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Abstract: The dynamics of food chains and ecosystems depend heavily on fear and anti-predator activity. grasping 

how prey-predator interactions affect not just individual species but also the larger community structure and ecosystem 

functioning requires a grasp of these fundamental ideas. Therefore, a novel food chain model made up of the Lotka-

Volterra interaction and a modified Leslie-Gower model has been presented for investigation in the presence of fear 

and anti-predator notions. The model's local dynamics were examined. Requirements for persistence were identified. 

The global dynamics were examined using the Lyapunov function. Investigations of local bifurcations had been 

conducted. Lastly, to validate the results and comprehend the impact of fear and anti-predators, a numerical simulation 

was employed. 
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1. INTRODUCTION  

One of the main goals of ecology and mathematical biology is to comprehend the dynamic 

relationship between prey and predator. A key element in the prey-predator relationship is the 

predator's consumption rate, frequently characterized by functional response [1-3]. Of the four 
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basic interactions (prey-predator, competition, interference, and mutualism), the prey-predator 

interaction is the most common and well-known for generating oscillatory dynamics [4]. Food 

chains are the fundamental components that organize the networks of interactions in natural 

ecosystems. Food chains have a tremendously rich dynamic, according to long-standing modeling 

work on the subject [5-7]. First, a simple model of interacting species was independently 

developed by Lotka and Volterra and is now known by their joint names [8-9]. They showed that 

prey-predator systems oscillate indefinitely for any initial condition if the prey growth rate is 

constant and the predator functional response is linear. However, relationships in the actual world 

are complex and call for more subtle strategies. The Allee effect [10-12], harvesting [13-15], 

collective defense [16-18], the terror effect [19-21], prey refuge [22-24], and so on are examples 

of such complications. Researchers have intensively investigated the food chain systems, including 

some factors, focusing on persistence and permanence, stability analysis, periodic solutions, and 

global dynamics. See [25-27] and the references therein. 

To make the standard Lotka-Volterra system more realistic, Holling suggested three different kinds 

of functional responses for different species to mimic predatory behavior, based on a review of 

several recent findings [4]. In autonomous predator-prey systems with these functional responses, 

the existence and asymptotic stability of equilibrium points and limit cycles are comparatively 

typical biological phenomena. Over the past few decades, three types of food chain research and 

their uses have expanded and evolved. This in turn brought to light a variety of biological problems 

that could be observed in interactions between species. Since these systems explain a larger 

number of potential scenarios in reality, they are thought to be more realistic and thorough than 

binary systems. The functional responses among the populations of the three species are used in 

almost all of the food chain models examined in the ecological literature. But in this case, a 

different functional reaction might be more suitable. In [28], the authors presented a mathematical 

model that combined the functional responses of Lotka-Volterra and Sokol-Howell. They noted 

that stable points and bistable behaviors are among the system's many dynamic features. 

A well-known mathematical framework for describing the dynamics of prey-predator interactions 

in ecological systems is the Leslie-Gower model. With more realistic assumptions on the carrying 
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capacities of both predator and prey populations, it is an expansion of the Lotka-Volterra model. 

Leslie and Gower introduced the model in [29-30], and it bears their names. Later, [31-33] 

proposes and studies a modified Leslie-Gower prey-predator model. Because it provides an 

additional food supply, the predator in these situations functions as a generalist predator. The 

decrease in the number of predators due to the absence of their preferred prey is known as the 

Leslie-Gower phrase. Certain predator species may be able to adapt to a different food supply in 

this situation, but because their preferred meal is scarce, their population growth may be 

constrained. Specialist predators are considered in the Leslie-Gower prey-predator model [34]. It 

implies that the supply of their preferred meals per person declines in tandem with a decline in the 

predator population. On the other hand, if the substitute meal is beneficial, the modified Leslie-

Gower model removes anomalies and enhances interaction predictions. Further studies to 

understand the dynamics of the Leslie-Gower prey-predator model have been recently carried out 

[35-37] and the references therein. 

However, by considering elements like the fear effect and antipredator behavior, additional 

complexity can be added. Research has shown that fear-induced indirect effects significantly affect 

the dynamics of prey-predator relationships and the ecological system as a whole. A mathematical 

principle of fear was developed by Wang et al. [19]. It has been demonstrated that predator species 

cause psychological stress in their prey, which causes them to change their typical behavior when 

they are looking for food. This tension is thought to be caused by the fear of being caught and 

killed by predators. The prey species may benefit in the short run from this, but there may be long-

term drawbacks. Their perceived threat from predators influences not just their dietary preferences 

but also their survival chances and rate of reproduction in comparison to normal adult populations. 

These assertions are supported by recent field tests and theoretical studies. Contradictory findings 

have been found in several studies, including the possibility that the indirect consequences of fear 

outweigh the direct consequences of predatory action, see [38–40] for the 2D system, and [41-42] 

for the three species systems. 
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Many prey species alter their behavior in the presence of predators and display a variety of 

antipredator behaviors, including foraging activity, habitat adaptations, alertness, and specific 

physiological changes, to lower the danger of predation [43-46]. Reduced production and foraging 

may be the outcome of sustained high-level anti-predatory behavior, which has benefits and 

drawbacks for the prey. The main benefit of anti-predator behavior is that it minimizes predation; 

however, the drawback is that hunger stunts growth because there is less predation, which affects 

prey reproduction. On the other hand, most evaluations of three-species food chain systems do not 

account for all the advantages and disadvantages of anti-predator behavior. 

In this paper, a new three-species food chain model with producers, consumers, and predators is 

proposed for study. The interactions between producers and consumers follow Lotka-Volterra type 

interactions, while the interactions between consumers and predators follow a modified Leslie-

Gower prey-predator model using Holling type-II functional response. Furthermore, fear and anti-

predator factors are thought to be at play in the suggested food chain. Furthermore, the next section 

has taken into account the model formulation with its positivity and boundedness. The system's 

local dynamic behavior is covered in Section 3. Section 4 discusses the persistence of the system. 

Section 5 has offered the analysis of global stability, whereas Section 6 has presented the analysis 

of local bifurcation. In Section 7, some numerical simulations are performed to confirm the 

conclusions obtained. Section 8 provides the study's conclusion. 

2. THE MODEL FORMULATION 

A novel food chain model comprising producers, consumers, and predators was developed in 

this section. When the consumer is absent, the producer expands logistically; otherwise, the 

consumer feeds on the producer under the Lotka-Volterra function. Their fear of predation 

significantly impacts the feeding process of consumers; moreover, its number declines 

exponentially in the absence of both producers and predation. The predator is thought to hunt the 

consumer under the second kind's Holling-type function. Ultimately, the predator has a different 

source of food in addition to the consumer, which means that its growth will be logistical. 

Additionally, the consumer can defend himself ferociously, which can occasionally result in the 
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predator dying. The following system of nonlinear equations can be used to quantitatively 

characterize the dynamics of the suggested food chain based on the fundamental assumptions of 

the proposed model mentioned above. 

𝑑𝑋

𝑑𝑇
= 𝑟𝑋 (1 −

𝑋

𝑘
) −

𝑎0𝑋𝑌

1+𝑛𝑍
= 𝑋𝑓1(𝑋, 𝑌, 𝑍),        

𝑑𝑌

𝑑𝑇
=

𝑎1𝑋𝑌

1+𝑛𝑍
−

𝑎2𝑌𝑍

𝑚0+𝑌
− 𝑑0𝑌 = 𝑌𝑓2(𝑋, 𝑌, 𝑍),      

𝑑𝑍

𝑑𝑇
= 𝑠𝑍 (1 −

𝑍

𝑏𝑌+𝑐
) −

𝑞𝑌𝑍

1+𝑚1𝑍
= 𝑍𝑓3(𝑋, 𝑌, 𝑍),

             (1) 

where 𝑋(0) ≥ 0, 𝑌(0) ≥ 0, and 𝑍(0) ≥ 0. Table 1 shows the variables and descriptions of the 

positive parameters. 

Table 1: Description of model parameters and variables: 

Symbols Description 

𝑿(𝑻) The producer density at time 𝑻. 

𝒀(𝑻) The consumer density at time 𝑻. 

𝒁(𝑻) The predator density at time 𝑻. 

𝒓, 𝒔 The producer and predator intrinsic growth rates, respectively.  

𝒌 The producer carrying capacity. 

𝒂𝟎 The consumer attack rate against producers. 

𝒂𝟏 = 𝒆𝟎𝒂𝟎 The producer conversion rate with 𝒆𝟎 ∈ (𝟎, 𝟏). 

𝒂𝟐 The predator attack rate. 

𝒏 Consumer level of fear of predators. 

𝒎𝟎 The half-saturation constant. 

𝒅𝟎 The consumer natural death rate. 

𝒒 The consumer antipredator level. 

𝒎𝟏 Predator avoidance efficiency of the anti-predator consumer's capability. 

𝒃 The level of consumer preference by the predator when feeding. 

𝒄 The alternative food for predators. 
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The non-dimensional parameters and variables listed below will be used to minimize the system's 

complexity (1). 

𝑥 =
 𝑋 

𝑘
, 𝑦 =

𝑎0𝑌

𝑟
, 𝑧 = 𝑛𝑍, 𝑡 = 𝑟𝑇, 𝜌1 =

𝑎1𝑘

𝑟
, 𝜌2 =

𝑎2

𝑟𝑛𝑚0
, 𝜌3 =

𝑟

𝑎0𝑚0
,

𝜌4 =
𝑑0

𝑟
, 𝜌5 =

𝑠

𝑟
, 𝜌6 =

1

𝑛𝑐
, 𝜌7 =

𝑏𝑟

𝑎0𝑐
, 𝜌8 =

𝑞

𝑎0
, 𝜌9 =

𝑚1

𝑛
.  

  

The non-dimensional system is described as follows: 

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 −

𝑦

1+𝑧
) = 𝑥𝑓1(𝑥, 𝑦, 𝑧),            

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝜌1𝑥

1+𝑧
−

𝜌2𝑧

1+𝜌3𝑦
− 𝜌4) = 𝑦𝑓2(𝑥, 𝑦, 𝑧),   

𝑑𝑧

𝑑𝑡
= 𝑧 (𝜌5 −

𝜌5𝜌6𝑧

1+𝜌7𝑦
−

𝜌8𝑦

1+𝜌9𝑧
) = 𝑧𝑓3(𝑥, 𝑦, 𝑧).

             (2) 

For system (2), the interaction functions 𝑓1,𝑓2, and 𝑓3 are specified on ℝ+
3 = {(𝑥, 𝑦, 𝑧): 𝑥(0) ≥

0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0}. They are continuous with continuous partial derivatives. Hence, these 

functions meet Lipschitz's requirements. Under the initial assumptions 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, and 

𝑧(0) ≥ 0 , the solution is unique, consistent with the fundamental theorem of existence and 

uniqueness. 

Theorem 1. For any 𝑡 ≥ 0, all system (2) solutions with positive initial conditions are positive. 

Proof. Define Γ = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} . Using the initial conditions 𝑥(0) >

0, 𝑦(0) > 0, and 𝑧(0) > 0 on the equations of system (2) provides the following result:  

𝑥(𝑡) = 𝑥(0)𝑒
∫ [1−𝑥(𝑠)−

𝑦(𝑠)
1+𝑧(𝑠)

]𝑑𝑠
𝑡
0  

𝑦(𝑡) = 𝑦(0)𝑒
∫ [

𝜌1𝑥(𝑠)
1+𝑧(𝑠)

−
𝜌2𝑧(𝑠)

1+𝜌3𝑦(𝑠)
−𝜌4]𝑑𝑠

𝑡
0  

𝑧(𝑡) = 𝑧(0)𝑒
∫ [𝜌5−

𝜌5𝜌6𝑧(𝑠)
1+𝜌7𝑦(𝑠)

−
𝜌8𝑦(𝑠)
1+𝜌9𝑧(𝑠)

]𝑑𝑠
𝑡
0  

The exponential function indicates that all solutions in Γ with positive initial conditions remain in 

the first octant. Hence, the proof is complete.      ■ 

The system's boundedness indicates that it is biologically well-defined in theoretical ecology. 

Indeed, when the solutions are bounded, neither of the interacting species will grow dramatically 
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or exponentially over time; however, the population of each species is constrained due to a shortage 

of resources. 

Theorem 2. In the region, 

 Π = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 0 < 𝑥(𝑡) ≤ 1, 0 < 𝑥(𝑡) + 𝑦(𝑡) ≤

2

𝜎
, 0 < 𝑧(𝑡) ≤

𝜎+2𝜌7

𝜎𝜌6
}. 

All solutions of the system (2) are uniformly bounded where 𝜎 is defined in the proof 

Proof. Consider the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of the system (2). Then the first equation in system 

(2) indicates that 
𝑑𝑥

𝑑𝑡
≤ 𝑥 − 𝑥2. By using lemma (2.2) [47], this inequality's solution is provided by 

𝑥(𝑡) ≤
𝑥0

𝑒−𝑡(1−𝑥0)+𝑥0
, where 𝑥0 is the initial value with 𝑥0 = 𝑥(0). As 𝑡 approaches ∞, the solution 

𝑥(𝑡) ensures that 𝑥 ≤ 1. 

Consider the function 𝑁(𝑡) = 𝑥(𝑡) + 𝑦(𝑡), then it is obtained that 

 
𝑑𝑁

𝑑𝑡
≤ 2 − 𝜎(𝑥 + 𝑦), 

where 𝜎 = min{1, 𝜌4}. Therefore, using the lemma (2.1) [47], it is obtained as 𝑡 → ∞ that, 𝑁 =

𝑥 + 𝑦 ≤
2

𝜎
 

Finally, using the upper bound 
2

𝜎
 in the third equation of the system (2) indicates that: 

 
𝑑𝑧

𝑑𝑡
≤ 𝜌5𝑧 −

𝜎𝜌5𝜌6

𝜎+2𝜌7
𝑧2.  

The solution of the last inequality is provided by 𝑧(𝑡) ≤ [
𝜎𝜌6

𝜎+2𝜌7
+ (

1

𝑧0
−

𝜎𝜌6

𝜎+2𝜌7
) 𝑒−𝜌5𝑡]

−1

, where 

𝑧0 = 𝑧(0).Thus 𝑧 ≤
𝜎+2𝜌7

𝜎𝜌6
 as 𝑡 → ∞. 

Hence, system (2) solutions in the region Π are uniformly bounded with the positive initial point. 

Hence, the proof is done.                  ■ 

3. EXISTENCE AND LOCAL STABILITY ANALYSIS OF EQUILIBRIA 

In the following, the existence of the non-negative equilibrium points (EPs) is investigated, 

and then their stability conditions are determined. The non-negative EPs are described as 

follows: 
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• There is always a trivial point, represented by 𝑒0 = (0,0,0). 

• There is always a first axial point, represented by 𝑒1 = (1,0,0). 

• There is always a second axial point denoted by 𝑒2 = (0,0,
1

𝜌6
). 

• There is always a first planar point denoted by 𝑒3 = (1,0,
1

𝜌6
) = (1,0, �̃�). 

• If the following condition holds, then there is a second planar point 𝑒4 = (�̂�, �̂�, 0), where �̂� =

𝜌4

𝜌1
 and �̂� = 1 −

𝜌4

𝜌1
. 

𝜌4 < 𝜌1.                   (3) 

• Finding the positive roots of System (2)'s equations after setting them to zero will yield the 

positive equilibrium point, indicated by 𝑒5 = (�̅�, �̅�, 𝑧̅). Straightforward computations provided 

us with �̅� =
1−�̅�+�̅�

1+�̅�
 while the point (�̅�, 𝑧̅) is a positive intersection point of the isoclines: 

ℎ1(𝑦, 𝑧) =
𝜌1𝜌3(1−𝑦+𝑧)𝑦

1+𝑧
− 𝜌3𝜌4𝑦𝑧 − 𝜌2𝑧

2 − 𝜌3𝜌4𝑦 +
𝜌1(1−𝑦+𝑧)

1+𝑧
− (𝜌2 + 𝜌4)𝑧 − 𝜌4 = 0

ℎ2(𝑦, 𝑧) = −𝜌5𝜌6𝜌9𝑧
2 + 𝜌5𝜌7𝜌9𝑦𝑧 − 𝜌7𝜌8𝑦

2 − 𝜌5(𝜌6 − 𝜌9)𝑧 + (𝜌5𝜌7 − 𝜌8)𝑦 + 𝜌5 = 0
}.     (4)     

It is easy to verify that as 𝑧 → 0 the above two isoclines become 

ℎ1(𝑦, 0) = −𝜌1𝜌3𝑦
2 + (𝜌1𝜌3 − 𝜌3𝜌4 − 𝜌1)𝑦 + 𝜌1 − 𝜌4 = 0 . 

ℎ2(𝑦, 0) = −𝜌7𝜌8𝑦
2 + (𝜌5𝜌7 − 𝜌8)𝑦 + 𝜌5 = 0. 

Direct computation shows that the first isocline has a unique positive root for 𝑦 denoted by 𝑦1 

with the fulfillment of condition (3). While the second isocline has a unique positive root for 

𝑦 denoted by 𝑦2, where:  

 
𝑦1 = 1 −

𝜌4

𝜌1

𝑦2 =
𝜌5

𝜌8

}.                   

Consequently, the isoclines (4) have a unique intersection positive point denoted by (�̅�, 𝑧̅) if 

the condition (3) with the following sufficient conditions hold: 

𝑦1 < 𝑦2                      
𝑑𝑧

𝑑𝑦
= −

(𝜕ℎ1 𝜕𝑦⁄ )

(𝜕ℎ1 𝜕𝑧⁄ )
> 0

𝑑𝑧

𝑑𝑦
= −

(𝜕ℎ2 𝜕𝑦⁄ )

(𝜕ℎ2 𝜕𝑧⁄ )
< 0}

 

 

.                (5) 
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Furthermore, the positive equilibrium point exists uniquely if, in addition to the conditions (5), 

the following condition is met.  

�̅� < 1 + 𝑧̅.                        (6) 

In the following steps, the linearization technique is applied to examine the system's local stability 

across the earlier-mentioned equilibrium points. The basic Jacobian matrix of system (2) appears 

to be evaluated as follows: 

 𝐽(𝑥, 𝑦, 𝑧) =

(

 
 

𝑥
𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥
𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦
𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧
𝜕𝑓3

𝜕𝑦
𝑧
𝜕𝑓3

𝜕𝑧
+ 𝑓3)

 
 
= (𝑎𝑖𝑗)3×3 ,          (7) 

where: 

 𝑎11 = −𝑥 + [1 − 𝑥 −
𝑦

1+𝑧
],  

 𝑎12 = −
𝑥

1+𝑧
, 

 𝑎13 =
𝑥𝑦

 (1+𝑧)2
, 

 𝑎21 =
𝜌1𝑦

1+𝑧
,  

 𝑎22 =
𝜌2𝜌3𝑦𝑧

(1+𝜌3𝑦)2
+ [

𝜌1𝑥

1+𝑧
−

𝜌2𝑧

1+𝜌3𝑦
− 𝜌4], 

 𝑎23 = −(
𝜌1𝑥

(1+𝑧)2
+

𝜌2

1+𝜌3𝑦
) 𝑦, 

 𝑎31 = 0, 

 𝑎32 = (
𝜌5𝜌6𝜌7𝑧

(1+𝜌7𝑦)2
−

𝜌8

1+𝜌9𝑧
) 𝑧, 

 𝑎33 = −
𝜌5𝜌6𝑧

1+𝜌7𝑦
+

𝜌8𝜌9𝑦𝑧

(1+𝜌9𝑧)2
+ [𝜌5 −

𝜌5𝜌6𝑧

1+𝜌7𝑦
−

𝜌8𝑦

1+𝜌9𝑧
]. 

Now, at 𝑒0, matrix (7) becomes: 

 𝐽(𝑒0) = (
1 0 0
0 −𝜌4 0
0 0 𝜌5

).               (8) 
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Thus, 𝐽(𝑒0) has the following eigenvalues: 𝜆01 = 1, 𝜆02 = −𝜌4, and 𝜆03 = 𝜌5. Therefore, 𝑒0 is a 

saddle point. 

At 𝑒1, matrix (7) becomes: 

 𝐽(𝑒1) = (
−1 −1 0
0 𝜌1 − 𝜌4 0
0 0 𝜌5

 )                (9) 

Therefore, 𝑒1 is a saddle point, as 𝐽(𝑒1) has the eigenvalues: 𝜆11 = −1, 𝜆12 = 𝜌1 − 𝜌4, and 𝜆13 =

𝜌5. 

At 𝑒2, matrix (7) becomes:  

 𝐽(𝑒2) = (

1 0 0

0 −
𝜌2

𝜌6
− 𝜌4 0

0 (𝜌5𝜌7 −
𝜌6𝜌8

𝜌6+𝜌9
)
1

𝜌6
−𝜌5

)           (10) 

Therefore, 𝑒2 is a saddle point, as 𝐽(𝑒2) has the eigenvalues: 𝜆21 = 1, 𝜆22 = −
𝜌2

𝜌6
− 𝜌4, and 𝜆23 =

−𝜌5. 

Moreover, at 𝑒3, matrix (7) transfers to:  

𝐽(𝑒3) =

(

 
 

−1 −
𝜌6

𝜌6+1
0

0
𝜌1𝜌6

𝜌6+1
−
𝜌2

𝜌6
− 𝜌4 0

0 (𝜌5𝜌7 −
𝜌6𝜌8

𝜌6+𝜌9
)
1

𝜌6
−𝜌5)

 
 

           (11) 

Thus, 𝐽(𝑒3) has the eigenvalues: 𝜆31 = −1, 𝜆32 =
𝜌1𝜌6

𝜌6+1
−
𝜌2

𝜌6
− 𝜌4, and 𝜆33 = −𝜌5. Therefore, 𝑒3 

is locally asymptotically stable if the condition (12) holds, becomes a non-hyperbolic point in case 

of equality in equation (12), and a saddle point otherwise:  

 
𝜌1𝜌6

𝜌6+1
<

𝜌2

𝜌6
+ 𝜌4.              (12) 

Additionally, at 𝑒4, the matrix (7) becomes: 

 𝐽(𝑒4) = (

−�̂� −�̂� �̂��̂�

𝜌1�̂� 0 − (𝜌1�̂� +
𝜌2

1+𝜌3�̂�
) �̂�

0 0 𝜌5 − 𝜌8�̂�

 ) = (�̂�𝑖𝑗).         (13) 
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Thus, the eigenvalues of 𝐽(𝑒4) are 𝜆41,42 =
−�̂�

2
±
√�̂�2−4𝜌1�̂��̂�

2
 and 𝜆43 = 𝜌5 − 𝜌8�̂� . Therefore, as 

𝜆41 and 𝜆42 have negative real parts, 𝑒4 is locally asymptotically stable if the condition (14) holds, 

becomes a non-hyperbolic point when the inequality sign becomes an equality sign in condition 

(14), while it is a saddle point otherwise: 

𝜌5 < 𝜌8�̂�.                 (14) 

Finally, the matrix (7) at 𝑒5 transfers to: 

 𝐽(𝑒5) = (
�̅�11 �̅�12 �̅�13
�̅�21 �̅�22 �̅�23
0 �̅�32 �̅�33

).               (15) 

where: 

 �̅�11 = −�̅�, �̅�12 = −
�̅�

1+�̅�
, �̅�13 =

�̅��̅�

 (1+�̅�)2
, �̅�21 =

𝜌1�̅�

1+�̅�
, �̅�22 =

𝜌2𝜌3�̅��̅�

(1+𝜌3�̅�)2
,  

�̅�23 = −(
𝜌1�̅�

(1+�̅�)2
+

𝜌2

1+𝜌3�̅�
) �̅�, �̅�31 = 0, �̅�32 = (

𝜌5𝜌6𝜌7�̅�

(1+𝜌7�̅�)2
−

𝜌8

1+𝜌9�̅�
) 𝑧̅, 

�̅�33 = −
𝜌5𝜌6�̅�

1+𝜌7�̅�
+

𝜌8𝜌9�̅��̅�

(1+𝜌9�̅�)2
. 

As a result, the characteristic equation of 𝐽(𝑒5) can be expressed as follows: 

 𝜆3
3 + 𝐴1𝜆3

2 + 𝐴2𝜆3 + 𝐴3 = 0,             (16) 

where: 

 𝐴1 = −(�̅�11 + �̅�22 + �̅�33), 

 𝐴2 = �̅�11�̅�22 + �̅�11�̅�33 + �̅�22�̅�33 − �̅�12�̅�21 − �̅�23�̅�32, 

 𝐴3 = −�̅�33(�̅�11�̅�22 − �̅�12�̅�21) + �̅�32(�̅�11�̅�23 − �̅�21�̅�13), 

with: 

 
𝐴1𝐴2 − 𝐴3 = −(�̅�11 + �̅�22)[�̅�11�̅�22 − �̅�12�̅�21] − (�̅�22 + �̅�33)[�̅�22�̅�33 − �̅�23�̅�32]

−�̅�11�̅�33(�̅�11 + 2�̅�22 + �̅�33) + �̅�13�̅�21�̅�32.
 

According to the Routh-Hurwitz criterion, 𝑒5 = (�̅�, �̅�, 𝑧̅) is locally asymptotically stable provided 

𝐴1 > 0, 𝐴3 > 0 and 𝐴1𝐴2 > 𝐴3, which is true if and only if the following conditions are satisfied: 

 
𝜌8

1+𝜌9�̅�
<

𝜌5𝜌6𝜌7�̅�

(1+𝜌7�̅�)2
              (17) 
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𝜌2𝜌3�̅��̅�

(1+𝜌3�̅�)2
< �̅�               (18) 

 
𝜌8𝜌9�̅�

(1+𝜌9�̅�)2
+

𝜌2𝜌3�̅�

(1+𝜌3�̅�)2
<

𝜌5𝜌6

1+𝜌7�̅�
             (19) 

 
𝜌2𝜌3�̅�

(1+𝜌3�̅�)2
<

𝜌1

(1+�̅�)2
               (20) 

 
𝜌1�̅�

 (1+�̅�)3
<

𝜌1�̅�

(1+�̅�)2
+

𝜌2

1+𝜌3�̅�
             (21) 

 
𝜌2𝜌3

(1+𝜌3�̅�)2
[
𝜌5𝜌6�̅�

1+𝜌7�̅�
−

𝜌8𝜌9�̅��̅�

(1+𝜌9�̅�)2
] < (

𝜌1�̅�

(1+�̅�)2
+

𝜌2

1+𝜌3�̅�
) (

𝜌5𝜌6𝜌7�̅�

(1+𝜌7�̅�)2
−

𝜌8

1+𝜌9�̅�
)        (22) 

As a result, the following theorem is established. 

Theorem 3. The point 𝑒5 is locally asymptotically stable if the conditions (17–22) are fulfilled. 

4. PERSISTENCE 

The survival of all species is the meaning of persistence in biological systems. Hence, in the 

sense of mathematics, system (2) will be persistent if it has no omega limit set that is part of its 

boundary domain for all positive initial points. 

The subsystems located in the positive quadrant of the 𝑥𝑧 − and 𝑥𝑦 −planes of a system (2) can 

be represented by the following formulas:  

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) = 𝐹1(𝑥, 𝑧),           

𝑑𝑧

𝑑𝑡
= 𝑧(𝜌5 − 𝜌5𝜌6𝑧) = 𝐹2(𝑥, 𝑧).

            (23) 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥 − 𝑦) = 𝐺1(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑦(𝜌1𝑥 − 𝜌4) = 𝐺2(𝑥, 𝑦).  

.             (24) 

The subsystems (23) and (24) have positive equilibrium points that correspond to the projection 

of 𝑒3 = (1,0,
1

𝜌6
) and 𝑒4 = (�̂�, �̂�, 0) on the corresponding planes of the system (2) respectively. To 

prove whether periodic dynamics exist near the interior positive points of subsystems (23) and 

(24), the Dulac function approach [48] is used. 
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Let 𝑔1(𝑥, 𝑧) =
1

𝑥𝑧
, and 𝑔2(𝑥, 𝑦) =

1

𝑥𝑦
 be continuously differentiable functions that are defined for 

all (𝑥, 𝑧), (𝑥, 𝑦) ∈ ℝ+
2  and are located in the interior of the positive quadrant of the 𝑥𝑧-plane and 

𝑥𝑦-plane, with 𝑔1(𝑥, 𝑧), 𝑔2(𝑥, 𝑦) > 0. Additionally, the basic calculation produces the following: 

 ∆1(𝑥, 𝑧) =
𝜕

𝜕𝑥
(𝑔1. 𝐹1) +

𝜕

𝜕𝑧
(𝑔1. 𝐹2) = −

1

𝑧
−
𝜌5𝜌6

𝑥
 

 ∆2(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝑔2. 𝐺1) +

𝜕

𝜕𝑦
(𝑔2. 𝐺2) = −

1

𝑦
 

Then ∆1(𝑥, 𝑧) < 0 and ∆2(𝑥, 𝑦) < 0 for any value of (𝑥, 𝑧), (𝑥, 𝑦) ∈ ℝ+
2 . As a result, there are no 

periodic dynamics in the positive quadrants of the 𝑥𝑧-plane and 𝑥𝑦-plane.  

Theorem 4. System (2) is uniformly persistent if the conditions below are met. 

𝜌2

𝜌6
+ 𝜌4 <

𝜌1𝜌6

1+𝜌6
              (25) 

𝜌8�̂� < 𝜌5                          (26) 

Proof. Define 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝛼1𝑦𝛼2𝑧𝛼3 , where 𝛼1, 𝛼2, 𝛼3  are arbitrary positive constants, and 

𝐹(𝑥, 𝑦, 𝑧) > 0 for all (𝑥, 𝑦, 𝑧) ∈ ℝ+
3  with 𝐹(𝑥, 𝑦, 𝑧) → 0 whenever 𝑥, 𝑦 or 𝑧 goes to zero. Now, let 

φ(𝑥, 𝑦, 𝑧) =
𝐹′(𝑥,𝑦,𝑧)

𝐹(𝑥,𝑦,𝑧)
= 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3. 

The functions 𝑓1, 𝑓2, and 𝑓3 are defined in system (2).  

For the persistence of system (2), the average Lyapunov technique demands establishing that 

φ(𝑥, 𝑦, 𝑧) > 0 at all boundary equilibrium points. Therefore: 

φ(𝑥, 𝑦, 𝑧) = 𝛼1 [1 − 𝑥 −
𝑦

1+𝑧
] + 𝛼2 [

𝜌1𝑥

1+𝑧
−

𝜌2𝑧

1+𝜌3𝑦
− 𝜌4] + 𝛼3 [𝜌5 −

𝜌5𝜌6𝑧

1+𝜌7𝑦
−

𝜌8𝑦

1+𝜌9𝑧
]. 

Then: 

 φ(𝑒0) = 𝛼1 − 𝛼2𝜌4 + 𝛼3𝜌5. 

Clearly, by allowing the arbitrary positive constants 𝛼1 and 𝛼3 to be sufficiently greater than the 

positive constant 𝛼2, φ(𝑒0) > 0 is obtained. 

 φ(𝑒1) = 𝛼2[𝜌1 − 𝜌4] + 𝛼3[𝜌5]. 

Hence φ(𝑒1) > 0, whether (𝜌1 − 𝜌4) is positive or negative, by selecting the arbitrary positive 

constants 𝛼2 and 𝛼3 suitably. 
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 φ(𝑒2) = 𝛼1[1] + 𝛼2 [−
𝜌2

𝜌6
− 𝜌4]. 

So, φ(𝑒2) > 0 by selecting the arbitrary positive constants 𝛼1 and 𝛼2 suitably. 

 φ(𝑒3) = 𝛼2 [
𝜌1𝜌6

1+𝜌6
−
𝜌2

𝜌6
− 𝜌4]. 

As a result, condition (25) indicates that φ(𝑒3) > 0.  

Furthermore, at the point 𝑒4, straightforward computation reveals that: 

   φ(𝑒4) = 𝛼3[𝜌5 − 𝜌8�̂�]. 

Under condition (26), φ(𝑒4) > 0. Hence, system (2) is uniformly persistent, and the proof is 

complete.            ■ 

5. GLOBAL STABILITY ANALYSIS 

This section uses Lyapunov functions to investigate the possibility of global stability inside 

the bounded region Π of the system's (2) locally asymptotically stable equilibrium points, as shown 

in the theorems below. 

Theorem 5. The first planar point 𝑒3 = (1,0,
1

𝜌6
) = (1,0, �̃�) is globally asymptotically stable, 

provided the following condition is met.  

 1 + 𝜌
5
𝜌
7
𝑧𝑚𝑎𝑥 +

𝜌8

𝜌6

<
𝜌4

𝜌1
,              (27) 

where 𝑧𝑚𝑎𝑥 =
𝜎+2𝜌7

𝜎𝜌6
 that is given in Theorem 2. 

Proof. Consider the following a real-valued function: 

 𝐺1(𝑥, 𝑦, 𝑧) = (𝑥 − 1 − ln 𝑥) +
1

𝜌1
𝑦 + (𝑧 − �̃� − �̃� ln (

𝑧

𝑧
)).  

It is a positive definite function since 𝐺1(𝑒3) = 0 and 𝐺1(𝑥, 𝑦, 𝑧) > 0, for all {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 >

0, 𝑦 ≥ 0, 𝑧 > 0}, and (𝑥, 𝑦, 𝑧) ≠ (1,0, �̃�). Furthermore, some direct computation yields: 

𝑑𝐺1

𝑑𝑡
= (𝑥 − 1) (1 − 𝑥 −

𝑦

1+𝑧
) +

𝑥𝑦

1+𝑧
−

1

𝜌1

𝜌2𝑦𝑧

1+𝜌3𝑦
−

𝜌4

𝜌1
𝑦 + (𝑧 − �̃�) (−

𝜌5𝜌6(𝑧−𝑧)

1+𝜌7𝑦
−

𝜌5𝜌6𝜌7𝑧𝑦

1+𝜌7𝑦
−

𝜌8𝑦

1+𝜌9𝑧
).  

After simple simplification, it is obtained that: 
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𝑑𝐺1

𝑑𝑡
= −(𝑥 − 1)2 +

𝑦

1+𝑧
−

1

𝜌1

𝜌2𝑦𝑧

1+𝜌3𝑦
−
𝜌4

𝜌1
𝑦 −

𝜌5𝜌6(𝑧−�̃�)
2

1+𝜌7𝑦
+

𝜌5𝜌6𝜌7�̃�𝑦𝑧

1+𝜌7𝑦
−

𝜌5𝜌6𝜌7�̃�
2
𝑦

1+𝜌7𝑦
−

𝜌8𝑦𝑧

1+𝜌9𝑧
+

𝜌8�̃�𝑦

1+𝜌9𝑧
.  

Therefore: 

 
𝑑𝐺1

𝑑𝑡
= −(𝑥 − 1)2 − [

𝜌4

𝜌1
− 1 − 𝜌

5
𝜌
7
𝑧𝑚𝑎𝑥 −

𝜌8

𝜌6

] 𝑦 −
𝜌5𝜌6(𝑧−�̃�)

2

1+𝜌7𝑦
. 

Thus, 
𝑑𝐺1

𝑑𝑡
 is negative definite provided that condition (27) holds. Hence the proof is done.     ■ 

Theorem 6. The second planar point 𝑒4 is globally asymptotically stable, provided the following 

conditions hold. 

 
𝜌2�̂�

𝜌1
<

𝜌8

1+𝜌9𝑧𝑚𝑎𝑥
.                  (28) 

�̂� + �̂��̂�2 + 𝜌5 <
�̂��̂�

1+𝑧𝑚𝑎𝑥
.              (29) 

1

2
(1 − �̂�)2 < 1.              (30) 

3

2
<

𝜌4

𝜌1
.              (31) 

Proof. Define 𝐺2(𝑥, 𝑦, 𝑧) = (𝑥 − �̂� − �̂� ln (
𝑥

�̂�
)) +

1

2𝜌1
(𝑦 − �̂�)2 + 𝑧 , which is a real-valued 

function. It is a positive definite function since 𝐺2(𝑒4) = 0  and 𝐺2(𝑥, 𝑦, 𝑧) > 0 , for all 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0} , and (𝑥, 𝑦, 𝑧) ≠ (�̂�, �̂�, 0) . Furthermore, some direct 

computation yields: 

 

𝑑𝐺2

𝑑𝑡
= −(𝑥 − �̂�)2 − (1 − �̂�)

(𝑥−�̂�)(𝑦−�̂�)

1+𝑧
− [

𝜌4

𝜌1
−

𝑥

1+𝑧
] (𝑦 − �̂�)2

−[
�̂��̂�

1+𝑧
−

𝑥�̂�

1+𝑧
−

�̂��̂�2

1+𝑧
− 𝜌5] 𝑧 −

�̂��̂�𝑦𝑧

1+𝑧
−

𝜌2𝑦
2𝑧

𝜌1(1+𝜌3𝑦)
−
𝜌5𝜌6𝑧

2

1+𝜌7𝑦

− [
𝜌8

1+𝜌9𝑧
−

𝜌2�̂�

𝜌1(1+𝜌3𝑦)
] 𝑦𝑧.

 

Using the given conditions leads to: 

  

𝑑𝐺2

𝑑𝑡
< −(𝑥 − �̂�)2 −

(1−�̂�)

1+𝑧
(𝑥 − �̂�)(𝑦 − �̂�) − [

𝜌4

𝜌1
−

𝑥

1+𝑧
] (𝑦 − �̂�)2

−[
�̂��̂�

1+𝑧
−

𝑥�̂�

1+𝑧
−

�̂��̂�2

1+𝑧
− 𝜌5] 𝑧.
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By using further simplification, it is obtained that:

 

𝑑𝐺2

𝑑𝑡
< −[1 −

1

2
(
1−�̂�

1+𝑧
)
2

] (𝑥 − �̂�)2 − [
𝜌4

𝜌1
−

𝑥

1+𝑧
−
1

2
] (𝑦 − �̂�)2

−[
�̂��̂�

1+𝑧
−

𝑥�̂�

1+𝑧
−

�̂��̂�2

1+𝑧
− 𝜌5] 𝑧.

 

Hence, 
𝑑𝐺2

𝑑𝑡
 is a negative-definite if the conditions (28-31) hold, thus proof is complete.  ■ 

Theorem 7. The positive point 𝑒5  is globally asymptotically stable, provided the following 

conditions hold. 

 
1

2
(1 − �̅�)2 +

1

2
(
�̅�

�̅�
)
2

< 1,              (32)  

 
𝜌9�̅�

�̅�
+ 1 <

𝜌5𝜌6

1+𝜌7𝑦𝑚𝑎𝑥
,                          (33) 

 1 +
1

2
(
�̅��̅�

�̅�
+
𝜌2𝑦𝑚𝑎𝑥

𝜌1
−
𝜌5𝜌6𝜌7�̅�

�̅�
+ 𝜌8)

2

+
1

2
<

𝜌4

𝜌1
+

𝜌2�̅�

𝜌1(1+𝜌3𝑦𝑚𝑎𝑥)�̅�
.                    (34) 

Proof. Define 𝐺3(𝑥, 𝑦, 𝑧) = (𝑥 − �̅� − �̅� ln (
𝑥

�̅�
)) +

1

2𝜌1
(𝑦 − �̅�)2 + (𝑧 − 𝑧̅ − 𝑧̅ ln (

𝑧

�̅�
)), which is a 

real-valued function. It is a positive definite function since 𝐺3(𝑒5) = 0 and 𝐺3(𝑥, 𝑦, 𝑧) > 0, for all 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0}, and (𝑥, 𝑦, 𝑧) ≠ (�̅�, �̅�, 𝑧̅). By using some direct computation 

yields: 

 

𝑑𝐺2

𝑑𝑡
= −(𝑥 − �̅�)2 −

(1−�̅�)

𝐴
(𝑥 − �̅�)(𝑦 − �̅�) +

�̅�

𝐴�̅�
(𝑥 − �̅�)(𝑧 − 𝑧̅)

− [
�̅��̅�

𝐴�̅�
+

𝜌2𝑦

𝜌1𝐵
−
𝜌5𝜌6𝜌7�̅�

𝐶�̅�
+
𝜌8

𝐷
] (𝑦 − �̅�)(𝑧 − 𝑧̅)

− [
𝜌4

𝜌1
+

𝜌2�̅�

𝜌1𝐵�̅�
−

𝑥

𝐴
] (𝑦 − �̅�)2 − [

𝜌5𝜌6

𝐶
−
𝜌9�̅�

𝐷�̅�
] (𝑧 − 𝑧̅)2,

 

where 𝐴 = (1 + 𝑧) , �̅� = (1 + 𝑧̅) , 𝐵 = (1 + 𝜌3𝑦) , �̅� = (1 + 𝜌3�̅�) , 𝐶 = (1 + 𝜌7𝑦) , 𝐶̅ = (1 +

𝜌7�̅�), 𝐷 = (1 + 𝜌9𝑧), and �̅� = (1 + 𝜌9𝑧̅). 

By using further simplification, it is obtained that: 

𝑑𝐺2
𝑑𝑡

= − [1 −
1

2
(
1 − �̅�

𝐴
)
2

−
1

2
(
�̅�

𝐴�̅�
)
2

] (𝑥 − �̅�)2 − [
𝜌5𝜌6
𝐶

−
𝜌9�̅�

𝐷�̅�
− 1] (𝑧 − 𝑧̅)2

−[
𝜌4
𝜌1
+

𝜌2𝑧̅

𝜌1𝐵�̅�
−
𝑥

𝐴
−
1

2
(
�̅��̅�

𝐴�̅�
+
𝜌2𝑦

𝜌1𝐵
−
𝜌5𝜌6𝜌7𝑧̅

𝐶𝐶̅
+
𝜌8
𝐷
)
2

−
1

2
] (𝑦 − �̅�)2.
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Hence, 
𝑑𝐺3

𝑑𝑡
 is negative definite provided that conditions (32-34) hold. Hence the proof is done. ■ 

6. LOCAL BIFURCATION ANALYSIS 

This section uses the Sotomayor theorem [48] for local bifurcation to study how changing 

parameters affect the system's (2) qualitative dynamics near non-hyperbolic points. Rewrite system 

(2) with the vector form: 

 
𝑑𝐗

𝑑𝑡
= 𝐅(𝐗, 𝜌), 𝐗 = (𝑥, 𝑦, 𝑧)𝑇, 𝐅 = (𝑥𝑓1(𝐗, 𝜇), 𝑦𝑓2(𝐗, 𝜇), 𝑧𝑓3(𝐗, 𝜇))

𝑇
, 

where the system (2) specifies 𝑓𝑖(𝐗, 𝜌), ∀𝑖 = 1,2,3. The potential bifurcation parameter 𝜌 ∈ ℝ+ is 

also specified. Direct computation of the second and third derivatives of vector 𝐅  gives the 

following:  

    𝐷2𝐅(𝐗, 𝜌). (𝐕, 𝐕) = (𝑐𝑖1)3×1,                       (35) 

where 𝐕 = (𝑣1, 𝑣2, 𝑣3)
𝑇 be any vector and 

 

𝑐11 = −2𝑣1
2 −

2

(1+𝑧)
𝑣1𝑣2 +

2𝑦

(1+𝑧)2
𝑣1𝑣3 +

2𝑥

(1+𝑧)2
𝑣2𝑣3 −

2𝑥𝑦

(1+𝑧)3
𝑣3
2 , 

𝑐21 =
2𝜌1

1+𝑧
𝑣1𝑣2 −

2𝜌1𝑦

(1+𝑧)2
𝑣1𝑣3 − 2(

𝜌1𝑥

(1+𝑧)2
+

𝜌2

(1+𝜌3𝑦)2
) 𝑣2𝑣3 +

2𝜌2𝜌3𝑧

(1+𝜌3𝑦)3
𝑣2
2 +

2𝜌1𝑥𝑦

(1+𝑧)3
𝑣3
2, 

𝑐31 = −2
𝜌5𝜌6𝜌7

2𝑧2

(1+𝜌7𝑦)3
𝑣2
2 + (

4𝜌5𝜌6𝜌7𝑧

(1+𝜌7𝑦)2
−

2𝜌8

(1+𝜌9𝑧)2
) 𝑣2𝑣3 − 2(

𝜌5𝜌6

1+𝜌7𝑦
−

𝜌8𝜌9𝑦

(1+𝜌9𝑧)3
) 𝑣3

2. 

Furthermore, 

 𝐷3𝐅(𝐗, 𝜌). (𝐕, 𝐕, 𝐕) = (𝑑𝑖1)3×1,             (36) 

where: 

𝑑11 =
6

(1+𝑧)2
𝑣1𝑣2𝑣3 −

6𝑥

(1+𝑧)3
𝑣2𝑣3

2 −
6𝑦

(1+𝑧)3
𝑣1𝑣3

2 +
6𝑥𝑦

(1+𝑧)4
𝑣3

3,  

𝑑21 =
6𝜌1𝑦

(1+𝑧)3
𝑣1𝑣3

2 −
6𝜌1

(1+𝑧)2
𝑣1𝑣2𝑣3 −

6𝜌2𝜌3
2𝑧

(1+𝜌3𝑦)4
𝑣2
3 +

6𝜌2𝜌3

(1+𝜌3𝑦)3
𝑣2
2𝑣3

+
6𝜌1𝑥

(1+𝑧)3
𝑣2𝑣3

2 −
6𝜌1𝑥𝑦

(1+𝑧)4
𝑣3
3

,  

𝑑31 = 6
𝜌5𝜌6𝜌7

3𝑧2

(1+𝜌7𝑦)4
𝑣2
3 − 12

𝜌5𝜌6𝜌7
2𝑧

(1+𝜌7𝑦)3
𝑣3𝑣2

2 + 6(
𝜌5𝜌6𝜌7

(1+𝜌7𝑦)2
+

𝜌8𝜌9

(1+𝜌9𝑧)3
) 𝑣2𝑣3

2 − 6
𝜌8𝜌9

2𝑦

(1+𝜌9𝑧)4
𝑣3
3. 
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Theorem 8: Near the first planer point 𝑒3, system (2) experiences a transcritical bifurcation when 

the parameter 𝜌4 passes through the positive value 𝜌4
∗ =

𝜌1𝜌6

𝜌6+1
−
𝜌2

𝜌6
 if the following condition holds: 

 2𝜌1 (1 +
1

𝜌6
)
−1

𝜎1 + 2𝜌2𝜌3
1

𝜌6
≠ 2(𝜌1 (1 +

1

𝜌6
)
−2

+ 𝜌2) 𝜎3,         (37) 

where 𝜎1 and 𝜎3 are given in the proof. Otherwise, a pitchfork bifurcation takes place when 

 6𝜌2𝜌3𝜎3 + 6𝜌1𝜎3
2 (1 +

1

𝜌6
)
−3

≠ 6𝜌1𝜎1𝜎3 (1 +
1

𝜌6
)
−2

+
6𝜌2𝜌3

2

𝜌6
.           (38) 

Proof: The matrix (11) at (𝑒3, 𝜌4
∗) yields: 

 𝐽1 = 𝐽(𝑒3, 𝜌4
∗) = (

−1 −
𝜌6

𝜌6+1
0

0 0 0

0 (𝜌5𝜌7 −
𝜌6𝜌8

𝜌6+𝜌9
)
1

𝜌6
−𝜌5

 ). 

The eigenvalues of 𝐽1 are as follows: 𝜆31 = −1, 𝜆32 = 0 and 𝜆33 = −𝜌5. Hence a non-hyperbolic 

point 𝑒3  has been obtained. Let 𝐕1 = (𝑣11, 𝑣21, 𝑣31)
𝑇  and 𝐖1 = (𝑤11, 𝑤21, 𝑤31)

𝑇  be the 

eigenvectors corresponding 𝜆32 = 0 of 𝐽1 and 𝐽1
𝑇 respectively. The straightforward computation 

yields that 𝐕1 = (𝜎1, 1, 𝜎3)
𝑇 , and 𝐖1 = (0,1,0)𝑇 , where 𝜎1 = −

𝜌6

𝜌6+1
 and 𝜎3 =

𝜌7

𝜌6
−

𝜌8

𝜌5(𝜌6+𝜌9)
 . 

Moreover, equation (35) is used to provide the following: 

 𝐅𝜌4 = (0,−𝑦, 0)
𝑇 ⟹ 𝐅𝜌4(𝑒3, 𝜌4

∗) = (0,0,0)𝑇 ⟹ 𝐖1
𝑇𝐅𝜌4(𝑒3, 𝜌4

∗) = 0. 

 𝐷𝐅𝜌4 . 𝐕1 = (0,−1,0)
𝑇 ⟹ 𝐖1

𝑇 . 𝐷𝐅𝜌4(𝑒3, 𝜌4
∗). 𝐕1 = −1. 

 𝐷2𝐅(𝑒3, 𝜌4
∗). (𝐕1, 𝐕1) = (

𝑚1

𝑚2

𝑚3

), 

where: 

𝑚1 = −2𝜎1
2 −

2

(1+
1

𝜌6
)
𝜎1 +

2

(1+
1

𝜌6
)
2 𝜎3 , 

𝑚2 = 2𝜌1 (1 +
1

𝜌6
)
−1

𝜎1 − 2(𝜌1 (1 +
1

𝜌6
)
−2

+ 𝜌2) 𝜎3 + 2𝜌2𝜌3
1

𝜌6
, 

𝑚3 = −2𝜌5𝜌7
2 1

𝜌6
+ (4𝜌5𝜌7 − 2𝜌8 (1 + 𝜌9

1

𝜌6
)
−2
)𝜎3 − 2𝜌5𝜌6𝜎3

2.  
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Hence, due to condition (37), it is obtained that: 

  𝐖1
𝑇[𝐷2𝐅(𝑒3, 𝜌4

∗). (𝐕1, 𝐕1)] = (0,1,0)𝑇 (

𝑚1

𝑚2

𝑚3

) = 𝑚2 ≠ 0.  

Hence, when 𝜌4 = 𝜌4
∗, system (2) experiences a transcritical bifurcation at the equilibrium point 

𝑒3. Otherwise, when condition (37) is not satisfied, then using (36) yields: 

 𝐷3𝐅(𝑒3, 𝜌4
∗). (𝐕1, 𝐕1, 𝐕1) = (

𝑚11

𝑚21

𝑚31

), 

where: 

𝑚11 =
6𝜎1𝜎3

(1+
1

𝜌6
)2
−

6𝜎3
2

(1+
1

𝜌6
)
3,  

𝑚21 = −
6𝜌1𝜎1𝜎3

(1+
1

𝜌6
)
2 −

6𝜌2𝜌3
2

𝜌6
+ 6𝜌2𝜌3𝜎3 +

6𝜌1𝜎3
2

(1+
1

𝜌6
)
3,  

𝑚31 =
6𝜌5𝜌7

3

𝜌6
− 12𝜌5𝜌7

2𝜎3 + 6(𝜌5𝜌6𝜌7 +
𝜌8𝜌9

(1+𝜌9
1

𝜌6
)
3)𝜎3

2. 

Hence, due to condition (38), it is obtained that: 

 𝐖1
𝑇 . 𝐷3𝐅(𝑒3, 𝜌4

∗). (𝐕1, 𝐕1, 𝐕1) = 𝑚21 ≠ 0. 

Hence, when 𝜌4 = 𝜌4
∗, system (2) experiences a pitchfork bifurcation at the equilibrium point 𝑒3. 

Thus, the proof is completed.                         ■ 

Theorem 9: Near the second planar equilibrium point, system (2) experiences a transcritical 

bifurcation when the parameter 𝜌5
  passes through the positive value 𝜌5

∗ = 𝜌8�̂� if the following 

condition holds: 

 𝜌8𝜌9�̂� ≠ 𝜌8𝛿2 +
𝜌5𝜌6

1+𝜌7�̂�
,                         (39) 

where 𝛿2 is given in the proof. Otherwise, pitchfork bifurcation occurs provided that: 

 (
𝜌5𝜌6𝜌7

(1+𝜌7�̂�)2
+ 𝜌8𝜌9) 𝛿2 ≠ 𝜌8𝜌9

2�̂�.             (40) 
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Proof: The matrix (13) at (𝑒4, 𝜌5
∗) yields: 

 𝐽2 = 𝐽(𝑒4, 𝜌5
∗) = (

−�̂� −�̂� �̂��̂�

𝜌1�̂� 0 − (𝜌1�̂� +
𝜌2

1+𝜌3�̂�
) �̂�

0 0 0

 ). 

The eigenvalues of 𝐽2  are as follows: 𝜆41,42 =
−�̂�

2
±
√�̂�2−4𝜌1�̂��̂�

2
 and 𝜆43 = 0. This transfers the 

point 𝑒4 to a non-hyperbolic point. Let 𝐕2 = (𝑣12, 𝑣22, 𝑣32)
𝑇 and 𝐖2 = (𝑤12, 𝑤22, 𝑤32)

𝑇 be the 

eigenvectors corresponding 𝜆43 = 0 of 𝐽2 and 𝐽2
𝑇 respectively. The straightforward computation 

yields that 𝐕2 = (𝛿1, 𝛿2, 1)
𝑇, and 𝐖2 = (0,0,1)𝑇, where 𝛿1 = �̂� +

𝜌2

𝜌1(1+𝜌3�̂�)
> 0 and 𝛿2 = −�̂� +

�̂� −
𝜌2

𝜌1(1+𝜌3�̂�)
 . Moreover, equation (35) is used to provide the following: 

 𝐅𝜌5 = (0,0, 𝑧 −
𝜌6𝑧

2

1+𝜌7𝑦
)
𝑇

 ⟹ 𝐅𝜌5 (𝑒4, 𝜌5
∗) = (0,0,0)𝑇 ⟹ 𝐖2

𝑇𝐅𝜌5 (𝑒4, 𝜌5
∗) = 0. 

 𝐖2
𝑇[𝐷𝐅𝜌5 (𝑒4, 𝜌5

∗). 𝐕2] = (0,0,1) (
0
0
1
) = 1 ≠ 0. 

 𝐷2𝐅(𝑒4, 𝜌5
∗). (𝐕2, 𝐕2) = (

𝑛1
𝑛2
𝑛3
), 

where: 

𝑛1 = −2𝛿1
2 − 2𝛿1𝛿2 + 2�̂�𝛿1 + 2𝑥𝛿2 − 2�̂��̂� , 

𝑛2 = 2𝜌1𝛿1𝛿2 − 2𝜌1�̂�𝛿1 − 2(𝜌1�̂� +
𝜌2

(1+𝜌3�̂�)2
) 𝛿2 + 2𝜌1�̂��̂�, 

𝑛3 = −2𝜌8𝛿2 − 2(
𝜌5𝜌6

1+𝜌7�̂�
− 𝜌8𝜌9�̂�). 

Thus, using condition (39) yields that: 

  𝐖2
𝑇[𝐷2𝐅(𝑒4, 𝜌5

∗). (𝐕2, 𝐕2)] = 𝑛3 ≠ 0. 

Hence, when 𝜌5 = 𝜌5
∗, system (2) experiences a transcritical bifurcation at the equilibrium point 

𝑒4. When the condition (39) fails to be met, equation (36) yields the following result: 

 𝐷3𝐅(𝑒4, 𝜌5
∗). (𝐕2, 𝐕2, 𝐕2) = (

𝑛11
𝑛21
𝑛31

), 

where: 
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𝑛11 = 6𝛿1𝛿2 − 6�̂�𝛿2 − 6�̂�𝛿1 + 6�̂��̂�,  

𝑛21 = 6𝜌1�̂�𝛿1 − 6𝜌1𝛿1𝛿2 +
6𝜌2𝜌3

(1+𝜌3�̂�)3
𝛿2
2 + 6𝜌1�̂�𝛿2 − 6𝜌1�̂��̂�,  

𝑛31 = 6(
𝜌5𝜌6𝜌7

(1+𝜌7�̂�)2
+ 𝜌8𝜌9) 𝛿2 − 6𝜌8𝜌9

2�̂�. 

Hence, due to condition (40), it is obtained that: 

 𝐖2
𝑇[𝐷3𝐅(𝑒4, 𝜌5

∗). (𝐕2, 𝐕2, 𝐕2)] = 𝑛31 ≠ 0. 

Thus, the proof is finished and the pitchfork bifurcation occurs.           ■ 

Theorem 10: Assuming the conditions (17)-(19) hold, as the parameter 𝜌6 reaches the value 𝜌6
∗ =

𝜌8(((�̅�22�̅�+�̅�23�̅�)𝑎11−�̅�21(�̅�12�̅�+�̅�13�̅�))𝜌9+�̅�11�̅�23−�̅�21�̅�13)(1+𝜌7�̅�)
2

𝜌5(((�̅�22�̅�+�̅�23�̅�)𝑎11−�̅�21(�̅�12�̅�+�̅�13�̅�))𝜌7+�̅�11�̅�22−�̅�12�̅�21)(1+𝜌9�̅�)2
, system (2) experiences a saddle-node 

bifurcation around the positive point if the following condition holds: 

 𝑤13𝑠11 + 𝑤23𝑠21 + 𝑠31 ≠ 0,                              (41) 

where the definition of each new symbol is represented in the proof. 

Proof: The matrix (15) at (𝑒5, 𝜌6
∗) yields: 

 𝐽3 = 𝐽(𝑒5, 𝜌6
∗) = (

�̅�11 �̅�12 �̅�13
�̅�21
 �̅�22 �̅�23

 

0 �̅�32
∗ �̅�33

∗
), 

where �̅�33
∗ = �̅�33

∗ (𝜌6
∗), and �̅�32

∗ = �̅�32
∗ (𝜌6

∗). 

Simple computations show that the determinant of 𝐽3, represented by 𝐴3 in equation (16), is zero. 

Therefore, 𝐽3 will have a zero eigenvalue (𝜆3
∗ = 0) and two additional non-zero eigenvalues. Thus, 

the point 𝑒5  becomes a non-hyperbolic point. Let 𝐕3 = (𝑣13, 𝑣23, 𝑣33)
𝑇  and 𝐖3 =

(𝑤13, 𝑤23, 𝑤33)
𝑇  be the eigenvectors corresponding 𝜆3

∗ = 0  of 𝐽3  and 𝐽3
𝑇  respectively. Then 

straightforward computation yields that:  

 𝐕3 =

(

 

�̅�12�̅�23
 −�̅�13�̅�22

�̅�11�̅�22−�̅�12�̅�21
 

−
�̅�11�̅�23

 −�̅�13�̅�21
 

�̅�11�̅�22−�̅�12�̅�21
 

1 )

 = (
𝑣13
𝑣23
1
),  𝐖3 =

(

 
 

�̅�21
 �̅�32

∗

�̅�11�̅�22−�̅�12�̅�21
 

−
�̅�11�̅�32

∗

�̅�11�̅�22−�̅�12�̅�21
 

1 )

 
 
= (

𝑤13
𝑤23
1
).  

Moreover, equation (35) is used to provide the following: 
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𝐅𝜌6 = (0,0, −

𝜌5𝑧
2

1+𝜌7𝑦
)
𝑇

⟹ 𝐅𝜌6(𝑒5, 𝜌6
∗) = (0,0, −

𝜌5�̅�
2

1+𝜌7�̅�
)
𝑇

⟹𝐖3
𝑇𝐅𝜌6(𝑒5, 𝜌6

∗) = −
𝜌5�̅�

2

1+𝜌7�̅�
≠ 0

. 

In addition, it is obtained that: 

 𝐷2𝐅(𝑒5, 𝜌6
∗). (𝐕3, 𝐕3) = (

𝑠11
𝑠21
𝑠31
), 

where 𝑠11 = 𝑐11(𝑒5, 𝜌6
∗, 𝐕3) , 𝑠21 = 𝑐21(𝑒5, 𝜌6

∗, 𝐕3) , and 𝑠31 = 𝑐31(𝑒5, 𝜌6
∗, 𝐕3) . Hence, due to 

condition (41), it is obtained that: 

  𝐖3
𝑇[𝐷2𝐅(𝑒5, 𝜌6

∗). (𝐕3, 𝐕3)] = 𝑤13𝑠11 + 𝑤23𝑠21 + 𝑠31 ≠ 0. 

Hence, when 𝜌6 = 𝜌6
∗, system (2) experiences a Saddle-node bifurcation at the equilibrium point 

𝑒5. Thus, the proof is completed.                 ■ 

7. NUMERICAL SIMULATION 

This section will numerically solve the food chain system (2) by picking biologically 

acceptable values for the parameters 𝜌𝑖, (𝑖 = 1,2,3, … ,9) represented by the set (42). The objective 

is to confirm the previously stated outcomes as well as to understand and explain the impact of 

changes in system parameters. The numerical solutions will be presented in a variety of ways using 

MATLAB version R2023b. All the obtained results use the initial points  

𝐼1 = (0.75,0.75,0.75), 𝐼2 = (0.1,0.25,0.9), 𝐼3 = (0.9,0.1,0.9), 𝐼4 = (1,0.5,0.2),  𝐼5 = (1,1,0.5),

𝐼6 = (0.5,0.25,0.75), 𝐼7 = (0.25,0.5,0.1), 𝐼8 = (0.1,0.9,1), 𝐼9 = (0.02,0.02,0.02),
 

and the following parameters set 

 
𝜌1 = 0.75, 𝜌2 = 0.05, 𝜌3 = 0.5, 𝜌4 = 0.2, 𝜌5 = 0.5,

𝜌6 = 0.9, 𝜌7 = 0.1, 𝜌8 = 0.25, 𝜌9 = 0.1
                       (42) 

Moreover, the red dot stands for the final state of the solution, while the blue dots stand for the 

above initial points. It is obtained that for the set (42) with the given initial data, system (2) 

approaches a positive equilibrium point as shown in Fig. 1.  
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Figure 1. The trajectory of the system (2) using the parameters set (42). (a) Shows the 3D phase 

portrait of the system (2) from different initial points. (b) The time series. (c) The projection of the 

phase portrait on the 𝑥𝑦-plane. (d) The projection of the phase portrait on the 𝑦𝑧-plane. (e) The 

projection of the phase portrait on the 𝑥𝑧-plane. 

According to Fig. 1, system (2) approaches asymptotically to the positive equilibrium point 𝑒5 =

(0.52,0.82,0.73) from different initial points. 
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Now, the effect of changing the parameter 𝜌1 on the dynamics of the system (2) indicates that 

when 𝜌1 ≤ 0.54, the system approaches the first planar point 𝑒3 from different initial points, the 

system approaches the positive point 𝑒5  when 0.54 < 𝜌1 ≤ 3.5 , which is presented by  

Fig 1. Moreover, when 𝜌1 > 3.5 reveals that the system exhibits 3D periodic dynamics see Fig. 2. 

 

Figure 2. The 3D phase portrait of the system (2) using the parameters set (42) with different 

values of 𝜌1. (a) Phase portrait shows the approaching of the system solution to the first planer 

point 𝑒3 = (1,0,1.11) when 𝜌1 = 0.5. (b) 3D periodic dynamics when 𝜌1 = 4. 

The analysis of the impact of varying the parameter 𝜌2 on the system's (2) dynamics reveals that 

it approaches the positive point 𝑒5 when 𝜌2 < 0.15 (see Fig. 1). Also, it approaches the first planer 

point 𝑒3 when 𝜌2 ≥ 0.15, see Fig. 3.  

  

Figure 3. The trajectory of the system (2) using the parameters set (42) with 𝜌2 = 0.2. (a) 3D 

phase portrait of the system (2) that approaches 𝑒3 = (1,0,1.11). (b) The time series. 
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It is observed that system (2) dynamics do not qualitatively change when the parameter 𝜌3, 𝜌7, and 

𝜌9 values vary. On the contrary, system (2) exhibits 3D periodic dynamics when 𝜌4 < 0.01, it 

approaches asymptotically the positive point 𝑒5  when 0.01 ≤ 𝜌4 < 0.3  (see Fig. 1). Finally, 

system (2) approaches the first planar point 𝑒3 when 𝜌4 ≥ 0.3, see Fig 4. 

  

Figure 4. The 3D phase portrait of the system (2) using the parameters set (42). (a) 3D periodic 

dynamics when 𝜌4 = 0.005. (b) System (2) approaches 𝑒3 = (1,0,1.11) with 𝜌4 = 0.5. 

The effect of changing the parameter 𝜌5 on the dynamics of system (2) indicates that when 𝜌5 <

0.2 the system approaches 𝑒4 as in Fig. 5. Moreover, the system approaches 𝑒5 when 𝜌5 ≥ 0.2, 

see Fig. 1.  

 

Figure 5. The trajectory of the system (2) using the set of parameters (42). (a) The 3D phase 

portrait of the system (2) approaches 𝑒4 = (0.26,0.73,0) when 𝜌5 = 0.1. (b) The time series. 
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On the other hand, it is obtained that the parameters 𝜌6  and 𝜌8  will behave oppositely to the 

parameters 𝜌2 and 𝜌5 respectively. For more information see Table 2. 

Table 2. The food chain system (2)'s dynamical behavior as a function of the parameters for 𝜌6 

and 𝜌8 using the set of parameters (42). 

The parameter The range The dynamic behaviour 

𝝆𝟔 
𝝆𝟔 ≤ 𝟎. 𝟔 System (2) approaches 𝒆𝟑  

𝝆𝟔 > 𝟎. 𝟔 System (2) approaches 𝒆𝟓  

𝝆𝟖 
𝝆𝟖 < 𝟎. 𝟔𝟖 System (2) approaches 𝒆𝟓  

𝝆𝟖 ≥ 𝟎. 𝟔𝟖 System (2) approaches 𝒆𝟒  

 

8. DISCUSSION AND CONCLUSIONS 

A Leslie-Gower food chain model consisting of producer-consumer-predators was formulated 

mathematically. Although consumers have a fear of predators, they are capable of defending 

themselves against predation. The solution properties of the proposed food chain model are 

obtained. All the feasible equilibrium points are determined. Their stability analysis is established. 

The persistence requirements are determined. The bifurcation analysis of the system is studied.    

Finally, the system is solved numerically using an estimated set of parameter values and starting 

from different sets of initial points to verify the obtained analytical results and understand the 

impact of varying the parameter values. Regarding numerical results, it is obtained that decreasing 

(increasing) the consumer fear, alternative food for predators, and intrinsic growth rate of 

producers in comparison with that of predators stabilizes (loses the persistence) the food chain 

system. On the other hand, decreasing (increasing) the consumer fear, or half saturation constant, 

or intrinsic growth rate of producers in comparison with predators' attack rate loses the persistence 

(stabilizes) the food chain system. Similar results are obtained when decreasing (increasing) the 

half-saturation constant in comparison with the consumer antipredator level or intrinsic growth 

rate of producers in comparison with the consumer death rate. Finally, decreasing (increasing) the 

intrinsic growth rate of producers in comparison with the multiplication quotient between producer 
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conversion rate and producer carrying capacity destabilizes but keeps the persistence (losing of 

persistence) of the food chain system. Similar results are obtained when increasing (or decreasing) 

the intrinsic growth rate of producers in comparison with the consumer death rate 
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