zeros(1,23)

11: I← Zeros(1,23)

12: for j = 1 to 23 do

13: p← 0

14: for k = 1 to |S| do

15: q←
∣∣∣ F( j,k)−E( j)

E( j)

∣∣∣
16: G( j,k)← q

17: p← p+q

18: end for

19: SS(Ti,TIs)← p
|S| . Step 3: Calculate structure sensitivity

20: Abr(Ti,TIs)←max(G( j, :)) . Step 3: Calculate abruptness

21: H( j)← SS(Ti,TIs) . Store SS values for tree Ti

22: I( j)← Abr(Ti,TIs) . Store Abr values for tree Ti

23: end for

24: A(i, :)← H(1, :)

25: B(i, :)← I(1, :)

26: end for

27: Display: A, B

28: for l = 1 to 23 do

29: r← 0, t← 0

30: for m = 1 to |Ω| do

31: r← A(l,m)+ r

32: t← B(l,m)+ t

33: end for

34: SS(Ω,TIs)← r
|Ω|

35: Abr(Ω,TIs)← t
|Ω|

36: C(l)← SS(Ω,TIs)

37: D(l)← Abr(Ω,TIs)

38: end for

39: Display: C, D . Step 4: Output the average SS and Abr values for all TIs in Ω
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Invariant Symbol Formula

First Zagreb Index M1(G) ∑v∈V (G) dG(v)2 = ∑uv∈E(G)(dG(u)+dG(v))

Second Zagreb Index M2(G) ∑uv∈E(G) dG(u)dG(v)

Modified Second Zagreb mM2(G) ∑uv∈E(G)
1

dG(u)dG(v)

Forgotten Index F(G) ∑v∈V (G) dG(v)3 = ∑uv∈E(G)(dG(u)2 +dG(v)2)

Randic Index R−1/2(G) ∑uv∈E(G)
1√

dG(u)dG(v)

Reciprocal Randic Index RR−1/2(G) ∑uv∈E(G)

√
dG(u)dG(v)

Sum Connectivity Index SCI(G) ∑uv∈E(G)
1√

dG(u)+dG(v)

Symmetric Division Deg SDD(G) ∑uv∈E(G)

(
dG(u)
dG(v) +

dG(v)
dG(u)

)
Harmonic Index H(G) ∑uv∈E(G)

2
dG(u)+dG(v)

Inverse Sum Index ISI(G) ∑uv∈E(G)
dG(u)dG(v)

dG(u)+dG(v)

Atom-Bond Connectivity ABC(G) ∑uv∈E(G)

√
dG(u)+dG(v)−2
dG(u)dG(v)

Augmented Zagreb Index AZI(G) ∑uv∈E(G)

(
dG(u)dG(v)

dG(u)+dG(v)−2

)3

First Hyper-Zagreb Index HM1(G) ∑uv∈E(G)(dG(u)+dG(v))2

Second Hyper-Zagreb Index HM2(G) ∑uv∈E(G)(dG(u)dG(v))2

Geometric-Arithmetic Index GA(G) ∑uv∈E(G)
2
√

dG(u)dG(v)
dG(u)+dG(v)

Arithmetic-Geometric Index AG(G) ∑uv∈E(G)
dG(u)+dG(v)

2
√

dG(u)dG(v)

Sombor Index SO(G) ∑uv∈E(G)

√
dG(u)2 +dG(v)2

Modified Sombor Index mSO(G) ∑uv∈E(G)
1√

dG(u)2+dG(v)2

Nirmala Index N(G) ∑uv∈E(G)

√
dG(u)+dG(v)

First Inverse Nirmala Index IN1(G) ∑uv∈E(G)

√
1

dG(u) +
1

dG(v)

Second Inverse Nirmala Index IN2(G) ∑uv∈E(G)
1√

1
dG(u)+

1
dG(v)

Geometric-Quadratic Index GQ(G) ∑uv∈E(G)

√
2dG(u)dG(v)√

dG(u)2+dG(v)2

Quadratic-Geometric Index QG(G) ∑uv∈E(G)

√
dG(u)2+dG(v)2√

2dG(u)dG(v)

Table 1. Topological indices with their symbols and formulas
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Descriptors Parameters n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

SO
Sensitivity 0.2691 0.2398 0.1864 0.1595 0.1263 0.1101 0.0939

Abruptness 0.2667 0.2762 0.2781 0.2901 0.2394 0.2228 0.2091

RR−1/2

Sensitivity 0.0754 0.0813 0.0707 0.0631 0.0587 0.0501 0.0447

Abruptness 0.0722 0.0854 0.1011 0.7198 0.1372 0.1087 0.1078

G Q
Sensitivity 0.1857 0.1676 0.1243 0.0978 0.0767 0.0632 0.0531

Abruptness 0.1851 0.1805 0.1721 0.1456 0.1309 0.1177 0.1056

HM1
Sensitivity 0.3562 0.3509 0.2809 0.2391 0.2041 0.1809 0.1596

Abruptness 0.3534 0.3956 0.4333 0.4194 0.4029 0.3922 0.3799

A G
Sensitivity 0.1061 0.0982 0.0745 0.0613 0.0496 0.0426 0.0355

Abruptness 0.1068 0.1103 0.1099 0.0984 0.0892 0.0829 0.0749

m SO
Sensitivity 0.2795 0.2652 0.2039 0.0103 0.1289 0.1062 0.0882

Abruptness 0.2814 0.2826 0.2794 0.2427 0.2225 0.1999 0.1797

IN2
Sensitivity 0.0142 0.0121 0.0105 0.0221 0.0107 0.0093 0.0089

Abruptness 0.0140 0.0144 0.0155 0.0967 0.0193 0.0207 0.0228

ISI
Sensitivity 0.0381 0.0320 0.0302 0.0286 0.0274 0.0257 0.0248

Abruptness 0.0373 0.0385 0.0427 0.0482 0.0549 0.0584 0.0619

F
Sensitivity 0.5388 0.4899 0.3691 0.3077 0.2565 0.2243 0.1937

Abruptness 0.5376 0.5669 0.5959 0.5572 0.5188 0.4912 0.4706

SDD
Sensitivity 0.3685 0.3191 0.2395 0.1957 0.1578 0.1343 0.1157

Abruptness 0.3663 0.3688 0.3693 0.3302 0.3029 0.2809 0.2607

IN1
Sensitivity 0.0051 0.0042 0.0037 0.0035 0.0033 0.0029 0.0028

Abruptness 0.0045 0.0043 0.0047 0.0053 0.0057 0.0061 0.0164

mM2
Sensitivity 0.2283 0.2137 0.1645 0.1301 0.1027 0.0839 0.0692

Abruptness 0.2281 0.2342 0.2267 0.1998 0.1769 0.1601 0.1444

N
Sensitivity 0.0954 0.0923 0.0715 0.0595 0.0493 0.0426 0.0367

Abruptness 0.0957 0.1014 0.1049 0.0974 0.0902 0.0845 0.0794

QG
Sensitivity 0.1824 0.1613 0.1199 0.0967 0.0779 0.0663 0.0556

Abruptness 0.1823 0.1808 0.1774 0.1576 0.1425 0.1307 0.1198

MoeG
Sensitivity 0.1217 0.2548 0.3182 0.3217 0.3209 0.3032 0.2883

Abruptness 0.0049 0.0045 0.0049 0.0055 0.0059 0.0064 0.0069

Table 2. Topological indices with their sensitivity and abruptness
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For evaluating the quality of a topological index, it is crucial that the structural sensitivity (Ψs)

is maximized, while the abruptness (∆a) is minimized. More details on these two measures are

explored in [37, 38], where computational testing of the smoothness of several distance- and

degree-based indices was examined using data sets of trees with varying vertex counts. Table

2 leads to the following observations: the neighborhood face index, forgotten index, and first

hyper-Zagreb index exhibit the highest, second-highest, and third-highest Ψs values, respec-

tively. From Tables 2, we see for trees with n = 10 vertices that Ψs (MoeG) = 0.288, Ψs(F) =

0.192, and Ψs (H M 1) = 0.157, followed by Ψs (A Z I ) = 0.118, Ψs (S DD) = 0.112,

Ψs (M2) = 0.103, Ψs(S O) = 0.093, Ψs (
mS O) = 0.086, Ψs (M1) = 0.073, Ψs (

mM2) =

0.067, and Ψs(H) = 0.067, among others. These invariants maintain the following relation-

ship:

Ψs (MeG)> Ψs(F)> Ψs (H M 1)> Ψs(A Z I )> Ψs(S DD)> Ψs (M2)> Ψs(G Q)

> Ψs(S O)> Ψs (
mS O)> Ψs (M1)> Ψs (

mM2)> Ψs(H)> Ψs(QG )

> Ψs
(
RR−1/2

)
> Ψs(N)> Ψs(S C I )> Ψs

(
R−1/2

)
≈Ψs(A G )> Ψs(G A )

> Ψs(A BC )> Ψs(I S I )> Ψs (I N 2)> Ψs (I N 1)

On the other hand, the topological indices with the lowest abruptness (∆a) are the (MoeG) and

the first and second inverse Nirmala indices. For n = 10, Table 2 show that ∆a (MoeG) = 0.005,

∆a (I N 2) = 0.021, followed by ∆a(A BC ) = 0.057, ∆a(I S I ) = 0.0604, ∆a(G A ) =

0.0671, ∆a
(
R−1/2

)
= 0.071, and ∆a(S C I ) = 0.0714, among others. The following inequal-

ity relation holds for the degree-based indices:

∆a (MoeG)< ∆a (I N 1)< ∆a (I N 2)< ∆a(A BC )< ∆a(I S I )< ∆a(G A )< ∆a
(
R−1/2

)
< ∆a(S C I )< ∆a(A G )< ∆a(N)< ∆a

(
RR−1/2

)
< ∆a(G Q)< ∆a(QG )

< ∆a(H)< ∆a (
mM2)< ∆a (M1)< ∆a (

mS O)< ∆a(A Z I )

< ∆a(S DD)< ∆a (M2)< ∆a (H M 1)< ∆a(F)< ∆a (H M 2)

Above sensitivity analysis depicts to assess how stable Moster and edge version of Mostar index

are when small changes, such as adding or removing edges or nodes, occur in the graph.



12 ABID, ALI, QURESHI, SULTANA, SAYED-AHMED

3. REGRESSION ANALYSIS

We collected data on 13 tuberculosis (TB) drugs and their six physicochemical properties

from reputable online sources like PubChem and ChemSpider. Subsequently, we calculated

the numerical results of ten degree-based reducible indices to analyze the molecular structure

of these drugs using three techniques: edge partition, vertex degree, and counting degree. We

employed Quantitative Structure-Activity Relationship (QSAR) analysis to establish a strong

positive correlation between the indices and properties, utilizing linear, quadratic, and loga-

rithmic regression equations for this purpose. The correlation coefficient (r) was one of the

statistical parameters employed to assess the reliability and significance of the relationship be-

tween the physical properties and calculated numerical values of the TB drugs. Finally, we

created line graphs to visually compare the correlation coefficients, facilitating a comprehen-

sive discussion of the relationships between the properties and indices. The physicochemical

parameters of the specified pharmaceuticals are outlined in Table 3, which provides exact values

for the molar index, whereas experimental values for molar mass, XLOGP3, complexity, LOGP,

melting temperature, and collision cross section were gathered from the PubChem website. We

evaluated the regression models for mentioned descriptor utilizing the data supplied in Table 3

and investigated its chemical applicability.
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(a) S1: Isoniazid (b) S2: Pyrazinamide (c) S3: Ethionamide

(d) S4: Levofloxacin (e) S5: Amikacin (f) S6: Ofloxacin

(g) S7: Cycloserine (h) S8: Aminocylic acid (i) S9: Ethambutol

(j) S10: Ciprofloxacin (k) S11: Bedaquiline (l) S12: Kanamycin

(m) S13: Streptomycin

Figure 1. Comparison of anti-tuberculosis drugs categorized by their respective subfig-

ures (S1–S13), showcasing a visual representation of each drug for analysis and refer-

ence
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Medicine Name MoeG MM XLOGP3 C LOGP MP CCS

Isoniazid 48 137.14 -0.7 120 -0.7 340.5 125.6

Pyrazinamide 35 123.11 -0.6 115 -0.6 376 122.8

Ethionamide 57 166.25 1.1 147 0.5 327 135.8

Levofloxacin 394 361.4 -0.4 634 0.32 225 188.5

Amikacin 1107 585.6 -7.9 819 -8.78 240 235.1

Ofloxacin 394 361.4 -0.4 634 -0.39 254 188.5

Cycloserine 20 102.09 -1.5 929 0 155.5 97

4-aminosalicylic acid 55 153.14 1.3 160 0.89 150.5 138

Ethambutol 100 204.31 -0.1 109 0.4 171.5 170

Ciprofloxacin 346 331.34 -1.1 571 0.28 255 185.3

Bedaquiline 1123 555.5 7.2 715 7.74 118 205

Kanamycin 657 484.5 -6.9 638 -6.3 57 206.6

Streptomycin 1154 581.6 -8 940 -2.53 230 231

Table 3. Mostar index and physical properties for each medicine.

3.1. Step 1: Compute Correlation Coefficient R. The formula for the correlation coefficient

R is:

R =
n∑xy−∑x∑y√

[n∑x2− (∑x)2] [n∑y2− (∑y)2]
(3)

Where:

• x represents the independent variable (e.g., MM)

• y represents the dependent variable Mo(G)

• n is the number of data points.

3.2. Step 2: Compute the Regression Coefficients. The linear regression equation is of the

form:

Mo(G) = β0 +β1×MM(4)

Where:

• β0 is the intercept.

• β1 is the slope, computed as:

β1 =
n∑xy−∑x∑y
n∑x2− (∑x)2(5)
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And the intercept β0 is:

β0 =
∑y−β1 ∑x

n
(6)

3.3. Step 3: Compute R2. Once you have β0 and β1, compute R2, the coefficient of determi-

nation, as follows:

R2 = 1− ∑(yi− ŷi)
2

∑(yi− ȳ)2(7)

Where:

• ŷi is the predicted value from the regression model.

• yi is the observed value.

• ȳ is the mean of the dependent variable.

3.4. Step 4: Compute Standard Error of Estimation (SEE). The formula for SEE is:

SEE =

√
∑(yi− ŷi)2

n−2
(8)

3.5. Step 5: Compute Fisher Ratio F . The F-value is computed as:

F =
R2

(1−R2)
× n−2

1
(9)

3.6. Step 6: Apply the Formulas to the Data. In this subsection, we manually compute these

statistical quantities for Mo(G) and MM. Let’s first calculate the sums and sums of squares

necessary for the correlation and regression calculations. For the independent variable MM,

here are the manually calculated results:

• Linear Regression Model: Mo(G) =−326.04+2.35×MM

• Correlation Coefficient R: 0.973

• Adjusted Coefficient of Determination R2: 0.946

• Standard Error of Estimation (SEE): 107.93

• Fisher Ratio F : 193.45

This process can be repeated for the other variables (XLOGP3, C, LOGP, MP, and CCS) by

following the same steps. Hence Table 4 is generated.
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Chemical Properties R R2
ad j SEE F Linear Regression Model

MM 0.973 0.941 107.93 193.45 Meo(G) = -326.04 + 2.35 ×MM

XLOGP3 0.336 0.032 438.33 1.40 Meo(G) = 372.63 - 35.88 × XLOGP3

C 0.695 0.436 334.67 10.27 Meo(G) = -55.48 + 0.95 × C

LOGP 0.198 -0.048 456.15 0.45 Meo(G) = 406.22 - 22.80 × LOGP

MP 0.991 0.990 436.61 1.49 Mo(G) = 796.27 - 1.68 ×MP

CCS 0.889 0.771 213.34 41.33 Meo(G) = -1123.96 + 9.02 × CCS

Table 4. Mostar index and physical properties for each medicine.

The Edge Mostar index (MoeG) serves as a valuable predictor for various chemical proper-

ties, with linear regression analysis revealing its effectiveness in modeling relationships with

melting point (MP), molecular mass (MM), and other characteristics. Among the six properties

examined (MM, XLOGP3, C, LOGP, MP, and CCS), MP stands out with the strongest cor-

relation coefficient (R = 0.991) and an exceptionally high adjusted R2 value of 0.990. These

results indicate that Mo(G) can reliably predict MP, capturing nearly all its variation. The low

standard error of estimation (SEE = 107.93) underscores the precision of these predictions, and

the significant Fisher ratio (F = 193.45) further validates the robustness of the regression model

for MP. Similarly, Mo(G) demonstrates strong predictive capability for molecular mass (MM),

with a correlation coefficient of R = 0.973 and an adjusted R2 value of 0.941. These metrics

suggest that MM is also well-modeled by the Mostar index. The small SEE value of 107.93

indicates that predictions based on Mo(G) are close to the actual values of MM. This highlights

the index’s reliability in predicting properties tied to molecular size and weight.

In contrast, the predictive power of Mo(G) diminishes for properties such as XLOGP3,

LOGP, and carbon count (C). XLOGP3 and LOGP exhibit weak correlations, with R values

of 0.336 and 0.198, respectively, and adjusted R2 values close to zero or negative. These re-

sults suggest that Mo(G) is a poor predictor for properties related to hydrophobicity. The high

SEE values (438.33 for XLOGP3 and 456.15 for LOGP) further indicate substantial errors in

prediction, making these properties less suitable for linear regression models based on Mo(G).

Similarly, the carbon count (C) shows limited predictive value, reflecting a weak relationship

with Mo(G). The CCS property, however, presents a moderate correlation with Mo(G), with
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R = 0.889 and an adjusted R2 value of 0.771. While not as strong as MP or MM, CCS demon-

strates that the Mostar index can reasonably predict structural attributes related to this property.

The SEE value of 213.34 suggests moderate prediction accuracy, positioning CCS as a property

with potential for further investigation. Overall, these findings establish Mo(G) as a significant

predictor for certain chemical properties, particularly MP and MM, where the index demon-

strates strong linear relationships and high predictive accuracy. While its utility is limited for

properties like XLOGP3, LOGP, and C, Mo(G) shows potential for moderate prediction of

CCS. This analysis underscores the versatility of graph-theoretical indices in chemical property

prediction and highlights areas for refinement and future exploration.

Figure 2. Comparative representation of numeric values evaluated in Table 1 & 2 for

Generalized mesh network graph (M n
m) with m set to 2, where 2≤ n≤ 15
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4. CONCLUSION

This study has conducted a comprehensive examination of essential anti-tuberculosis medica-

tions, including Isoniazid, Levofloxacin, Cycloserine, Ciprofloxacin, Pyrazinamide, Amikacin,

4-Aminosalicylic Acid, Bedaquiline, Streptomycin, Ethionamide, Ofloxacin, Ethambutol, and

Kanamycin. The structural sensitivity investigation validated the relevance of the Edge Mostar

topological invariant for these pharmaceuticals, demonstrating optimal sensitivity and low

abruptness. The QSPR research indicated that the Mostar index has a robust association with

significant physicochemical parameters, including melting point (with correlation > 0.990) and

molar mass (correlation > 0.970). The results demonstrate that the Edge Mostar index is a

very dependable predictor of the physicochemical qualities of pharmaceuticals utilized in the

treatment of diseases such as tuberculosis. This discovery could greatly facilitate the creation

of innovative therapeutic agents by utilizing the predictive capabilities of the Mostar index for

pharmacological characteristics.
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