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Abstract. This paper discusses the analysis of a discrete fractional-order Leslie-Gower model with fear effects,

Allee effects, and interspecies competition. The discrete model is obtained by discretizing the continuous model

using the piecewise constant approximation method. The model has four fixed points, namely trivial fixed point,

prey extinction fixed point, predator extinction fixed point, and interior fixed point. The trivial fixed point always

exists, while the existence of prey extinction, predator extinction, and interior fixed points are determined by certain

conditions. The stability analysis shows that there are topological differences that depend on the parameter and

the size of the integration step. Bifurcation analysis is performed using center manifold theory and bifurcation

theorem. By choosing the integration step as the bifurcation parameter, it can be shown that the model experiences

period-doubling bifurcation and Neimark-Sacker bifurcation. Numerical simulations are carried out at the end of

this paper to confirm the analytical results.
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1. INTRODUCTION

Every organism will always interact with other organisms or the environment around them.

The interaction between a population and other populations affects the ecological system [1].
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According to Mader [2], one example of interaction between two populations that occurs due to

the relationship of eating and being eaten between predator and prey is predation. Mathematical

models can be used to describe interactions between predator and prey, such as [3, 4, 5, 6].

Phenomena in populations are very diverse, one of which is the Allee Effect. The Allee effect

is the positive dependence of a population on the number of individuals. If the population is

too small, finding partners to reproduce will be more difficult, resulting in low birth rates. In

addition, food supplies for predators will decrease, resulting in higher death rates for predators

[7, 8, 9, 10, 11, 12].

Interactions between predator and prey populations can be divided into two types, namely

direct and indirect interactions. Direct interactions can be in the form of predation [13], while

indirect interactions can be in the form of predator populations that cause fear in prey and

impact changes in prey behavior [14]. Prey avoids direct predation to increase prey survival in

the short term but threatens the number of prey in the long term [15]. Compared with direct

predation, these fear-induced behavioral changes can have stronger and longer-lasting effects

[16, 17]. Other studies on the effects of fear are [18, 19, 20, 21, 22].

Depending on current and previous conditions, the rate of change in predator-prey popula-

tions can be modeled as a fractional order differential equations system. Fractional differential

equations are used in various fields, such as biology, fluid dynamics, medicine, and others [23].

Several researchers such as [24, 25, 26, 27] use fractional order in the model because fractional

differential equations are found to use memory so that this equation has a more realistic rela-

tionship with life. The memory effect in the predator-prey model is important because previous

memories can be embedded in the lives of predators and prey [28, 29, 30]. In [31, 32], fear

affects local stability and causes Hopf bifurcation in the system.

Furthermore, combining Allee effects and fear effects in fractional order models is interest-

ing to study. This combination has been studied by Kumar et al. [32] in the following fractional

order of continuous Leslie-Gower predator-prey model with Allee effect, fear effect, and inter-

species rivalry.

CDα
t u =

ru
1+θ0v

− pu−qu2− muv
u+ kv

,

CDα
t v = bv

(
v

v+θ1
− v

cu+d

)
,

(1.1)
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where u(t) and v(t) represent the population density of prey and predators at time t respectively.

The parameter α , h, r, m, k, θ0, p, q, b, c, d, θ1 are fractional order, step size, prey intrinsic

birth rate, predation rate, prey handling time, fear effect, prey natural mortality rate, inter-prey

competition rate, predator intrinsic birth rate, carrying capacity for predators, food supply level

for predators, and Allee effect.

The exact solution to the model in a nonlinear differential equation (1.1) is difficult to de-

termine analytically, so a numerical scheme is needed that changes the continuous model to a

discrete one. According to Podlubny [33], one of the numerical approximation methods used to

discretize fractional differential equations is the PWCA (Piecewise Constant Approximation)

method. This method is applied by dividing a continuous interval into some subintervals and

assuming that the constant function in each subinterval [34, 35, 36, 37, 38]. By applying the

PWCA method to system (1.1), we obtain

un+1 = un +
hα

αΓ(α)

(
run

1+θ0vn
− pun−qu2

n−
munvn

un + kvn

)
,

vn+1 = vn +
hα

αΓ(α)

(
bvn

(
vn

vn +θ1
− vn

cun +d

))
,

(1.2)

where un = u(tn), vn = v(tn) and h = ∆t is the step size of the numerical integration. The ob-

tained discrete model is consistent with the continuous model if it maintains dynamic properties,

such as fixed points, stability, oscillations, etc. [39]. On the other hand, discrete models can

produce more complex and interesting dynamic behavior than continuous models [40, 41, 38].

Based on the previous description, in this paper, we carry out the dynamical analysis for the

system (1.2). This analysis includes determining the existence and stability of fixed points in

Section 2, bifurcation analysis in Section 3, and numerical simulation in Section 4. Lastly, in

Section 5, we give a conclusion of our findings.

2. THE EXISTENCE AND STABILITY OF FIXED POINTS

System (1.2) has four types of positive fixed points, namely the trivial fixed point E0(0,0)

which always exists, the predator extinction fixed point E1

(
r−p

q ,0
)

which exists if r > p, the

prey extinction fixed point E2(0,d − θ1) which exists if d > θ1, and the interior fixed point

E∗(u∗,v∗), where u∗ = v∗+θ1−d
c and v∗ satisfy the following cubic equation
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v∗3 +3v∗2ρ1 +3v∗ρ2 +ρ3 = 0,

with

ρ1 =
qθ0(ck+2)(θ1−d)+(ck+1)(cpθ0 +q)+θ0c2m

3qθ0(ck+1)
,

ρ2 =
mc2 +qθ0(θ1−d)2 +(ckq+ cpθ0 +2q)(θ1−d)+ c(ck+1)(p− r)

3qθ0(ck+1)
,

ρ3 =
q(θ1−d)2 + c(θ1−d)(p− r)

qθ0(ck+1)
.

E∗(u∗,v∗) exists if both u∗ and v∗ are positive, which can be determined by applying Cardan’s

method as [42, Lemma 3.1]. The Jacobian matrix of (1.2) at a fixed point (û, v̂) is

J =

 j11 j12

j21 j22

 ,(2.1)

where j11 = 1+ hα

αΓ(α)

(
−qû+ mûv̂

(û+kv̂)2

)
, j12 =

hα

αΓ(α)

(
− rûθ0

(1+θ0v̂)2 − mû2

(û+kv̂)2

)
, j21 =

hα

αΓ(α)
bv̂2c

(cû+d)2 ,

and j22 = 1− hα

αΓ(α)
bv̂2

(v̂+θ1)2 . The characteristic equation of the Jacobian matrix is given by

F(λ ) = λ
2− (2+ηaζa)λ +(1+ηaζa +η

2
a ωa) = 0,(2.2)

where

ηa =
hα

αΓ(α)
,

ζa =−qû+
mûv̂

(û+ kv̂)2 −
bv̂2

(v̂+θ1)2 ,

ωa =−
bv̂2

(v̂+θ1)2

(
−qû+

mûv̂
(û+ kv̂)2

)
+

bv̂2c
(cû+d)2

(
rûθ0

(1+θ0v̂)2 +
mû2

(û+ kv̂)2

)
.

The local stability of fixed points is given in the following theorem.

Theorem 2.1. The trivial fixed point E0(0,0) is a non-hyperbolic point.

Proof. By substituting E0 into (2.1), it can be shown that J(E0) has eigenvalues λ1 = 1 +

hα

αΓ(α)(r− p) and λ2 = 1. Thus, E0 is a non-hyperbolic point. �

Theorem 2.2. The predator extinction fixed point E1 =
(

r−p
q ,0

)
is a non-hyperbolic point.
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Proof. By evaluating E1 into (2.1), J(E1) has eigenvalues λ1 = 1+ hα

αΓ(α)(p− r) and λ2 = 1.

Hence, E1 is a non-hyperbolic point. �

Theorem 2.3. Let G = r
1+θ0(d−θ1)

− p− m
k , H1 =

α

√
−2αΓ(α)

G , and H2 =
α

√
2d2αΓ(α)
b(d−θ1)2 . The prey

extinction fixed point E2(0,d−θ1) has the following properties.

(1) E2 is a sink if h < min{H1,H2} and G < 0.

(2) E2 is a source if one of the following conditions satisfies:

(a) h > max{H1,H2} and G < 0;

(b) h > H2 and G > 0.

(3) E2 is a saddle if one of the following conditions holds:

(a) H1 < h < H2 and G < 0;

(b) 0 < h < H2 and G > 0.

(4) E2 is a non-hyperbolic if one of the following conditions holds:

(a) G = 0 or h = H1;

(b) h = H2.

Proof. By evaluating E2 into (2.1), we get λ1 = 1+ hα

αΓ(α)

(
r

1+θ0(d−θ1)
− p− m

k

)
and λ2 = 1+

hα

αΓ(α)

(
−b(d−θ1)

2

d2

)
. In this case, we obtain |λ1|< 1 if 0 < h < H1 and G < 0. |λ1|> 1 if h > H1

and G < 0, or G > 0. |λ1|= 1 if G = 0 or h = H1. Furthermore, |λ2|< 1 if 0 < h < H2, λ2 > 1

if h > H2. |λ2|= 1 if h = H2. �

Based on equation (2.2), we obtain F(1) = ωa, F(0) = 1+ηaζa +η2
a ωa, and F(−1) = 4+

2ηaζa +η2
a ωa. By using the stability criterion in [43] and the properties of quadratic equation

for (2.2) in [21, Lemma 1-2], the following properties hold.

Theorem 2.4. Let ηa1,2 =
−ζa∓
√

ζ 2
a−4ωa

ωa
which is equivalent to h1,2 =(

−ζa∓
√

ζ 2
a−4ωa

ωa
Γ(1+α)

) 1
α

. If the coexistence fixed point E∗(u∗,v∗) exists, the proper-

ties of E∗(u∗,v∗) are described based on the value of F(1) as follows.

(1) For F(1)> 0, the coexistence fixed point E∗(u∗,v∗) has the following properties.

(a) E∗ is a sink if one of the following conditions holds:

(i) ζ 2
a −4ωa > 0 and 0 < ηa < ηa1;



6 SRI PUJI LESTARI, AGUS SURYANTO, ISNANI DARTI

(ii) ζ 2
a −4ωa ≤ 0 and 0 < ηa <− ζa

ωa
.

(b) E∗ is a source if one of the subsequent conditions holds:

(i) ζ 2
a −4ωa > 0 and ηa > ηa2;

(ii) ζ 2
a −4ωa ≤ 0 and ηa >− ζa

ωa
.

(c) E∗ is a saddle if ζ 2
a −4ωa > 0 and ηa1 < ηa < ηa2 .

(d) E∗ is a non-hyperbolic if one of the conditions below satisfies:

(i) ζ 2
a −4ωa > 0 and ηa = ηa1,2;

(ii) ζ 2
a −4ωa ≤ 0 and ηa =− ζa

ωa
.

(2) If F(1)< 0, the coexistence fixed point E∗(u∗,v∗) has the following properties.

(a) E∗ is a source if ηa > ηa2 .

(b) E∗ is a saddle if 0 < ηa < ηa2 .

(c) E∗ is a non-hyperbolic if ηa = ηa2 .

Proof. The proof is divided into the following two cases.

(1) Case F(1)> 0.

(a) If ζ 2
a − 4ωa > 0, then F(−1) = 0 has two distinct real roots: ηa = ηa1,2 and it

follows that

(i) if 0 < ηa < ηa1 , then |λ1|< 1 and |λ2|< 1;

(ii) if ηa > ηa2 , then |λ1|> 1 and |λ2|> 1;

(iii) if ηa = ηa1 or ηa = ηa2 , then λ1 =−1 and |λ2| 6= 1;

(iv) if ηa1 < ηa < ηa2 , then |λ1|> 1 and |λ2|< 1 (or |λ1|< 1 and |λ2|> 1).

(b) If ζ 2
a −4ωa = 0, then ηa1,2 =−

ζa
ωa

and we have

(i) if 0 < ηa <− ζa
ωa

, then |λ1|< 1 and |λ2|< 1;

(ii) if ηa >− ζa
ωa

, so |λ1|> 1 and |λ2|> 1;

(iii) if ηa =− ζa
ωa

, then λ1 = λ2 = 1.

(c) If ζ 2
a −4ωa < 0, then ηa1,2 are conjugate complex roots of F(−1) and we obtain

(i) if 0 < ηa <− ζa
ωa

, then |λ1|< 1 and |λ2|< 1;

(ii) if ηa >− ζa
ωa

, then |λ1|> 1 and |λ2|> 1;

(iii) if ηa =− ζa
ωa

, then |λ1|= |λ2|= 1.



BIFURCATION ANALYSIS OF A DISCRETE FRACTIONAL ORDER PREDATOR-PREY MODEL 7

(2) Case F(1) < 0. In this case, F(−1) < 0 if ηa < ηa1 or ηa > ηa2 , while F(−1) > 0 if

ηa1 < ηa < ηa2 . So, we get the following properties.

(a) If ηa > ηa2 , then |λ1|> 1 and |λ2|> 1.

(b) If 0 < ηa < ηa2 , then |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1).

(c) If ηa = ηa2 , then λ1 =−1 and |λ2| 6= 1.

�

Based on the stability analysis, one of the eigenvalues of the Jacobian matrix around

E∗(u∗,v∗) is 1, and the other eigenvalue is neither 1 nor −1 if

P1,2 =

{
(α,r,θ0, p,q,m,k,b,θ1,c,d,h) : ζ

2
a −4ωa > 0,ηa1,2 =

−ζa∓
√

ζ 2
a −4ωa

ωa

}
,

where ηa1,2 are equivalent to h =

(
−ζa∓
√

ζ 2
a−4ωa

ωa
Γ(1+α)

) 1
α

= h1,2. Therefore, if the parame-

ters vary around P1,2(E∗), a period-doubling bifurcation occurs on E∗. Besides, if

N =

{
(α,r,θ0, p,q,m,k,b,θ1,c,d,h) : ζ

2
a −4ωa < 0,η∗a =− ζa

ωa

}
,

where η∗a is equivalent to h =
(
− ζa

ωa
Γ(1+α)

) 1
α

= h∗, then the eigenvalues of the Jacobian

matrix at E∗ are a pair of complex numbers with modulus 1. Thus, if the parameters vary

around N(E∗), the Neimark-Sacker bifurcation occurs at E∗.

3. BIFURCATION ANALYSIS

3.1. Period-doubling bifurcation. In this Section we discuss the period-doubling bifurcation

analysis around the interior fixed point E∗(u∗,v∗). Consider system (1.2) with any parameters

(α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ P1. Based on Theorem 2.4, E∗(u∗,v∗) has eigen values, which

are λ1 =−1 and λ2 = 3+ζaηa1, where |λ2| 6= 1. By introducing a small perturbation η̃a, |η̃a|�

1 into the system (1.2) around ηa = ηa1 , we get

un+1 = un +(ηa1 + η̃a)

(
run

1+θ0vn
− pun−qu2

n−
munvn

un + kvn

)
,

vn+1 = vn +(ηa1 + η̃a)

(
bvn

(
vn

vn +θ1
− vn

cun +d

))
.

(3.1)
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Then, we shift the fixed point E∗(u∗,v∗) to the origin using transformations xn = un− u∗ and

yn = vn− v∗, so that the system (3.1) becomes

xn+1 =σ11xn +σ12yn +σ13x2
n +σ14xnyn +σ15y2

n +σ16x3
n +σ17x2

nyn +σ18xny2
n +σ19y3

n

+ ς11xnη̃a + ς12ynη̃a + ς13x2
nη̃a + ς14xnynη̃a + ς15y2

nη̃a +O((|xn|+ |yn|+ |η̃a|)4),

yn+1 =σ21xn +σ22yn +σ23x2
n +σ24xnyn +σ25y2

n +σ26x3
n +σ27x2

nyn +σ28xny2
n +σ29y3

n

+ ς21xnη̃a + ς22ynη̃a + ς23x2
nη̃a + ς24xnynη̃a + ς25y2

nη̃a +O((|xn|+ |yn|+ |η̃a|)4),

(3.2)

where

σ11 = 1+ηa1

(
−qu∗+

mu∗v∗

(u∗+ kv∗)2

)
, σ12 = ηa1

(
− ru∗θ0

(1+θ0v∗)2 −
mu∗

2

(u∗+ kv∗)2

)
,

σ13 = ηa1

(
−q+

mkv∗
2

(u∗+ kv∗)3

)
, σ14 = ηa1

(
− rθ0

(1+θ0v∗)2 −
2mku∗v∗

(u∗+ kv∗)3

)
,

σ15 = ηa1

(
ru∗θ 2

0
(1+θ0v∗)3 +

mu∗
2
k

(u∗+ kv∗)3

)
, σ16 =−ηa1

mkv∗
2

(u∗+ kv∗)3 ,

σ17 = ηa1

(
2mku∗v∗−mk2v∗

2

(u∗+ kv∗)4

)
, σ18 = ηa1

(
rθ 2

0
(1+θ0v∗)3 +

2mk2u∗v∗−mku∗
2

(u∗+ kv∗)4

)
,

σ19 = ηa1

(
−

ru∗θ 3
0

(1+θ0v∗)4 −
mk2u∗

2

(u∗+ kv∗)4

)
, ς11 =−qu∗+

mu∗v∗

(u∗+ kv∗)2 ,

ς12 =−
ru∗θ0

(1+θ0v∗)2 −
mu∗

2

(u∗+ kv∗)2 , ς13 =−q+
mkv∗

2

(u∗+ kv∗)3 ,

ς14 =−
rθ0

(1+θ0v∗)2 −
2mku∗v∗

(u∗+ kv∗)
, ς15 =

ru∗θ 2
0

(1+θ0v∗)3 +
mu∗

2
k

(u∗+ kv∗)3 ,

σ21 = ηa1

bv∗
2
c

(cu∗+d)2 , σ22 = 1+ηa1

(
2bv∗θ1 +bv∗

2

(v∗+θ1)2 − 2bv∗

cu∗+d

)
,

σ23 =−ηa1

bv∗
2
c2

(cu∗+d)3 , σ24 = ηa1

2bv∗c
(cu∗+d)2 , σ25 = ηa1

(
bθ 2

1
(θ1 + v∗)3 −

b
cu∗+d

)
,

σ26 = ηa1

bv∗
2
c3

(cu∗+d)4 , σ27 =−ηa1

2bv∗c2

(cu∗+d)3 , σ28 = ηa1

bc
(cu∗+d)2 ,

σ29 =−ηa1

bθ 2
1

(θ1 + v∗)4 , ς21 =
bv∗

2
c

(cu∗+d)2 , ς22 =
2bv∗θ1 +bv∗

2

(v∗+θ1)2 − 2bv∗

cu∗+d
,

ς23 =−
bv∗

2
c2

(cu∗+d)3 , ς24 =
2bv∗c

(cu∗+d)2 , ς25 =
bθ 2

1
(θ1 + v∗)3 −

b
cu∗+d

.

(3.3)
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Next, we take the transformation

xn

yn

 = T1

Un

Vn

 , where T1 =

 σ12 σ12

−1−σ11 λ2−σ11

, such

that system (3.2) can be written asUn+1

Vn+1

=

−1 0

0 λ2

Un

Vn

+
 f̃ (Un,Vn, η̃a)

g̃(Un,Vn, η̃a)

 ,(3.4)

where

f̃ (Un,Vn, η̃a) =
1

σ12(λ2 +1)
{[(λ2−σ11)σ13−σ12σ23]x2

n

+[(λ2−σ11)σ14−σ12σ24]xnyn +[(λ2−σ11)σ15−σ12σ25]y2
n

+[(λ2−σ11)σ16−σ12σ26]x3
n +[(λ2−σ11)σ17−σ12σ27]x2

nvn

+[(λ2−σ11)σ18−σ12σ28]xny2
n +[(λ2−σ11)σ19−σ12σ29]y3

n

+[(λ2−σ11)ς11−σ12ς21]xnη̃a +[(λ2−a11)ς12−σ12ς22]ynη̃a

+[(λ2−σ11)ς13−σ12ς23]x2
nη̃a +[(λ2−a11)ς14−σ12ς24]xnynη̃a

+[(λ2−σ11)ς15−σ12ς25]y2
nη̃a +O((|xn|+ |yn|+ |η̃a|)4)},

g̃(Un,Vn, h̃) =
1

σ12(λ2 +1)
{[(σ11 +1)σ13 +σ12σ23]x2

n

+[(σ11 +1)σ14 +σ12σ24]xnyn +[(σ11 +1)σ15 +σ12σ25]y2
n

+[(σ11 +1)σ16 +σ12σ26]x3
n +[(σ11 +1)σ17 +σ12σ27]x2

nyn

+[(σ11 +1)σ18 +σ12σ28]xny2
n +[(σ11 +1)σ19 +σ12σ29]y3

n

+[(σ11 +1)ς11 +σ12ς21]xnη̃a +[(σ11 +1)ς12 +σ12ς22]ynη̃a

+[(σ11 +1)ς13 +σ12ς23]x2
nη̃a +[(σ11 +1)ς14 +σ12ς24]xnynη̃a

+[(σ11 +1)ς15 +σ12ς25]y2
nη̃a +O((|xn|+ |yn|+ |η̃a|)4)},

xn =σ12(Un+Vn) and yn =−(1+σ11)Un+(λ2−σ11)Vn. Applying the center manifold theorem

to system (3.4) at the origin near h̃ = 0, we obtain the following center manifold W c(0,0)

W c(0,0) = {(Un,Vn, η̃a) ∈ R3 : Vn = ϕ(Un, η̃a),ϕ(0,0) = 0,Dϕ(0,0) = 0},
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where

ϕ(Un, η̃a) = σ1U2
n +σ2Unη̃a +σ3η̃a +O((|Un|+ |η̃a|)3).

The center manifold must satisfy

[σ1−σ1λ2−
1

σ12(λ2 +1)
{σ2

12[(σ11 +1)σ13 +σ12σ23]−σ12(σ11 +1)[(σ11 +1)σ14 +σ12σ24]

+ (σ11 +1)2[(σ11 +1)σ15 +σ12σ25]}]u2
n +[−σ2−σ2λ2−

1
σ12(λ2 +1)

{σ12[(σ11 +1)ς11 +σ12ς21]

− (σ11 +1)[(σ11 +1)σ12 +σ12ς22]}]unη̃a +(σ3−σ3λ2)η̃a
2
+O((|un|+ |η̃a|)3) = 0.

In the confined center manifold W c(0,0), system (3.4) can be expressed as

F̃ : Un 7→ −Un +φ1U2
n +φ2Unη̃a +φ3U2

n η̃a +φ4Unη̃a
2
+φ5U3

n +O((|Un|+ |η̃a|)3),

where

φ1 =
1

σ12(λ2 +1)
{σ2

12[(λ2−σ11)σ13−σ12σ23]−σ12(σ11 +1)[(λ2−σ11)σ14−σ12σ24]

+ (σ11 +1)2[(λ2−σ11)σ15−σ12σ25]},

φ2 =
1

σ12(λ2 +1)
{σ12[(λ2−σ11)ς11−σ12ς21]− (σ11 +1)[(λ2−σ11)ς12−σ12ς22]},

φ3 =
σ2

σ12(λ2 +1)
{2σ

2
12[(λ2−σ11σ13−σ12σ23)]+σ12(λ2−2σ11−1)[(λ2−σ11)σ14−σ12σ24]

−2(σ11 +1)(λ2−σ11)[(λ2−σ11)σ15−σ12σ25]}+
σ1

σ12(λ2 +1)
{σ12[(λ2−σ11)ς11−σ12ς21]

+ (λ2−σ11)[(λ2−σ11)ς12−σ12ς22]}+
1

σ12(λ2 +1)
{σ2

12[(λ2−σ11)ς13−σ12ς23]

−σ12(σ11 +1)[(λ2−σ11)ς14−σ12ς24]+ (σ11 +1)2[(λ2−σ11)ς15−σ12ς25]},

φ4 =
σ2

σ12(λ2 +1)
{σ12[(λ2−σ11)ς11−σ12ς21]+ (λ2−σ11)[(λ2−σ11)ς12−σ12ς22]},

φ5 =
σ1

σ12(λ2 +1)
{2σ

2
12[(λ2−σ11)σ13−σ12σ23]+σ12(λ2−2σ11−1)[(λ2−σ11)σ14−σ12σ24]

−2(λ2−σ11)(σ11 +1)[(λ2−σ11)σ15−σ12σ25]}+
1

σ12(λ2 +1)
{σ3

12[(λ2−σ11)σ16−σ12σ26]

− (σ11 +1)3[(λ2−σ11)σ19−σ12σ19]}.

If the discriminatory quantities β1 and β2 are not zero, then system (1.2) will undergo a period-

doubling bifurcation. The discriminatory quantities β1 and β2 are determined by the following

formulae
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β1 =
(

2F̃Unη̃a
+ F̃η̃a

F̃UnUn

)∣∣∣
(0,0)

= 2h2,

β2 =
1
3
F̃UnUnUn +

1
2
(
F̃UnUn

)2
∣∣∣∣
(0,0)

= 2φ5 +2φ
2
1 .

The above discussion is summarized in the following theorem.

Theorem 3.1. If β1 6= 0 and β2 6= 0, then the system (1.2) experiences a period-dobling bifur-

cation at point E∗(u∗,v∗) when h passes the critical point h1,2. The last condition is equivalent

to condition that ηa crosses the critical point ηa1,2 . If β2 > 0, the period two points branching

from the fixed point E∗(u∗,v∗) are stable, which is called a supercritical period-doubling bifur-

cation. Conversely, if β2 < 0, the period two points branching from the fixed point E∗(u∗,v∗)

are unstable, which is called a subcritical period-doubling bifurcation.

3.2. Neimark-Sacker bifurcation. Next, the existence of a Neimark-Sacker bifurca-

tion at E∗(u∗,v∗) is analyzed. Take system (1.2) into account, where the parameters

(α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ N are arbitrary. By considering a small perturbation η̂a where

|η̂a| � 1 into system (1.2), we obtain

un+1(t) = un +(η∗a + η̂a)

(
run

1+θ0vn
− pun−qu2

n−
munvn

un + kvn

)
,

vn+1(t) = vn +(η∗a + η̂a)

(
bvn

(
vn

vn +θ1
− vn

cun +d

))
.

(3.5)

It can be checked that the Jacobian matrix of system (3.5) at E∗(u∗,v∗) has the following char-

acteristic equation

λ
2(η̂a)+P(η̂a)λ +Q(η̂a) = 0,

where P(η̂a) =−2−ζa(η
∗
a + η̂a) and Q(η̂a) = 1+ζa(η

∗
a + η̂a)+ωa(η

∗
a + η̂a)

2.

According to the previous analysis, if (α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ N and η̂a = 0, then

the eigenvalues of the Jacobian matrix (2.1) at E∗ are a pair of conjugate complex numbers λ

and λ̄ where |λ | = |λ̄ | = 1. As η̂a changes in the vicinity of η̂a = 0 then the eigenvalues of

(2.1) are

λ (η̂a), λ̄ (η̂a) =
−P(η̂a)± i

√
4Q(η̂a)−P2(η̂a)

2
= 1+

ζa(η
∗
a + η̂a)

2
±

i(η∗a + η̂a)
√

4ωa−ζ 2
a

2
.



12 SRI PUJI LESTARI, AGUS SURYANTO, ISNANI DARTI

We can show that |λ (η̂a), λ̄ (η̂a)|= (Q(η̂a))
1
2 and if mu∗v∗

(u+kv∗)2 +
2bv∗θ1+bv∗

2

(v∗+θ1)2 < qu∗+ 2bv∗
cu∗+d , then

d|λ ,λ̄ |
dη̂a

∣∣∣
η̂a=0

=−ζa
2 > 0.

For the Neimark-Sacker bifurcation to occur, it is required that when η̂a = 0, the eigenvalues

must satisfy λ j, λ̄ j 6= 1 ( j = 1,2,3,4). This condition corresponds to P(0) 6= −2,0,1,2. As

the parameter (α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ N, it follows that P(0) 6=−2,2. Thus, we only

need that P(0) 6= 0,1, which implies that ζ 2
a

ωa
6= 2,3. By taking xn = un−u∗ and yn = vn− v∗,

we shift the fixed point E∗(u∗,v∗) of system (3.5) into the origin (0,0). Then, by using Taylor

expansion, we obtain the following system

xn+1 =σ11xn +σ12yn +σ13x2
n +σ14xnyn +σ15y2

n +σ16x3
n +σ17x2

nyn

+σ18xny2
n +σ19y3

n +O((|xn|+ |yn|+ |h̃|)4),

un+1 =σ21xn +σ22yn +σ23x2
n +σ24xnyn +σ25y2

n +σ26x3
n +σ27x2

nyn

+σ28xny2
n +σ29y3

n +O((|xn|+ |yn|+ |h̃|)4).

(3.6)

The values of σ11,σ12,σ13,σ14,σ15,σ16,σ17,σ18,σ19,σ21,σ22,σ23,σ24,σ25,σ26,σ27,σ28, and

σ29, are defined in (3.3).

Next, we consider the normal form of equation (3.6) when η̂a = 0. Let γ = κ1−σ11. By

applying the translation

xn

yn

= T2

Un

Vn

 , where T2 =

σ12 0

γ −κ2

, the equation (3.6) can be

written as Un+1

Vn+1

=

κ1 −κ2

κ2 κ1

Un

Vn

+
 f̃ (Un,Vn)

g̃(Un,Vn)

 ,(3.7)

where

f̃ (Un,Vn) =
1

σ12
(σ13x2

n +σ14xnyn +σ15y2
n +σ16x3

n +σ17x2
nyn +σ18xny2

n +σ19y3
n +O((|xn|+ |yn|)4),

g̃(Un,Vn) =
1

σ12κ2
{[γσ13−σ12σ23]x2

n +[γσ14−σ12σ24]xnyn +[γσ15−σ12σ25]y2
n

+[γσ16−σ12σ26]x3
n +[γσ17−σ12σ27]x2

nyn +[γσ18−σ12σ28]xny2
n

+[γσ19−σ12σ29]y3
n +O((|xn|+ |yn|)4)},
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with xn = σ12Un and yn = γUn−κ2Vn. From equation (3.7), we can calculate that

f̃Un,Un =
2

σ12
[σ2

12σ13 +σ14σ12γ +σ15γ
2], f̃Un,Vn =−

1
σ12

[κ2σ12σ14 +2κ2γσ15],

f̃Vn,Vn =
2κ2

2 σ15

σ12
, f̃Un,Un,Un =

6
σ12

[σ16σ
3
12 +σ17σ

2
12γ +σ18σ12γ

2 +σ19γ
3],

f̃Un,Un,Vn =−
2

σ12
[κ2σ17σ

2
12 +2κ2σ18σ12γ +3κ2σ19γ

2], f̃Un,Vn,Vn =
2κ2

2
σ12

[σ18σ12 +3κ2σ19γ],

f̃Vn,Vn,Vn =−
6κ3

2 σ19

σ12
, g̃Un,Un =

2
σ12

(σ2
12[γσ13−σ12σ23]+σ12γ[γσ14−σ12σ24]+ γ

2[γσ15−σ12σ25]),

g̃Un,Vn =−
1

σ12
(σ12[γσ14−σ12σ24]+2γ[γσ15−σ12σ25]), g̃Vn,Vn =

2κ1

σ12
[γσ15−σ12σ25],

g̃Un,Un,Un =
6

σ12κ2
(σ3

12[γσ16]+σ
2
12(κ1−σ11)[γσ17−σ12σ27]+σ12γ

2[γσ18−σ12σ28]

+ γ
3[γσ19−σ12σ29]),

g̃Un,Un,Vn =−
2

σ12
(σ2

12[γσ17−σ12σ27]+2σ12γ[γσ18−σ12σ28]+3γ
2[γσ19−σ12σ29]),

g̃Un,Vn,Vn =
2κ2

σ12
(σ12[γσ18−σ12σ28]+3γ[γσ19−σ12σ29]), g̃Vn,Vn,Vn =−

6κ2
2

σ12
[γσ19−σ12σ29].

System (1.2) undergoes a Neimark-Sacker bifurcation if the following condition is satisfied

Ω =−Re
[
(1−2λ )λ̄ 2

1−λ
ξ11ξ20

]
− 1

2
|ξ11|2−|ξ02|2 +Re(λ̄ ξ21) 6= 0,

where

ξ20 =
1
8
[( f̃UnUn− f̃VnVn +2g̃UnVn)+ i(g̃UnUn− g̃VnVn−2 f̃UnVn)],

ξ11 =
1
4
[( f̃UnUn + f̃VnVn)+ i(g̃UnUn + g̃VnVn)],

ξ02 =
1
8
[( f̃UnUn− f̃VnVn−2g̃UnVn)+ i(g̃UnUn− g̃VnVn +2 f̃UnVn)],

ξ21 =
1
16
[
( f̃UnUnUn + f̃UnVnVn + g̃UnUnVn + g̃VnVnVn)+ i(g̃UnUnUn + g̃UnVnVn

− f̃UnVnVn− f̃VnVnVn)
]
.

Hence, according to the Neimark-Sacker bifurcation conditions in [44], the following theorem

is obtained.

Theorem 3.2. If mu∗v∗
(u+kv∗)2 +

2bv∗θ1+bv∗
2

(v∗+θ1)2 < qu∗+ 2bv∗
cu∗+d , ζ 2

a
ωa
6= 2 or 3, and Ω 6= 0, then the system

(1.2) experiences a Neimark-Sacker bifurcation at the point E∗(u∗,v∗) when h passes the critical
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point h∗. The last requirement is the same as the conditionthat ηa passes its critical point η∗a . If

Ω < 0, the mapping experiences a supercritical Neimark-Sacker bifurcation, whereas if Ω > 0,

the mapping experiences a subcritical Neimark-Sacker bifurcation.

4. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations for demonstrating the prior analytical find-

ing and show the occurrences of period-doubling bifurcation and Neimark-Sacker bifurcation.

There is no need to develop new computations method to solve our model, because our model is

discrete and the iterative expressions are already provided. First, we take the values of param-

eters: p = 0.239, q = 0.1, m = 0.904, b = 0.487, r = 2.68, c = 0.075, θ0 = 0.126, d = 0.583,

θ1 = 0.583, k = 0.4, α = 0.9, and initial value u(0) = 19.5, v(0) = 1.46. For this case, system

(1.2) has interior fixed point E∗(19.5692,1.4677), ωa = 0.5762 > 0, ζ 2
a − 4ωa = 2.2853 > 0,

and h1 = 1.0588. Thus, (α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ P1. Theorem 2.4 states that the fixed

point E∗(19.5692,1.4677) is a sink for h < h1 and loses its stability at h = h1. We also get

β1 = −3.6542 6= 0, and β2 = 0.63196 6= 0. So, based on the Theorem 3.1, the system (1.2)

undergoes a period-doubling bifurcation around E∗(19.5692,1.4677) and the bifurcation point

is h = h1. Furthermore, β2 > 0 indicates the stability of the period-2 points (supercritical). This

phenomenon is shown in the bifurcation diagram in Figure 1 (a) and (b), and the related max-

imum Lyapunov exponent (MLE) is presented in Figure 1 (c). It is seen clearly that if h < h1,

then E∗(19.5692,1.4677) is stable. If h > h1, then the period-2 points remains stable and cas-

cading period doubling appears. We can observed that there is a range of h values such that the

system (1.2) experiences chaotic dynamics. The emergence of chaotic behavior is characterized

by the presence of a positive MLE in several h ranges shown in Figure 1 (a). In Figure 2, the

time series system (1.2) are given, which corresponds to Figure 1.
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(a)

(b)

(c)

FIGURE 1. (a-b) Bifurcation diagram and (c) MLE of system (1.2) with q = 0.1,

b = 0.487, c = 0.075, θ0 = 0.126.

t

0 100 200

u
∗

19.5

19.6

19.7
(a)

t

0 50 100 150 200

u
∗

16

18

20

22
(b)

t

0 50 100 150 200

u
∗

10

15

20

25
(c)

t

0 50 100 150 200

u
∗

10

15

20

25
(d)

t

0 50 100 150 200

u
∗

5

10

15

20

25

30
(e)

t

0 200 400 600 800

u
∗

5

10

15

20

25

30
(f)

FIGURE 2. Time series solution of system (1.2) with q = 0.1, b = 0.487, c =

0.075, θ0 = 0.126 and (a) h = 1.01; (b) h = 1.1; (c) h = 1.26; (d) h = 1.285; (e)

h = 1.33; (f) h = 1.36.
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For the second simulation, we take q= 0.047, b= 0.8, c= 0.943, and θ0 = 0.826; while other

parameters are the same as in the first simulation. System (1.2) with these parameters has inte-

rior fixed point of system (1.2) E∗(2.2809,2.1509). In this case, we also have ωa = 0.3589 > 0,

ζ 2
a − 4ωa = −1.4122 < 0, and h∗ = 0.3712. Hence, (α,r,θ0, p,q,m,k,b,θ1,c,d,h) ∈ N. Ac-

cording to Theorem 2.4, E∗(2.2809,2.1509) is a sink when h < h∗ and loses stability when

h = h∗. Morever, we can also check that λ , λ̄ = 0.9674±0.2532i where |λ (0), λ̄ (0)|= 1,

mu∗v∗

(u+ kv∗)2 +
2bv∗θ1 +bv∗

2

(v∗+θ1)2 = 1.2131 < qu∗+
2bv∗

cu∗+d
= 1.366,

ζ 2
a

ωa
= 0.0652 6= 2,3,

and Ω = −0.002995 < 0. Therefore, Theorem 3.2 states that the system (1.2) experiences a

supercritical Neimark-Sacker bifurcation around the fixed point E∗(2.2809,2.1509) at h = h∗.

This phenomenon is clearly seen in the bifurcation diagrams and the MLE shown in Figure 3.

The associated phase portraits of the system (1.2) are exhibited in Figure 4. We see in Figures

3 and 4 that the solution approaches a closed periodic orbit after h passes h∗. However, we also

identify that the MLE has positive values at some intervals, which indicate the occurrence of

chaotic behavior. This chaotic behavior is also shown in Figure 4 (e-f).

(a)

(b)

(c)

FIGURE 3. (a-b) Bifurcation diagram and (c) MLE of the system (1.2) with

q = 0.047, b = 0.8, c = 0.943, θ0 = 0.826.
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FIGURE 4. Phase portraits of system (1.2) with q = 0.047, b = 0.8, c = 0.943,

θ0 = 0.826, and (a) h= 0.35; (b) h= 0.5; (c) h= 0.65; (d) h= 0.7; (e) h= 0.738;

(f) h = 0.76.

5. CONCLUSION

The fractional-order Leslie-Gower model with discrete–time has been obtained using the

PWCA method. It has been shown that this proposed discrete–time model has four fixed points:

the extinction point of both populations, the extinction point of the predator, the extinction

point of the prey, and the interior fixed point. The local stability of all fixed points has been

thoroughly analyzed, demonstrating that it depends on both the model’s parameters and the nu-

merical integration time–step (h). We provide analytical proof that the proposed discrete–time

model can undergo both period-doubling bifurcation and Neimark-Sacker bifurcation. Our nu-

merical simulations validate this dynamic behavior. Additionally, our numerical simulations

demonstrate that this discrete–time model can experience chaotic dynamics for certain parame-

ter values. Thus, the discrete-time model presented reveals more intricate dynamics than those

of the continuous version.
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