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numerical illustrations are provided to validate our analytical results using various parameter sets. According to
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1. INTRODUCTION

Mammal carnivores like red fox Vulpes vulpes, the wildcat Felis catus, and the wild dog

Canis lupus have been identified as dominant species present in the ecosystem because of their

wide range of impacts on agronomy, cultivation, and native species [1]. According to Dickman

[2], feral cats have been considered the primary reason for the extinction of a few bird species in

New Zealand. Implementation of several carnivore control strategies including shooting, trap-

ping, fencing, and poisoning has been studied previously [3]. Even though predator control can

have significant benefits, the toxicant used may be detrimental to the survival of other wildlife

[4]. Excessive use of toxins can lead to different types of pollution such as soil pollution, water

pollution, as well as skin and health problems. Our primary goal is to reduce the effects of

toxicants on the species. However, predicting or quantifying these particular species is not easy.

Apart from this, some biological control strategies can hinder fertilization via releasing sex

pheromones or by removing the target species at a certain rate [5]. Boukal and Berec [6], de-

scribe two strategies commonly considered in biological control: one being massive pheromone

release and the other being constant and consistent efforts leading to the culling effect. They

have described the applicability of combining the component Allee effect with mate limitation,

inducing multiple Allee effects by releasing enemies in general which can assail the pest pop-

ulation using functional response of type II [7] and a mass introduction of individuals that are

sterile within the population [8]. They used a population model including the pest population

to predict that complete eradication of the pest could be achieved if the number of males or fe-

males or both sexes were brought below a certain value known as threshold density. According

to Allee [9], the idea behind the Allee effect is characterized by defining a positive correlation

between the population density and per capita growth rate when the population density is low.

The Allee effect happens in species because of the complexity of mate discovery, reproduction

enhancement, predation, environmental conditioning, and suppression of inbreeding, etc. Popu-

lations such as plants [10], birds, and mammals [11] are examples of existential justifications for

the Allee effect. Allee effects can be broadly divided into two groups: strong and weak [12, 13].

In the case of strong Allee effects, there is a population threshold at which species below that

threshold population density become extinct. On the other hand, weak Allee effects occur when
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growth rates decline but remain positive at low population densities [14], [15], [16], [17]. Since

it might be responsible for the extinction of a species, it is a crucial topic for research. Studying

the combination of Allee effects on the dynamics of the predator-prey population may help us

better comprehend the diversity of species.

Previously, a lot of work has been done using a prey-predator system with allee effect some of

which we discussed above. Some considerable contributions based on mathematical modelling

of predator-prey models under distinct conditions can be found in the works of [18],[19], [20].

Saha et. all[21] in their work, proposed a predator-prey model in which the species of prey ex-

hibited anti-predator characteristics to defend themselves from being attacked. They introduced

a strong allee effect so that the model becomes more realistic with respect to the environment.

Various other researchers have worked on different predator-prey models and have studied their

bifurcation analysis under different conditions [22, 23, 24, 25, 26]. Sen et. all [27] in their work

discussed the allee effect induced in prey and did a comparative analysis of that with the hunt-

ing cooperation on the predator. Using their results, they developed the conditions of stability

for the coexistence of the two species. Numerous other researchers used the classical Leslie

Gover predator-prey system and discussed various kinds of allee effects to study the dynamics

of the system in detail [28, 29, 30]. Emergence of oscillatory Turing patterns induced by cross

diffusion in a predator–prey system was studied by [31] and their findings gave more insights

and better clarity about the subject of pattern formation in ecology. Similar work was done by

[32] focusing on the pattern selection in spatiotemporal system. Sasmal et.all [33] in their work

discussed the impact of fear on the efficiency of searching for prey on a predator-free system

exhibiting weak allee effect. Han et. all [34] conducted a rigorous analysis of the spatiotem-

poral pattern selection in a predator-prey model involving a hunting cooperation strategy and

allee effect amongst the prey population. Wang [35] also discussed the dynamics of patterns in

predator-prey systems with cross-diffusion experiencing an allee effect and employing a gen-

eral Holling type IV functional response. Significant contributions in the domain of studying

the dynamics of predator-prey systems under different forms of allee effects can also be found

in the works of [36, 37, 38, 39, 40].
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Prey-predator interaction has developed in bioecological modeling following the classical

work done by Lotka and Volterra, which was later explored by Holling by introducing several

functional responses. Holling types I, II, and III, were the classifications of these functional

responses developed through an elaborate analysis of field data. Recently, researchers have

made significant contributions to the modeling of more complex situations, with the goal of

improving knowledge of reality [41]. In this article, the authors consider a two-species model

in which individuals from one population congregate in herds to forage for food and to defend

themselves. Similar types of defense mechanisms have been studied in [42, 43]. In scenarios

when separate members of a group have different tasks that are distinctly defined, group de-

fenses are normally described in terms of the behavioral responses of specific individuals of the

population [44]. The objective of the article is to assess the behavior of the population under the

influence of the Allee effect in predator growth rate with the group defense mechanism in prey.

According to the author, it is the first attempt to study the impact of the weak Allee effect on a

population model of two-species prey and predator along with the group defense mechanism in

prey.

The novelty of our work lies in the fact that we are working with a unique predator-prey

model with group defense and a weak allee effect. A lot of work has been done in the literature

previously with regards to various types of prey-predator models experiencing allee effects

[45, 46, 47]. However, no such work can be found that primarily focuses on group defense

mechanisms adopted by the prey species under a weak allee effect which highlights the novelty

of our work. We observe that this type of problem of optimal control theory for the preservation

of endangered species has never been discussed before and hence it can be considered to be a

completely new approach. We have done an in-depth discussion and analysis of the combination

of different control strategies that will help in controlling the predator population and increase

the prey population at the same time. The results that we obtain from our findings suggest

that increasing the parameter value of aggregation efficiency under the optimal control strategy

won’t have any impact on the prey or predator biomass. So our findings can be extremely

useful for ecologists and epidemiologists working in this field to establish some new policies

and regulations in order to save the endangered species from the risk of extinction.
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The physical field quantities used as our control parameters here are primarily the allee effect

and the power of the prey for group defense. Some illustrations may include the usage of sterile

males to control the population of food flies as they tend to be a major threat to agricultural crops

globally. This is one practical example of allee effect and it can be commonly seen in various

ecosystems involving a prey-predator interaction. One of the major advantage of this strategy

is that It can lower the expansion speed in a given range which will further help in preventing

any form of biological invasion. The most evident symptom of the allee effect in any plant or

animal species is the limitation in mating which kind contains the predator population thereby,

solving the problem of prey extinction to a certain extent. Coming to the next significant control

parameter is group defense in the prey population. It can be considered as an anti-predator

adaptation technique adopted by the prey population to safeguard themselves. Not much work

has been done in literature previously implementing this group defense strategy to control the

predator population previously which kind of gives a new dimension to Our research problem.

Individual defensive structures have been discussed by researchers in their ability to defend the

prey but group defense as a whole has not been widely discussed. In the group defense strategy,

we can observe a dilution effect amongst the prey population which kinds of minimizes their risk

of being attacked. Shoaling of fish, Camargue horses in Southern France, and water striders are

some common examples of prey that employ group defense mechanisms to minimize the attack

on themselves and become a greater challenge for the predator population. We have organized

our article in the following manner: We have developed our model of study in Section (2); in

Section (3), we discuss the model population dynamics. The optimal control policy for the

predator is discussed in Section (4). In Section (5), we have done the Numerical simulations

followed by a final discussion in Section (6).

2. MODEL FORMULATION

When there are no predators present, we can study the population dynamics of the prey

species as described below:

dS
dt = aS(1−bS).(1)
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Here the population of prey is given by S; a describes the birth rate of prey and the prey popu-

lation carrying capacity is given by 1
b . When the predators are present in the population, g(S) is

the rate at which they consume the prey. g(S) can be represented using the Holling-Type I or II

or III functional response.

We can use the following system of nonlinear differential equations to demonstrate a two-

species prey-predator model with the predator population exhibiting weak Allee effect [48, 49,

50, 51, 52]:

dS
dt = aS(1−bS)−g(S)P
dP
dt = P(cg(S) P

θ+P −d)
(2)

Here, d denotes the predator’s natural death rate and c ∈ (0;1] the rate of conversion of prey

biomass into the predator biomass.

In this article, the authors focus on the case when g(S) = βSγ . Venturino and Petrovskii

[53], defined a functional response using γ where γ ∈ (0,1) denotes the prey power, thereby

describing the group defense mechanism of the prey species. The fundamental contention is

that the prey that inhabit the outermost locations in the group are primarily affected by the

interactions between predators and prey. In terms of modeling, the assumption has the effect

of replacing the traditional term representing mass action found in the Lotka-Volterra model

with an unorthodox component in a non-linear form that holds a power law of the prey density.

Using this assumption, we can modify the system (2) as:

dS
dt = aS(1−bS)−βSγP
dP
dt = P(cPSγ β

θ+P −d)

= P(Sγ αP
θ+P −d)

(3)

S(0)> 0,P(0)> 0.

We have defined our model in such a manner that the group defense mechanism in prey is used

as a significant control strategy and the functional response, denoted by γ is defined by γ ∈ (0,1)

to describe the power of the prey. The physical significance with respect to the application of the

form of the model proposed for our study lies in the fact that the prey occupying the outermost

regions of the prey group are the primary targets of the predators and hence are most prone to

be attacked and face the consequences of this predator-prey interaction. Keeping in mind this
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arrangement and the key role played by the prey inhabiting the boundary positions we have

developed our model using a nonlinear function for the power of prey which is exclusive from

the classical predator-prey model descriptions. Thus, it helps the researchers and ecologists in

a much better analysis of the subject under study. So under those physical circumstances where

one needs to control the predator-prey population employing a weak allee effect and group

defense technique in prey, this model proposition that we have used for our study becomes

extremely vital and relevant.

3. MATHEMATICAL ANALYSIS OF THE SYSTEM

The author first studies the system (3) with γ = 1. So we can write the system (3) as

dS
dt = aS(1−bS)−βSP
dP
dt = P( α

θ+PPS−d)
(4)

The boundary equilibrium points obtained for the above system are as follows:

E0 = (0,0), E1 = (
1
b
,0).

An interior attractor E∗ = (S∗,P∗) is obtained for the system (4). The values of S∗ and P∗ are

the positive roots obtained from the system of equations

βP∗ = a(1−bS∗)

αS∗P∗ = d(θ +P∗).
(5)

We can determine P∗ by solving the equation αβ

a P2 + p(bd−α)+bdθ = 0. If the condition

S∗ < 1
b , bd−α < 0 and (bd−α)2 > 4bdαθβ

a is satisfied then the interior equilibrium point will

exist.

Proposition[Local stability of the equilibrium points for the Model (4)]:

In Table (1) we can see the summarized results describing the local stability of the equilibrium

points for our given model.

Proof. For the model (4) the Jacobian matrix at any given equilibrium point (S∗,P∗) can be

represented in the following manner:
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Equilibrium points Existence Condition Stability Condition

E0 Always exists Saddle

E1 Always exists Always stable

E∗ S∗ < 1
b , α > bd locally asymptotically stable if ab > αθP∗

(θ+P∗)2

and (bd−α)2 > 4bdθ
αβ

a
TABLE 1. The local stability of equilibrium points for the Model (4)

J|(S∗,P∗) =

 a−2abS∗−βP∗ −βS∗
αP2
∗

θ+P∗
αS∗P∗(2θ+P∗)

(θ+P∗)2 −d


On substituting (S∗,P∗) = Ei, i = 0,1 into (6), we can find the eigenvalues for the respective

equilibrium points.

(1) The eigen values for the equilibrium point E0 = (0,0) obtained from the equation (6)

are

λ1 = a (> 0), λ2 =−d (< 0).

This shows that E0 = (0,0) is always unstable.

(2) The eigen values for the equilibrium point E1 = (1
b ,0) obtained from the equation (6)

are

λ1 =−a (< 0), λ2 =−d(< 0).

This shows that E1 = (1
b ,0) is locally asymptotically stable.

Now for the interior equilibrium point given by E∗ = (S∗,P∗), the Jacobian matrix of our

model (4) under study can be represented as below:

J|E∗=(S∗,P∗) =

 −abS∗ −βS∗

αP∗2
θ+P∗

αθS∗P∗
(θ+P∗)2


The characteristic equation of the above matrix is given by:

λ 2 +(abS∗− αθS∗P∗
(θ+P∗)2 )λ + αβS∗P∗

θ+P∗ P∗ = (λ1−λ )(λ2−λ ) = 0.(6)

where λi, i = 1, 2 are roots of equation (8). If the solutions λi, i = 1,2 have negative real

parts, then we have
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∑
2
i=1 λi = (abS∗− αθS∗P∗

(θ+P∗)2 )> 0,

∏
2
i=1 λi = αβS∗P∗

θ+P∗ P∗ > 0.

Performing some mathematical simplification we can establish the locally asymptotic stability

of the interior equilibrium provided the condition stated below holds true:

ab > αθP∗
(θ+P∗)2 .(7)

�

We shall consider the values of the parameters as follows: β = 0.60; d = 0.1; a = 0.60; α =

0.60; θ = 0.1; b = 1.66. For these specified values of the parameters above, the system (4)

under study possesses two interior equilibrium of which one is a stable focus E∗ = (0.19,0.68)

another is unstable given by E∗1 = (0.58,0.02). This is clear from the fact that all the trajectories

that start within the attractive region tend to converge to the equilibrium point E∗ = (0.19,0.68)

(Figure (1)). Various other sets of initial values are considered as [0.57,0.05], [0.25,0.90],

[0.7,0.6] and the corresponding phase plane portrait diagram of the system (4) is displayed in

Fig.1.

3.1. Saddle node bifurcation: The two equilibrium points E∗ and E∗1 will exist if (bd−α)2 >

4bdθ
αβ

a . For (bd−α)2 < 4bdθ
αβ

a , E∗1 and E∗ vanish. The existence of the two equilibrium

points depends on the value of θ . The saddle-node bifurcation can be observed between E∗1 and

E∗ if the given condition holds
(bd−α)2

4bdθ
αβ

a

= θ .

3.2. Bistability: The phenomena describing the convergence of the system to two distinct

equilibrium points within a common parametric region is known as Bi-stability. It depends on

variation in the initial conditions. In the existence of the two interior equilibrium points E∗ and

E1(see Figure (2)) we can clearly see that the system (4) experiences bi-stability. Whenever

the interior equilibrium points exist, all trajectories that rise from the interior region of R2
+ will

either converge towards the equilibrium point E∗ and E1. This non-delayed model described in

the system (4) possesses two attractors of which one is E∗ while the other is E1 which is locally
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FIGURE 1. Stability of the interior equilibrium for the model (4), when β =

0.60, b = 1.66, d = 0.10, a = 0.60, α = 0.60 and θ = 0.1, with different initial

conditions.

asymptotically stable. The region of bi-stability for the two interior equilibria E∗ and E1is

displayed in Figure (4) when we vary the two parameters θ and d. The bistability of this type

(see Figure (2)) is quite significant as depending on the given initial conditions it determines

whether the predator will become extinct or both the species will coexist.

3.3. Hopf bifurcation: With reference to θ i.e. the Allee parameter, the Hopf bifurcation

description for the system (4) is displayed in Figure (3). (the author omits the proof here as a

similar kind of theorem and proof is given in (3.2)). We can see at θ = 0.62, the Hopf bifurcation

takes place. On further increasing θ , a limit point is obtained at θ = 3.32. We can observe that

there is an eigenvalue having the real part zero and the equilibrium point has a turning point

such that it is stable on one side and unstable on the other. A phenomenon known as hysteresis

or bistability is observed in Figure (3) which is an important characteristic of our model under

study.

Figure (3) describes the Hopf bifurcation scenario of the system (4) with respect to Allee

parameter θ (the author omits the proof here as a similar kind of theorem and proof is given in

(??)). The Hopf bifurcation occurs at θ = 0.62. Further increment of θ , results in a limit point
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FIGURE 2. Bi-stability of the interior equilibrium E∗ and E1 for the model (4).
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FIGURE 3. Bifurcation diagram with respect to θ for the model (4), when β = 1,

α = 4, a = 0.60 and b = 1.66.

at θ = 3.32. Here one eigenvalue has zero real part and the curve of equilibria has a turning

point, on one side it is stable, and on the other unstable. Figure (3) also showed a phenomenon

called hysteresis or bistability. This is an important feature of our model (4).
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FIGURE 4. Bi-stability region of the interior equilibrium E∗ and E1 for the

model (4), when β = 0.60, a = 0.60, α = 0.60 and b = 1.66. In the red re-

gion, both the equilibrium points E∗ and E1 are locally asymptotically stable,

while in the black region only E1 is locally asymptotically stable but E∗ is un-

stable.

Next, the author draws a bifurcation phase plane diagram of two parameters θ and d for the

system (4). Matcont identified two points, which correspond to codim 2 bifurcations known

as Bogdanov-Takens (BT) in Figure (5). At each of these BT points the system possesses an

equilibrium point having a double zero eigenvalue.

3.4. Mathematical analysis of the full system (3): In this section, the local stability of the

equilibrium points for the differential equation (3) is studied and analyzed in detail.

The system (3) has the following boundary equilibrium points:

E∗0 = (0,0), E∗1 = (
1
b
,0).

The system (3) has interior attractor E∗2 = (S∗2,P
∗
2 ), where S∗2 and P∗2 are obtained by calculating

the positive roots of the following equation:
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FIGURE 5. Two parameter bifurcation diagram with respect to θ and d for the

model (4), when β = 1, α = 4, a = 0.60 and b = 1.66.

β (S∗2)
γP∗2 = aS∗2(1−bS∗2)

α(S∗2)
γP∗2 = d(θ +P∗2 ).

(8)

The interior equilibrium exists if d
α
< (S∗2)

γ and S∗2 <
1
b .

By analyzing the eigenvalues obtained from the Jacobian matrix given below we can very

easily determine the nature of the local stability of the equilibrium points of E∗1 and E∗2 .

J =

 a−2abS∗− γβP∗S
(γ−1)
∗ −βSγ

∗

γ
αP2
∗

θ+P∗
S(γ−1)
∗

αSγ
∗P∗(2θ+P∗)
(θ+P∗)2 −d


Because of the singularity property of the Jacobian matrix J, it cannot be used to establish the

stability conditions for E0
∗. But despite that, we can use the concept of [43], to study the

singularity dynamics near the origin of our proposed model (3) in the following manner:

Theorem 1. Consider 0 < γ < 1. let us take the initial conditions in the form S0 = S(0),P0 =

P(0) for the system of equations (3). Also, let us consider G according to the definition:

G = (S,P),S > 0,P > P′(S), to be a necessary part of the phase plane of our system under

study, where P′(S) = d+(1−γ)a
β (1−γ) S1−γ(S), where P′(S) = d +(1− γ)aβ (1− γ)S(1− γ).Then for
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FIGURE 6. Stability of the interior equilibrium for the model (3), when β =

0.60, b = 1.66, d = 0.10, a = 0.60, γ = 0.90, α = 0.60 and θ = 0.10, with

different initial conditions.

any (S0,P0) ∈ G the trajectory of the system intersects the axis P at a specified time t1 < ∞

implying the extinction of the prey over a finite period of time.

Proof. The proof is the same as in [53].From (3.1), it can be observed that E∗0 = (0,0) behaves

like a saddle point [53, 54] for the system (3). The boundary equilibrium point E∗1 is always

stable and E∗2 is stable if ab(S∗2)
(2−γ)−S∗2α

P∗2 θ

(P∗2 +θ)2 −β (1− γ)P∗2 > 0.

Now let us take the following set of values for our parameter: β = 0.60; d = 0.1; a = 0.60; α =

0.60; θ = 0.1; b = 1.66;γ = 0.90. The system (3) for this particular set of parameter values

possesses a stable interior equilibrium point; E∗2 = (0.16,0.61) is a stable focus since we can

observe for all the trajectories that are initiating within this particular region of attraction even-

tually tend to converge to E∗2 = (0.16,0.61) (Figure (6)). We have taken various different sets

of initial values as follows: [0.57,0.05], [0.25,0.90], [0.7,0.6] . We have then drawn their re-

spective phase plane portrait with respect to the system (3) in Figure (6).

�
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3.5. The impact of the Allee effect: The system (4) in the absence of the Allee effect can be

modeled as follows:

dS
dt = aS(1−bS)−βSP
dP
dt = P(Sα−d)

(9)

The above-defined system (12) possesses two equilibrium points in the boundary which are

(0,0), (1
b ,0) . Another equilibrium point ( d

α
,

a(1−b d
α
)

β
) is found in the interior and it is unique.

The existence of the unique equilibrium point depends on if 1
b > d

α
and by nature it is asymp-

totically stable whenever it exists (Figure (7)). ’

Similarly, in the absence of Allee effect the proposed system (3) also has a unique interior

equilibrium point (( d
α
)

1
γ ,a( d

α
)

1−γ

γ (1− b( d
α
)

1
γ )) and asymptotically stable if a1−γ

2−γ
< ( d

α
)

1
γ (see

Figure (8)).

Theorem 2. Assume that a1−γ

2−γ
< ( d

α
)

1
γ , then model (3) without Allee effect does not have any

nontrivial periodic orbits in R2
+. Moreover whenever a1−γ

2−γ
> ( d

α
)

1
γ , then model (3) without

Allee effect has possesses exactly one single limit cycle which is stable in nature.

Proof. The proof is the same as in [54]. �

The system (4), in the absence of the Allee effect, comprises just one interior equilibrium

point and this is stable in nature whenever it exists. On the contrary, when the Allee effect

is present in the system, the existence of either no equilibrium point or exactly two interior

equilibrium points is observed based on the value of θ which is the Allee parameter. Through

the above description of the dynamics of the system, we can deduce a significant result that the

Allee effect plays a vital role in the generation or destruction of interior attractors. Also, the

system can be destabilized because of the non-linearity which may be induced in the presence

of the Allee effect.

3.6. Boundedness of the solution of the system (3): Here, we have established the

conditions under which the solutions of the proposed system (3) will be bounded. The

author denotes by R2
+ = {(S,P) ∈ R2 : S ≥ 0,P ≥ 0} the non-negative quadrant and by

int(R2
+) =

{
(S,P) ∈ R2 : S > 0,P > 0

}
.
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FIGURE 7. Existence of stable interior equilibrium for the model (9), when β =

0.60, b = 1.66, d = 0.10, a = 0.60 and α = 0.60 with different initial conditions.
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FIGURE 8. Existence of stable interior equilibrium for the model (3) with out

Allee effect, when β = 0.60, b = 1.66, d = 0.10, a = 0.60 and α = 0.60 with

different initial conditions.

The first equation of the system of equations (3) can be rewritten as

dS
S = aI−bS−βPSγ−1dt
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Taking the lower and upper limits 0 and t respectively and integrating them, we shall get,

S(t) = S(0)exp
∫ t

0 Sal−bS−βPSγ−1ds.

In a similar manner using the second equation from the system of equations (3) we can obtain,

P(t) = P(0)exp
{∫ t

0 αSγ P(s)
θ+P −dds

}
.

The initial conditions being S(0) = S0 > 0 and P(0) = P0 > 0. Thus, S(t) and P(t) are both

strictly positive.

Lemma 3. The solutions of the system (3) that begin in the region int(R2
+) are bounded uni-

formly having M as an ultimate bound.

Proof. Rewriting the first equation of the model (3) as

dS
dt = Sa1−bS−βPSγ−1.

Thus,

dS
dt ≤ aS(1−bS)

∴ limsupt→∞ S(t)≤ 1
b .

Let us consider a function V defined as follows: V = 1
β

S(t)+ 1
α

P(t). Differentiating V with

respect to the time t in line with the solution of the system of equations (3) we get,

V̇ ≤ a
β

S(t)(1−bS(t)− d
α

P(t),

≤ a
b2β
−min{a,d}V.

So, we obtain,

limt→∞V (t)≤M1.

Where M1 =
a

b2β

min{a,d} .

Here M1 is given by M1 =
a

b2β

min{a,d}

and we have taken M = max{1
b ,αM1}.

�
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4. Optimal Control

4.1. Optimal control policy. The dynamical characteristics of the system of equations (3)

have been discussed in detail in the above section. Following this, in order to curb the predator

population, the author employs certain control parameters which include the inverse of individ-

ual searching efficiency or the Allee parameter θ and nonselective culling with a per capita rate

of h(t)> 0 as a control parameter to reduce predator population. The time interval within which

the controls are employed is [0; T ], with T denoting the final or end time.

Now the modified non-linear system of differential equations describing the impacts of the

various controls on our standard model (3) is represented in the following manner:

dS
dt = aS(1−bS)−βSγP
dP
dt = P(Sγ αP

θ(t)+P −d−h(t)).
(10)

For our optimal control problem under consideration, we can write the objective functional

as follows:

J(E) =
∫ T

0
(AP(t)+Bθ

2(t)+Ch2(t))dt,

which is subject to the system of equations (13). The primary objective behind this problem

is to obtain θ0 and h0 i.e. the optimal controls such that

J(θ0,h0) = min
(θ ,h)∈U

J(E)

, U being the set of controls which we define in the following way,

U = {(θ ,h) : (θ ,h) is measurable and 0≤ θ ≤ θmax and 0≤ h≤ hmax}.

Here, A, B, and C are the respective weights for the predator population, the Allee parameter,

and the culling effect.

Let, H = AP(t)+Bθ 2 +Ch2 +λS[aS1−bS−βSγP]+λP[αPSγ P
θ+P −dP].

The adjoint variables in the objective function are λS,λP and the conditions for transversality

are λS(T ) = 0, λP(T ) = 0.

Theorem 4. An optimal control denoted by (θ0,h0) exists for any t ∈ [0,T ] which satisfies

J(S(t),P(t),θ0,h0) = min
(θ ,h)∈U

J(S(t),P(t),θ ,h)
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which is subject to the system of differential equations (13). Also, adjoint variables λS,λP exists

with the transversality conditions as λS(T ) = 0, λP(T ) = 0.

4.2. Characterization of the Optimal Control. We have used Pontryagin’s maximum prin-

ciple in order to deduce the necessary conditions for optimal control (13). Here the state equa-

tions are:

x(t) = H(x,θ ,h,λ )(t).

The conditions for optimality are

0 = Hθ (x,θ ,h,λ )(t), and 0 = Hh(x,θ ,h,λ )(t).

The adjoint equation is given by,

−dλ

dt (t) = Hx(x,θ ,h,λ )(t)+χ[0 T−τ]λ (t + τ)Hxτ
(x,xτ ,θ ,λ )(t),

Here Hθ ,Hx and Hxτ
respectively denote the derivatives with respect to θ ,x and xτ , respec-

tively. θ̂ being the positive root of the equation given below, one can obtain the optimal control

conditions using the equation

(
θ

P
)3 +(

θ

P
)2 +(

θ

P
)− αSγλP

BP
= 0.

The constant term being negative guarantees that at least one positive root will exist.

At any given time t, the optimal Allee parameter is obtained by,

θ0 =


0, dH

dθ
< 0

θ̂ , dH
dθ

= 0

θmax,
dH
dθ

> 0

(11)

Also,

ĥ =
λPP
2C

.

The optimal culling effect at any time t is given by

h0 =


0, dH

dh < 0

ĥ, dH
dh = 0

hmax,
dH
dh > 0

(12)
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The adjoint equations are

dλS
dt = −λS(t)a(1−2bS)−βγSγ−1P−λP(t)αγSγ−1P P

θ+P ,

dλP
dt = −A−λP(t)(αSγ P2+2Pθ

(θ+P)2 −d−h)+λS(t)βSγ .

(13)

5. NUMERICAL SIMULATION

We have obtained the numerical solution of our optimal control problem using the fourth-

order Runge-Kutta forward - backward numerical scheme.

For the numerical illustration, the values of the parameters chosen are as follows: β =

0.60; d = 0.10; a = 0.60; α = 0.60; b = 1.66; γ = 0.90; T = 50; A = 1; B = 1;C = 1; S(0) =

0.20; P(0) = 0.70 and assume that 0.20≤ θ ≤ 0.50, 0≤ h≤ 0.20.

5.1. System (3) with Allee parameter but without culling effect. In figures (9) & (10) the

solution curves are represented for the two-state variables when the Allee control parameter is

present but without the culling effect. Without the Allee parameter or any control, the system

(13) is stable at (0.13,0.63) (see Figure (8)). At t = 600 units of time, the predator popula-

tion reaches its minimum value and the prey population reaches its maximum value but after

that predator population increases, and the prey population decreases. Figure (11) shows the

variation of optimal Allee parameter θ .

5.2. System (3) with culling effect but without Allee Parameter. Under this strategy, for

optimization of our objective function J, the culling effect (h) is employed while the Allee

parameter θ = 0. Comparing this scenario with that when no control parameters were present in

the system (see Figure (8)), one can clearly see that the prey population (Figure (12)) increases

and the predator population (Figure (13)) decreases. At t=425 units of time predator population

is extinct from the system and the prey population reaches its maximum value. The control

profile is shown in Figure (14). It can be observed that the optimal culling effect reaches its

upper bound at t=200 units and it converges to its lower bound at t= 650 units of time. Through

this, we can conclude that the use of the culling effect requires low effort.
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FIGURE 9. Diagram for the prey population with Allee parameter but without

culling effect
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FIGURE 10. Diagram for the predator population with Allee parameter but with-

out culling effect

5.3. System (3) with both the control parameters (Allee parameter and culling effect).

Under this strategy, in order to optimize the objective function J both the controls θ and h have

been used. The solution curves depicted in Figures (15) and (16) represent the solution for these
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FIGURE 11. Variation of the θ with respect to time in the absence of a culling effect.
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FIGURE 12. Diagram for the prey population with culling effect but without

Allee Parameter

two state variables when the two control parameters are present in the system. On applying the

optimal control we can observe that comparatively quite a significant number of predators are

reduced than that in the absence of any control. Without any control, the system (13) is stable

at (0.13,0.63) (see Figure (8)). At t = 200 units of time, it is clearly evident that the predator
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FIGURE 13. Diagram for the predator population with culling effect but without

Allee Parameter
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FIGURE 14. Variation of the h with respect to time in the absence of Allee parameter

population has become extinct. As an application of optimal control, it may be concluded that

optimal control plays a significant role in not just reducing the predator population in the system

but it simultaneously increases the population of the prey. Figures (19) and (20) represent the

variation of optimal control and in figures (17) & (18), the author describes how the adjoint
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FIGURE 15. Diagram for the prey population with both the controls

variables vary when the control parameters are present. It is observed that the optimal condition

for the two controls, the Allee parameter, and the culling effect is reached if they can be used at

their highest level for approximately the first 990 units of time and 620 units of time respectively.

Increasing the parameter value of γ , under the same control strategy as discussed earlier is not

going to change the predator or prey biomass. If we increase aggregation efficiency (γ), first

predator biomass decreases as a result prey biomass increase but after t=200 unit of time, all the

solutions of the system (13) converges to the same value (Figure (21) & (22)).

6. DISCUSSION

This paper focuses on the impact of the weak Allee effect on predators in the prey-predator

model. On the basis of model (3), the author provides with results about the local stability of the

equilibrium points. The existence of saddle-node bifurcation between the equilibrium points E∗1

and E∗ has also been discussed. On the basis of model (4), the existence of Hopf bifurcation

has been studied in detail together with the notion of bistability between the interior equilibrium

points. The standard model (4) shows that the origin is a saddle point, whereas, for the model

(3), the behavior of the solution near the origin equilibrium is singular in nature. It is clearly

evident that the model (3) encounters Hopf-bifurcation as the prey density < a1−γ

2−γ
.
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FIGURE 16. Diagram for the predator population with both the controls
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FIGURE 17. Figure for the adjoint variable λ1.

The impact of the Allee effect plays a crucial role in locating the existence of periodic orbits.

The relationships between mate mate-finding Allee effect and other strategies that lead to the

Allee effect are the mass release of sterile individuals, release of generalist natural enemies,
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FIGURE 18. Figure for the adjoint variable λ2.
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FIGURE 19. Variation of the θ with respect to time

and exploitation with constant yield [?]. It is difficult to find the extinction threshold since the

demographic Allee effect is hard to calculate from demographic data.
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FIGURE 20. Variation of the h with respect to time
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FIGURE 21. Variation of the prey population with different values of γ with

respect to time

7. CONCLUSION

Five cats that were introduced in 1949 to the Kerguelen islands have multiplied to thousands

and are thought to kill around three million seabirds annually [55]. The elimination of the
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FIGURE 22. Variation of the prey population with different values of γ with

respect to time

population of invasive cats on islands has been the objective of several control initiatives in an

effort to preserve the number of local birds [56].

In this paper, we have researched an optimal control issue that mixes both mechanical and

biological control together. In relation to invading mammals and the damage they produce,

the combination of culling and the Allee effect in an integrated management approach is a

frequently discussed subject. Our main findings suggest that the implementation of the optimal

control policy not only diminishes the predator biomass but also increases the biomass of the

prey. The authors claim that this is not a previously discussed application of a problem of

optimal control theory to the preservation of endangered species and hence can be considered

as a novel approach. On the other side, the system (3) makes perfect ecological sense since,

if the prey population is sufficiently lower than the predator population, the extinction of prey

species implies the extinction of predator species as well.

The Allee effect and culling effect along with optimal control theory have been implemented

in our work in order to minimize the population of the predator. The findings in this article

should undoubtedly aid ecologists and, as a result, could improve theoretical ecology. In the
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future, we will observe the effects of time delay and diffusion in the food chain model [57] and

eco–epidemiological model [58] with the defense mechanism for prey species and Allee effect.
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