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Abstract: This study's main goal is to determine how the prey population's cooperation and anti-predator behavior 

affect the prey-predator model's dynamic with disease in prey with the fear interaction. For this purpose, a 

mathematical model with Holling type II functional response was proposed and analyzed. The existence conditions of 

the equilibrium points with their stability analysis were analyzed to determine the qualitative behavior of the model. 

Numerical simulations are performed to support our analytical results. It is obtained that fear has a stabilizing role, 

whereas hunting cooperation has a destabilizing role in the system dynamics. Periodic oscillations were observed in 

the model through bifurcation. 
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1. INTRODUCTION 

   Eco-epidemiology is a prominent branch of biology and applied sciences research. It looks at 

the dynamics of an ecological system under the influence of epidemiological elements, i.e. the 

dynamics of a predator-prey system in the presence of an infectious disease. It consists of two 

primary fields: ecology and epidemiology, which are currently interesting to scientists. When 
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disease is introduced into prey or predator populations, a purely ecological system becomes eco-

epidemiological. The authors in [1] were the first to use a predator-prey system with disease in the 

prey population to show how the disease might destabilize the system. The term eco-epidemiology 

was first coined by [2], which combined the concepts of ecology and epidemiology. After that, an 

eco-epidemiological system including disease in prey population that applied to the Salton Sea’s 

fish-pelican system was proposed and studied by [3]. The authors in [4] investigated the role of 

infectious disease in the dynamics of a predator-prey system for different forms of functional 

responses. Several researchers proposed and studied eco-epidemiological models involving 

numerous biological factors, see [5-8] when there is a disease in prey, [9-12] regarding the disease 

in predator, while [13-15] in case of the existence of the disease in both the species. Furthermore, 

it has been observed that the spread of diseases among a population is the main reason for the 

species extinction see [16-18] and the references therein. 

Ecosystems are also remarkably affected by fear. Numerous researchers have examined the effects 

of panic on prey species; see [19–21] and the citations therein. In fact, fear can have either 

immediate or secondary effects; in the former case, the predator kills the prey directly [22]. In the 

secondary example, on the other hand, the presence of a predator significantly changes the 

behavior of the prey because they fear being preyed upon [23–25]. In order to understand how 

prey fear impacts the dynamics of the prey-predator system, a great deal of research has been done 

[26–28].   

Groups of species come together for mutual benefit through cooperation, a basic mechanism that 

is important to ecology. It has been noted that cooperative hunting, in which predators chase their 

prey together, is a common practice in nature. A few benefits of cooperative hunting include a 

shorter chase distance [29], a larger chance of trapping several animals [30], and an enhanced 

success rate. Furthermore, cooperative conduct makes prey fearful, which facilitates hunting even 

more. The authors of Alves et al. [31] showed that a stable coexistence equilibrium emerges when 

hunting cooperation is present in a system. Hunting cooperation in prey-predator interactions has 

been the subject of numerous studies [32–34]. A mathematical eco-epidemiological model 

incorporating anti-predator traits and a prey-predator model involving fear induced by hunting 
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cooperation level was recently constructed and studied [35]. Additionally, Alwan and Satar [36] 

built and analyzed an eco-epidemiological model that included a diseased predator with 

cooperative hunting and anti-predator properties. The dynamics and ramifications of cooperative 

hunting in ecological systems are better understood thanks to these investigations.  

Harvesting species is an interesting aspect of prey-predator systems from an economical and 

ecological standpoint. It is very important for resource conservation and societal management. A 

system can be exploited when there is a lot of prey, predators, or both. Harvesting procedures and 

a harvesting policy must be put in place for the efficient management of ecological resources to 

stop such exploitation. To enable systematic resource management, harvesting regulations are 

essential for regulating the type, time, and intensity of harvesting. Researchers have devoted their 

time to this field's study during the last few decades. The idea of optimal harvesting in fishing 

systems was first proposed by Clark [37]. Additional research has been conducted on several 

predator-prey models that incorporate nonlinear harvesting [38–39]. They looked at numerous 

kinds of bifurcations in the system and tested the stability of alternative equilibria. These kinds of 

studies advance our knowledge of the best harvesting practices and how they affect the stability 

and sustainability of ecological systems.  

Anti-predator behavior in prey populations is a distinctive feature of predator-prey interactions and 

it has been documented by several ecologists over the past decade. This behavior is a type of prey 

survival strategy that has evolved in prey populations to prevent predation. Many behavioral 

ecologists have studied different kinds of anti-predator behaviors in various prey species [40-42]. 

In the presence of a predator, prey species exhibit inducible defense, which is defined as protective 

behaviors learned from past attacks. Inducible defense triggers chemicals in different body sections 

of prey to develop new structures or intelligently combat predators.  

The actions of every species in a biological system where predators and prey coexist can have an 

impact on both populations. For instance, prey becomes more difficult to hunt for predators when 

they are aware of their presence and react fearfully. This fact causes prey to avoid direct predation, 

which may boost the prey's short-term survival but have the unintended consequence of reducing 

the prey population over time [43]. In the mathematical modeling approach, many authors 
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examined the roles of hunting cooperation and fear influence in the predator-prey system [33-35] 

and the references therein.  

In this work, we examine an eco-epidemiological system wherein the prey population becomes 

infected with a disease. In a predator-prey model, this study intends to concurrently examine the 

effects of hunting cooperation, anti-predator, harvesting, and terror effects. The phenomenon of 

predator hunting in groups and predator harvesting will be included in our model. We will use 

numerical simulations to examine the system dynamics, enabling us to evaluate the effects of 

particular parameters like predator harvesting, prey growth, hunting cooperation, and fear effects. 

Equilibrium point existence and local stability requirements are derived. For a single set of primary 

points and a variety of parameter values, the global dynamics are examined both analytically and 

numerically. There is a brief conclusion at the end of the work.  

2. MATHEMATICAL MODEL 

 In this section, an eco-epidemiological system consisting of prey-predator including anti-

predator and hunting cooperation with disease in prey is formulated mathematically for study. It’s 

assumed that there is a harvesting on the prey and predator. So to formulate the dynamics of such 

a real-life system the following hypotheses are adopted 

𝑑𝑠

𝑑𝑡
=

𝑟𝑠

1+𝛼𝑦
(1 −

𝑠+𝐼

𝑘
) − 𝛿𝑠𝐼 −

(𝑐+𝑚𝑦)𝑠𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑞1𝑠,     

𝑑𝐼

𝑑𝑡
= 𝛿𝑠𝐼 −

(𝑐+𝑚𝑦)𝐼𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑1𝐼,                                      

𝑑𝑦

𝑑𝑡
= (𝑏1𝑠 + 𝑏2𝐼)

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑2𝑦 − 𝜇𝑠𝑦 − 𝑞2𝑦 ,

                            (1) 

where 𝑠(0) = 𝑠0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0 , and 𝑦(0) = 𝑦0 ≥ 0,  with 𝑠(𝑡), 𝐼(𝑡) , and 𝑦(𝑡)  represent 

the densities at time 𝑡  for the susceptible prey, Infected prey, and predator, respectively. The 

biological meaning of all the non-negative parameters in the model (1) in Table (1).  
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Table 1. Biological explanations of the parameters associated with the model (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, rewritten system (1) with (𝑠, 𝐼, 𝑦), the following system can be obtained 

 

𝑑𝑠

𝑑𝑡
= 𝑠 (

𝑟

1+𝛼𝑦
(1 −

𝑠+𝐼

𝑘
) − 𝛿𝐼 −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑞1) = 𝑠𝑓1,         

𝑑𝐼

𝑑𝑡
= 𝐼 (𝛿𝑠 −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑1     ) = 𝐼𝑓2  ,                                  

𝑑𝑦

𝑑𝑡
= 𝑦 ((𝑏1𝑠 + 𝑏2𝐼)

(𝑐+𝑚𝑦)

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑2 − 𝜇𝑠 − 𝑞2  ) = 𝑦𝑓3 .  

            (2) 

According to biology, every population in the model ought to have boundaries. A boundedness 

analysis is important for this. The following theorem on the boundedness of the model (1) solutions 

was deduced by us. It is simple to verify that the prerequisite for every species in the system (2) to 

survive is provided by 

𝑞1 < 𝑟                                                     (3) 

Theorem 1.  In system (2) all solutions with ICs are bounded for all time 𝑡 > 0. 

Proof. The first equation of the system (2) gives 
𝑑𝑠

𝑑𝑡
+

𝑟

𝐾
𝑠2 ≤ (𝑟 − 𝑞1)𝑠  then for 𝑡 → ∞   we 

have 𝑠 ≤
𝑘(𝑟−𝑞1)

𝑟
. Now let Ε1 = 𝑠 + 𝐼 + 𝑦, then applying some calculations gives that  

Parameters Biological meaning  

𝑟 The prey’s intrinsic growth rate 

𝑘 The carrying capacity of the environment 

𝛼 The prey’s fear rate  

𝛿 The disease transmission rate 

𝑐 the consumption rate by the predator 

𝑚 The level of cooperation in predator hunting 

𝛽 The preference of infected prey coefficient. 

ℎ The predators handing time of a prey 

𝑑1, 𝑑2 The death rates of the infected prey populations and predator populations. 

𝑞1, 𝑞2 The harvesting constant of susceptible prey and predators respectively. 

𝑏1, 𝑏2 The conversion efficiency from susceptible prey biomass and Infected prey biomass  

to predator biomass 

𝜇 The rate of anti-predator 
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𝑑𝐸1

𝑑𝑡
≤ 𝑠(𝑟 − 𝑞1 + 1) − 𝑑1𝐼 − (𝑑2 + 𝑞2)𝑦 ≤ 𝐿 − 𝜇𝐸1. 

Here 𝜇 = 𝑚𝑖𝑛{𝑟 − 𝑞1 + 1, 𝑑1, 𝑑2 + 𝑞2} and 𝐿 =
𝑘(𝑟−𝑞1)(𝑟−𝑞1+1)

𝑟
. 

Then according to the above differential inequality, it’s easy to verify that for 𝑡 → ∞,  we have 

𝐸1 ≤
𝐿

𝜇
= 𝜇1𝑎𝑠 𝑡 → ∞. Thus, every solution of system (2) is bounded in the region 

Λ = {(𝑠, 𝐼, 𝑦) ∈ ℝ +
3 : 𝑠(𝑡) + 𝐼(𝑡) + 𝑦(𝑡) ≤ 𝜇1}. 

3. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM POINTS  

    In this part, the stability analysis of all possible equilibrium points (EPs) is investigated. 

System (2) has five nonnegative equilibrium point 

• The origin equilibrium point (𝐸𝐸𝑃), �̇�0 = (0,0,0) always exists.  

• The predator-disease-free point ( 𝑃𝐷𝐹𝐸𝑃 ), �̂�1 = (�̂�, 0,0) , where �̂� =
𝑘(𝑟−𝑞1)

𝑟
 which is 

positive under the condition (1). 

• The predator-free point (𝑃𝐹𝐸𝑃), �̅�2 = (�̅�, 𝐼,̅ 0) where �̅� =
𝑑1

𝛿
, and 𝐼 ̅ =

𝛿𝐾(𝑟−𝑞1)−𝑟𝑑1

𝛿(𝑟+𝐾𝛿)
. Hence 

the existence condition can be written as follows 

 𝑟𝑑1 < 𝛿𝐾(𝑟 − 𝑞1). 

• The disease-free point (𝐷𝐹𝐸𝑃) ,𝑝3 = (�̃�, 0, �̃�), where 

 �̃� =
−𝑐ℎ𝜇�̃�2−(𝜇−𝑐𝑏1+𝑐ℎ(𝑑2+𝑞2))�̃�−(𝑑2+𝑞2)

𝑚�̃�(ℎ𝜇�̃�−𝑏1+ℎ(𝑑2+𝑞2))
                                 (4) 

While �̃� is a positive root for the polynomial 

𝐿0𝑠
5 + 𝐿1𝑠

4 + 𝐿2𝑠
3 + 𝐿3𝑠

2 + 𝐿4𝑠 + 𝐿5 = 0                                 (5) 

where the coefficients of the equation (5) are given in Appendix A.  

• The coexistence point COEP, �̌�4 = (�̌�, 𝐼, �̌�), where 

 𝐼 =
𝑐�̌�+𝑚�̌�2−𝛿�̌�−𝑐ℎ�̌�2𝛿−ℎ𝑚�̌�2�̌�𝛿+𝑑1+𝑐ℎ�̌�𝑑1+ℎ𝑚�̌��̌�𝑑1

ℎ(𝑐+𝑚�̌�)𝛽(𝛿�̌�−𝑑1)
,                            (6) 

while (�̌�, �̌�) represents the positive intersection point of the isoclines 
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𝐻1(𝑠, 𝑦) = −𝑐𝑟𝑦 − 𝑚𝑟𝑦2 − 𝑐𝑘𝛿𝑦 − 𝑘𝑚𝛿𝑦2 − 𝑐𝑘𝛼𝛿𝑦2 − 𝑘𝑚𝛼𝛿𝑦3

+(𝑐ℎ𝑟𝛿 + ℎ𝑚𝑟𝛿𝑦 − 𝑐ℎ𝑟𝛽𝛿 − ℎ𝑚𝑟𝛽𝛿𝑦 + 𝑐ℎ𝐾𝛿2 + ℎ𝑘𝑚𝛿2𝑦

+𝑐ℎ𝑘𝛼𝛿2𝑦 + ℎ𝑘𝑚𝛼𝛿2𝑦2 − 𝑐ℎ𝑘𝛽𝛿2 − ℎ𝑘𝑚𝛽𝛿2𝑦 − 𝑐ℎ𝑘𝛼𝛽𝛿2𝑦

−ℎ𝑘𝑚𝛼𝛽𝛿2𝑦2)𝑠2 − 𝑟𝑑1 − 𝑐ℎ𝑘𝑟𝛽𝑑1 − ℎ𝑘𝑚𝑟𝛽𝑑1𝑦 − 𝑘𝛿𝑑1
−𝑘𝛼𝛿𝑑1𝑦 − 𝑐ℎ𝑘𝛽𝑑1

2 − ℎ𝑘𝑚𝛽𝑑1
2𝑦 − 𝑐ℎ𝑘𝛼𝛽𝑑1

2𝑦 − ℎ𝑘𝑚𝛼𝛽𝑑1
2𝑦2

+𝑐ℎ𝑘𝛽𝑑1𝑞1 + ℎ𝑘𝑚𝛽𝑑1𝑞1 + 𝑐ℎ𝑘𝑦𝛼𝛽𝑑1𝑞1 + ℎ𝑘𝑚𝛼𝛽𝑑1𝑞1𝑦
2 + (𝑟𝛿

+𝑐ℎ𝑘𝑟𝛽𝛿 + ℎ𝑘𝑚𝑟𝑧𝛽𝛿 + 𝑘𝛿2 + 𝑘𝛼𝛿2𝑦 − 𝑐ℎ𝑟𝑑1 − ℎ𝑚𝑟𝑑1𝑦 + 𝑐ℎ𝑟𝛽𝑑1
+ℎ𝑚𝑟𝛽𝑑1𝑦 − 𝑐ℎ𝑘𝛿𝑑1 − ℎ𝑘𝑚𝛿𝑑1𝑦 − 𝑐ℎ𝑘𝛼𝛿𝑑1𝑦 − ℎ𝑘𝑚𝛼𝛿𝑑1𝑦

2

+2𝑐ℎ𝑘𝛽𝛿𝑑1 + 2ℎ𝑘𝑚𝛽𝛿𝑑1𝑦 + 2𝑐ℎ𝑘𝛼𝛽𝛿𝑑1𝑦 + 2ℎ𝑘𝑚𝛼𝛽𝛿𝑑1𝑦
2

−𝑐ℎ𝑘𝛽𝛿𝑞1 − ℎ𝑘𝑚𝛽𝛿𝑞1𝑦 − 𝑐ℎ𝑘𝛼𝛽𝛿𝑞1𝑦 − ℎ𝑘𝑚𝛼𝛽𝛿𝑞1𝑦
2)𝑠 = 0,

            (7) 

𝐻2(𝑠, 𝑦) = (𝑐ℎ𝛽𝛿𝑏1 + ℎ𝑚𝛽𝛿𝑏1𝑦 − 𝑐ℎ𝛿𝑏2 − ℎ𝑚𝛿𝑏2𝑦)𝑠
2 + 𝑥(−𝑐ℎ𝛽𝜇𝑦

−ℎ𝑚𝛽𝜇𝑦2 − 𝛿𝑏2 − 𝑐ℎ𝛽𝑏1𝑑1 − ℎ𝑚𝛽𝑏1𝑑1𝑦 + 𝑐ℎ𝑏2𝑑1
+ℎ𝑚𝑏2𝑑1𝑦) + 𝑐𝑏2𝑦 + 𝑚𝑏2𝑦

2 + 𝑏2𝑑1
−𝑐ℎ𝛽𝑑2𝑦 − ℎ𝑚𝛽𝑑2𝑦

2 − 𝑐ℎ𝛽𝑞2𝑦 − ℎ𝑚𝛽𝑞2𝑦
2 = 0

          (8) 

As 𝑦 → 0, it is obtained that 

𝐻1(𝑠, 0) = (𝑐ℎ𝑟𝛿 + 𝑐ℎ𝑘𝛿
2)(1 − 𝛽)𝑠2 + (𝑟𝛿 + 𝑐ℎ𝑘𝑟𝛽𝛿 + 𝑘𝛿2

−𝑐ℎ𝑟𝑑1 + 𝑐ℎ𝑟𝛽𝑑1 − 𝑐ℎ𝑘𝛿𝑑1 + 2𝑐ℎ𝑘𝛽𝛿𝑑1 − 𝑐ℎ𝑘𝛽𝛿𝑞1)𝑠

−𝑟𝑑1 − (𝑟 − 𝑞1)𝑐ℎ𝑘𝛽𝑑1 − 𝑘𝛿𝑑1 − 𝑐ℎ𝑘𝛽𝑑1
2 = 0

𝐻2(𝑠, 0) = (𝑐ℎ𝛽𝛿𝑏1 − 𝑐ℎ𝛿𝑏2)𝑠
2 + (−𝛿𝑏2 − 𝑐ℎ𝛽𝑏1𝑑1 + 𝑐ℎ𝑏2𝑑1)𝑠 + 𝑏2𝑑1 = 0}

 

 

    (9) 

Therefore, 𝐻1(𝑠, 0) = 0  crosses the 𝑠 − axis at the point 𝑠1 > 0 , however, 𝐻2(𝑠, 0) = 0 

crosses the 𝑠 −axis at the point 𝑠2 > 0 under specific conditions. Accordingly, there is a unique 

positive intersection point of the two isoclines (7) and (8), and then �̌�4 exists uniquely in the 

interior of ℝ+
3  if the next conditions hold. 

                 

𝑐ℎ𝛽𝛿𝑏1 < 𝑐ℎ𝛿𝑏2
𝑠1 < 𝑠2

 
𝑑𝐼

𝑑𝑠
= −

𝜕𝐻1 𝜕𝑠⁄

𝜕𝐻1 𝜕𝐼⁄
> 0

𝑑𝐼

𝑑𝑠
= −

𝜕𝐻2 𝜕𝑠⁄

𝜕𝐻2 𝜕𝐼⁄
< 0}

 
 

 
 

                 (10) 

                                                                

 The local dynamical behaviors are carried out by calculating 

                  𝐽 (𝑠, 𝐼, 𝑦) = [𝐽𝑖𝑗
∗ ]
3×3

                               (11) 

and then computing the eigenvalues, which specify the stability type of each point, where 

 𝐽11
∗ =

−𝑟𝑠

𝑘(1+𝛼𝑦)
+

ℎ𝑠𝑦(𝑐+𝑚𝑦)2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2 +

𝑟

1+𝛼𝑦
(1 −

𝑠+𝐼

𝑘
) − 𝛿𝐼 −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑞1, 
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𝐽12
∗ = −

𝑟𝑠

𝑘(1+𝛼𝑦)
− 𝛿𝑠 +

ℎ𝛽𝑠𝑦(𝑐+𝑚𝑦)2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2, 

𝐽13
∗ =

−𝑟𝛼𝑠

(1+𝛼𝑦)2
−

(𝑐+2𝑚𝑦)𝑠

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
+

ℎ𝑚𝑠𝑦(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2 +

(𝑠+𝐼)𝑠𝛼𝑟

𝑘(1+𝛼𝑦)2
, 

𝐽21
∗ = 𝛿𝐼 +

ℎ𝐼𝑦(𝑐+𝑚𝑦)2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2,  

𝐽22
∗ =

ℎ𝛽𝐼𝑦(𝑐+𝑚𝑦)2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2 + 𝛿𝑠 −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑1, 

     𝐽23
∗ = −

(𝑐+2𝑚𝑦)𝐼

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
+

ℎ𝑚𝐼𝑦(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2, 

     𝐽31
∗ =

𝑏1𝑦(𝑐+𝑚𝑦)

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
−

ℎ𝑦(𝑐+𝑚𝑦)2(𝑏1𝑠+𝑏2𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2 − 𝜇𝑦,  

𝐽32
∗ =

𝑏2(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
−
ℎ𝛽𝑦(𝑐+𝑚𝑦)2(𝑏1𝑠+𝑏2𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2 , 

𝐽33
∗ =

𝑚𝑦(𝑏1𝑠+𝑏2𝐼)

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
−
ℎ𝑚𝑦(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)(𝑏1𝑠+𝑏2𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
2             

+(𝑏1𝑠 + 𝑏2𝐼)
(𝑐+𝑚𝑦)

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑2 − 𝜇𝑠 − 𝑞2

. 

The JM at �̇�0 = (0,0,0) is given by 

                      𝐽(�̇�0) = (

𝑟 − 𝑞1 0 0
0 −𝑑1 0
0 0 −(𝑑2 + 𝑞𝟐)

)                            (12) 

 So, the eigenvalues of (�̇�0) are  𝜆01 = 𝑟 − 𝑞1, 𝜆02 = −𝑑1 and 𝜆03 = −(𝑑2 + 𝑞𝟐), �̇�0 is locally 

asymptotically stable (LAS) if 𝑟 <  𝑞1. Therefore, if the birth rate of prey is less than its death 

rate, both prey and predator populations will extinct. 

The JM examined at  �̂�1 = (�̂�, 0,0) can be obtained by 

                                 

             𝐽(�̂�1) =

(

 

−𝑟�̂�

𝑘
     −

𝑟�̂�

𝑘
− 𝛿�̂� −𝑟𝛼�̂� −

𝑐�̂�

1+ℎ𝑐�̂�
+
�̂�2𝛼𝑟

𝑘

0      𝛿�̂� − 𝑑1       0

0     0             
𝑏1𝑐�̂�

1+ℎ𝑐�̂�
− 𝑑2 − 𝜇�̂� − 𝑞𝟐)

                    (13a) 

Thus, (�̂�1 ) has the following eigenvalues  𝜆11 =
−𝑟�̂�

𝑘
, 𝜆12 = 𝛿�̂� − 𝑑1 and 𝜆13 =

𝑏1𝑐�̂�

1+ℎ𝑐�̂�
− 𝑑2 −

𝜇𝑠 − 𝑞𝟐 then �̂�1 is LAS if 

                      𝛿�̂� < 𝑑1 ,                                             (13b) 
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𝑏1𝑐�̂�

1+ℎ𝑐�̂�
< 𝑑2 + 𝜇�̂� + 𝑞2,                                     (13c) 

The JM examined at  �̅�2 = (�̅�, 𝐼,̅ 0) can be obtained by 

         𝐽(�̅�2) =

(

 
 

−𝑟�̅�

𝑘
              −

𝑟�̅�

𝑘
− 𝛿�̅�           −𝑟𝛼�̅� −

𝑐�̅�

1+ℎ𝑐(�̅�+𝛽𝐼)̅
+
(�̅�+𝐼)̅�̅�𝛼𝑟

𝑘

𝛿𝐼 ̅        0                            
−𝑐𝐼̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅

0       0                
𝑐(𝑏1�̅�+𝑏2𝐼)̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅
− 𝑑2 − 𝜇�̅� − 𝑞2 )

 
 

         (14a) 

One of the eigenvalues is   𝜆23 =
𝑐(𝑏1�̅�+𝑏2𝐼)̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅
− 𝑑2 − 𝜇�̅� − 𝑞2  and other two eigenvalues are 

given by 

        𝜆21 =
�̅�

2
+
1

2
√�̅�2 − 4�̅�; 𝜆22 =

�̅�

2
−
1

2
√�̅�2 − 4�̅�,                           (14b) 

where �̅� =
−𝑟�̅�

𝑘
  , and    �̅� =

𝑟𝛿 �̅�2𝐼̅

𝑘
+ 𝛿2�̅�𝐼,̅  So, the 𝑃𝐹𝐸𝑃 is a LAS if condition met 

                     
𝑐(𝑏1�̅�+𝑏2𝐼)̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅
< 𝑑2 + 𝜇�̂� + 𝑞2.                               (14c) 

   The JM examined at 𝑝3 = (�̃�, 0, �̃�)  can be obtained by 

    𝐽3(𝑝3) = (�̃�𝑖𝑗),                                                   (15a) 

where 

�̃�11 = �̃� (−
𝑟

𝑘(1+𝛼�̃�)
+

ℎ�̃�(𝑐+𝑚�̃�)2

(1+ℎ�̃�(𝑐+𝑚�̃�))2
).  

�̃�12 = �̃� (−𝛿 −
𝑟

𝑘(1+𝛼�̃�)
+

ℎ𝛽�̃�(𝑐+𝑚�̃�)2

(1+ℎ�̃�(𝑐+𝑚�̃�))2
). 

�̃�13 = �̃� (−
𝑟𝛼

(1+𝛼�̃�)2
(1 −

�̃�

𝐾
) −

(𝑐+2𝑚�̃�)

1+ℎ(𝑐+𝑚�̃�)�̃�
+

ℎ𝑚�̃��̃�(𝑐+𝑚�̃�)

(1+ℎ(𝑐+𝑚�̃�)�̃�)2
). 

�̃�21 = 0.  

�̃�22 = 𝛿�̃� −
(𝑐+𝑚�̃�)�̃�

1+ℎ�̃�(𝑐+𝑚�̃�)
− 𝑑1. 

�̃�23 = 0. 

�̃�31 = �̃� (−𝜇 +
(𝑐+𝑚�̃�)𝑏1

(1+ℎ�̃�(𝑐+𝑚�̃�))2
).  

�̃�32 = �̃� (−
ℎ𝛽�̃�(𝑐+𝑚�̃�)2𝑏1

(1+ℎ�̃�(𝑐+𝑚�̃�))2
+

(𝑐+𝑚�̃�)𝑏2

1+ℎ�̃�(𝑐+𝑚�̃�)
). 

�̃�33 =
𝑚𝑏1�̃��̃�

(1+ℎ�̃�(𝑐+𝑚�̃�))2
.   
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Evidently, one of the eigenvalues is  𝜆32 = 𝛿�̃� −
(𝑐+𝑚�̃�)�̃�

1+ℎ�̃�(𝑐+𝑚�̃�)
− 𝑑1, and the other two eigenvalues 

are given by 

            𝜆31 =
�̃�

2
+
1

2
√�̃�2 − 4�̃�; 𝜆33 =

�̃�

2
−
1

2
√�̃�2 − 4�̃�,                       (15b) 

where  �̃� = �̃�11 + �̃�33, and    �̃� = �̃�11�̃�33 − �̃�13�̃�31. So, the 𝐷𝐹𝐸𝑃 is a LAS if the following 

conditions are met 

            
ℎ�̃��̃�(𝑐+𝑚�̃�)2

(1+ℎ�̃�(𝑐+𝑚�̃�))
2 +

𝑚𝑏1�̃��̃�

(1+ℎ�̃�(𝑐+𝑚�̃�))
2 <

𝑟�̃�

𝑘(1+𝛼�̃�)
.                (15c) 

                   𝜇 <
(𝑐+𝑚�̃�)𝑏1

(1+ℎ�̃�(𝑐+𝑚�̃�))2
.                         (15d) 

                       �̃�11�̃�33 − �̃�13�̃�31 > 0.                       (15e) 

               𝛿�̃� <
(𝑐+𝑚�̃�)�̃�

1+ℎ�̃�(𝑐+𝑚�̃�)
+ 𝑑1.                                 (15f) 

Finally, the LAS at �̌�4 = (�̌�, 𝐼, �̌�) can be studied in the following theorem. 

Theorem 2. The 𝐶𝑂𝐸𝑃 of the system (2) is LAS if  

                              �̌�11 + �̌�22 < 0.                      (16a) 

                              �̌�11 + �̌�33 < 0.                      (16b) 

                                   �̆�31 > 0.                          (16c) 

                                   �̆�32 > 0.                              (16d) 

       �̌�21(�̌�12�̌�33 − �̌�13�̌�32) + �̌�31(�̌�22�̌�13−�̌�12�̌�23) > 0.                    (10e) 

                      �̌�11�̌�22 − �̌�12�̌�21 > 0.                       (16f) 

                          �̌�11�̌�33 − �̌�13�̌�31 > 0.                          (16g)  

                          �̌�12�̌�23�̌�31 + �̌�13�̌�21�̌�32 > 0.                      (16h) 

𝑤here �̌�𝑖𝑗 are the JM coefficients that are given in the proof. 

Proof. The JM examined at �̌�4 can be written as  

 �̌�11 = �̌� (−
𝑟

𝑘(1+𝛼�̌�)
+

ℎ�̌�(𝑐+𝑚�̌�)2

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
).  

�̌�12 = �̌� (−
𝑟

𝑘(1+𝛼�̌�)
+

ℎ𝛽�̌�(𝑐+𝑚�̌�)2

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
− 𝛿). 

�̌�13 = �̌� (−
𝑟𝛼

(1+𝛼�̌�)2
(1 −

(�̌�+𝐼)

𝑘
) +

ℎ𝑚�̌�(𝑐+𝑚�̌�)(�̌�+𝛽𝐼)

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
−

(𝑐+2𝑚�̌�)

1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼)
).  
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�̌�21 = 𝐼 (
ℎ�̌�(𝑐+𝑚�̌�)2

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
+ 𝛿). 

�̌�22 =
ℎ𝛽𝐼�̌�(𝑐+𝑚�̌�)2

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
. 

      �̌�23 = 𝐼 (
ℎ𝑚�̌�(𝑐+𝑚�̌�)(�̌�+𝛽𝐼)

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
−

𝑚𝑧

1+ℎ(𝑐+𝑚�̌�)(�̌�+�̌�𝛽)
−

(𝑐+2𝑚�̌�)

1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼)
). 

�̌�31 = �̌� (−𝜇 +
(𝑐+𝑚�̌�)𝑏1

1+ℎ(𝑐+𝑚�̌�)(�̂�+𝛽𝐼)
−

ℎ(𝑐+𝑚�̌�)2(𝑏1�̌�+𝑏2𝐼)

(1+ℎ(𝑐+𝑚�̌�)(�̂�+𝛽𝐼))2
). 

�̌�32 = �̌� (
𝑏2(𝑐+𝑚�̌�)

1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼)
−
ℎ𝛽(𝑐+𝑚�̌�)2(𝑏1�̌�+𝑏2𝐼)

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))2
). 

 �̌�33 =
𝑚(𝑏1�̌�+𝑏2𝐼)�̌�

(1+ℎ(𝑐+𝑚�̌�)(�̌�+𝛽𝐼))
2. 

As a result, the characteristic equation of 𝐽(�̌�4)  

       𝜆3
3 + 𝜃1𝜆3

2 + 𝜃2𝜆3 + 𝜃3 = 0                                        (16i) 

where,  

𝜃1 = −(�̌�11 + �̌�22 + �̌�33). 

    𝜃2 = (�̌�11�̌�22 − �̌�12�̌�21) + (�̌�11�̌�33 − �̌�13�̌�31) + (�̌�22�̌�33 − �̌�23�̌�32). 

      𝜃3 = −[�̌�11(�̌�22�̌�33 − �̌�23�̌�32) − �̌�21(�̌�12�̌�33 − �̌�13�̌�32) − �̌�31(�̌�22�̌�13−�̌�12�̌�23)]   

with  

 

∆= 𝜃1𝜃2 − 𝜃3 = −(�̌�11 + �̌�22)(�̌�11�̌�22 − �̌�12�̌�21)                                           
−(�̌�11 + �̌�33)(�̌�11�̌�33 − �̌�13�̌�31) − (�̌�22 +  �̌�33)(�̌�22�̌�33 − �̌�23�̌�32)

+�̌�12�̌�23�̌�31 + �̌�13�̌�21�̌�32

 

According to the Routh–Hurwitz criterion, the sign of the real part of the roots of equations (16i) 

will be negative when 𝜃1 , 𝜃3 , and  ∆= 𝜃1𝜃2 − 𝜃3  have positive signs. Moreover, direct 

computation shows that due to the given conditions Routh–Hurwitz conditions are satisfied and 

hence the proof is done. 

4. PERSISTENCE 

The system's (2) persistence is examined in this part. Therefore, if every species is shown for every 

positive moment, system (2) survives. We shall outline certain conditions for the system's 

consistent persistence in the sections that follow (2). 

The subsystems in the positive quadrant of the 𝑠𝐼-plane and the 𝑠𝑦-plane of the system (2) can 
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be written respectively as follows 

       

𝑑𝑠

𝑑𝑡
= 𝑠 [𝑟 −

𝑟(𝑠+𝐼)

𝑘
− 𝛿𝐼 − 𝑞1] = Υ1(𝑠, 𝐼),

𝑑𝐼

𝑑𝑡
= 𝐼[𝛿𝑠 − 𝑑1] = Υ2(𝑠, 𝐼),                       

                       (17) 

and  

𝑑𝑠

𝑑𝑡
= 𝑠 [

𝑟

1+𝛼𝑦
(1 −

𝑠

𝑘
) −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)𝑠
− 𝑞1] = Υ3(𝑠, 𝑦),    

  
𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑏1𝑠(𝑐+𝑚𝑦)

1+ℎ(𝑐+𝑚𝑦)𝑠
− 𝑑2 − 𝜇𝑠 − 𝑞2] = Υ4(𝑠, 𝑦).             

                              (18) 

The subsystems (17) and (18) have a positive equilibrium point coinciding with �̅�2 =

(�̅�, 𝐼,̅ 0)  and �̃�3 = (�̃�, 0, �̃�)  of the system (2) in the interior of the positive quadrant of the 𝑠𝐼-

plane and the 𝑠𝑦 -plane. Dulac’s function Γ1(𝑠, 𝐼) =
1

𝑠𝐼
, and Γ2(𝑠, 𝑦) =

1

𝑠𝑦
,  which are 

continuously differentiable functions in the  ℝ+
2  . Moreover, it is obtained 

 ∆1(𝑠, 𝐼) =
𝜕

𝜕𝑠
(Γ1. Υ1) +

𝜕

𝜕𝐼
(Γ1. Υ2) = −

𝑟

𝑘𝐼
. 

 ∆2(𝑠, 𝑦) =
𝜕

𝜕𝑠
(Γ2. Υ3) +

𝜕

𝜕𝑦
(Γ2. Υ4) = −

𝑟

𝑘𝑦(1+𝛼𝑦)
+
ℎ(𝑐+𝑚𝑦)2+𝑏1𝑚

[1+ℎ(𝑐+𝑚𝑦)𝑠]2
. 

Clearly, ∆1(𝑠, 𝐼) < 0  for any point and ∆2(𝑠, 𝐼) < 0  under the condition 
ℎ(𝑐+𝑚𝑦)2+1

[1+ℎ(𝑐+𝑚𝑦)𝑠]2
<

𝑟

𝑘𝑦
 . 

Consequently, there are no periodic dynamics in the interior of the positive quadrants of the 

𝑠𝐼 −plane and 𝑠𝑦 −plane. 

Theorem3. Assume that there are no periodic dynamics in the boundary planes, then the system 

(2) is uniformly persistent provided that  

                               𝑟 >  𝑞1.                        (19a) 

                    

𝛿�̂� > 𝑑1
𝑜𝑟

𝑏1𝑐�̂�

1+ℎ𝑐�̂�
> 𝑑2 + 𝜇�̂� + 𝑞2

}.                             (19b)                                                       

                
(𝑏1�̅�+𝑏2𝐼)̅𝑐

1+ℎ𝑐(�̅�+𝛽𝐼)̅
> 𝑑2 + 𝜇�̅� + 𝑞2,                                  (19c) 

                     𝛿�̃� >
(𝑐+𝑚�̃�)�̃�

1+ℎ�̃�(𝑐+𝑚�̃�)
+ 𝑑1.                                  (19d) 

Proof. Define the function σ(𝑠, 𝐼, 𝑦) = 𝑠𝜌1𝐼𝜌2𝑦𝜌3, where 𝜌1, 𝜌2, 𝜌3 are positive constants, and 

σ(𝑠, 𝐼, 𝑦) > 0 for all (𝑠, 𝐼, 𝑦) ∈ ℝ+
3  with σ(𝑠, 𝐼, 𝑦) → 0  if either 𝑠, 𝐼 or 𝑦 goes to zero. Now, 
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let 

ℓ(𝑠, 𝐼, 𝑦) =
σ′(𝑠, 𝐼, 𝑦)

σ(𝑠, 𝐼, 𝑦)
= 𝜌1𝑓1 + 𝜌2𝑓2 + 𝜌3𝑓3 

where the functions 𝑓1, 𝑓2 and 𝑓3 are given in the system (2).  

Now, according to the average Lyapunov method, we must show that the function ℓ(𝑠, 𝐼, 𝑦) > 0 

for all boundary equilibrium points. Then, 

 

ℓ(𝑠, 𝐼, 𝑦) = 𝜌1 [
𝑟

1+𝛼𝑦
(1 −

𝑠+𝐼

𝑘
) − 𝛿𝐼 −

(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑞1]

+𝜌2 [𝛿𝑠 −
(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
−  𝑑1 ]

+𝜌3 [(𝑏1𝑠 + 𝑏2𝐼)
(𝑐+𝑚𝑦)

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑2 − 𝜇𝑠 − 𝑞2]

                     (20) 

Therefore, 

 ℓ(�̇�0) = 𝜌1[𝑟 − 𝑞1] + 𝜌2[−𝑑1] + 𝜌3[−𝑑2 − 𝑞2], 

then we will obtain that ℓ(𝑝0) > 0 for suitable choice of 𝜌1, 𝜌2, and 𝜌3 with condition (19a). 

 ℓ(�̂�1) = 𝜌2[𝛿�̂� − 𝑑1] + 𝜌3 [
𝑏1𝑐�̂�

1+ℎ𝑐�̂�
− 𝑑2 − 𝜇�̂� − 𝑞2], 

which satisfies ℓ(�̂�1) > 0 for suitable choice of 𝜌2 and 𝜌3 with condition (19b). 

 ℓ(�̅�2) = 𝜌3 [
(𝑏1�̅�+𝑏2𝐼)̅𝑐

1+ℎ𝑐(�̅�+𝛽𝐼)̅
− 𝑑2 − 𝜇�̅� − 𝑞2]. 

ℓ(�̃�3) = 𝜌2 [𝛿�̃� −
(𝑐+𝑚�̃�)�̃�

1+ℎ�̃�(𝑐+𝑚�̃�)
− 𝑑1 ]. 

Thus, the system (2) is uniformly persistent due to given conditions. 

5. Global Stability (GS) 

In this section, the Lyapunov method is used to investigate the GS or specify the basin of 

attraction of each 𝐸𝑃 for all LSEs as shown in the following theorems 

Theorem 4. The 𝐸𝐸𝑃, of the system (2) is GAS whenever it is LAS.  

Proof. We select an appropriate positive definite function about �̇�0 as 

𝐿0 = 𝜀1𝑠 + 𝜀2𝐼 + 𝜀3𝑦 

Then, the derivative 
𝑑𝐿0

𝑑𝑡
  can be determined as 
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𝑑𝐿0

𝑑𝑡
= [

𝑟𝑠

1+𝛼𝑦
(1 −

𝑠+𝐼

𝑘
) − 𝛿𝑠𝐼 −

(𝑐+𝑚𝑦)𝑠𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑞1𝑠]

+ [𝛿𝑠𝐼 −
(𝑐+𝑚𝑦)𝐼𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑1𝐼 ]

+ [(𝑏1𝑠 + 𝑏2𝐼)
(𝑐+𝑚𝑦)𝑦

1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼)
− 𝑑2𝑦 − 𝜇𝑠𝑦 − 𝑞2𝑦]

. 

Hence  

                             
𝑑𝐿0

𝑑𝑡
≤ (𝑟 − 𝑞1)𝑠 − 𝑑1𝐼 − (𝑑2 + 𝑞2)𝑦. 

So, The function 
𝑑𝐿0

𝑑𝑡
 is negative definite whenever �̇�0 is LAS. Hence, �̇�0 is GAS. 

Theorem 5. The 𝑃𝐷𝐹𝐸𝑃 of the system (2) is GAS if the forthcoming inequalities hold. 

           𝑞2 + 𝑑2 >
𝛼𝑟 

(1+𝛼𝑦)
(1 −

�̂�

𝑘
) + (𝑐 + 𝑚𝑦)�̂�                                  (21a) 

             𝑑1 > 𝛿�̂� +
𝑟�̂�

𝑘
                                                  (21b)     

              𝑘 > �̂�                                                       (21c) 

Proof. By selecting an appropriate positive definite function about �̂�1 as  

                𝐿1 = [𝑠 − �̂� − �̂�𝑙𝑛 (
𝑠

�̂�
)] + 𝐼 + 𝑦 which is a real-valued function. 

Then, the derivative 
𝑑𝐿1

𝑑𝑡
  can be determined as 

𝑑𝐿1
𝑑𝑡

= (𝑠 − �̂�) [
𝑟

𝐴
(1 −

𝑠 + 𝐼

𝑘
) − 𝛿𝐼 −

(𝑐 + 𝑚𝑦)𝑦

𝐵
− 𝑞1]

+ [𝛿𝑠𝐼 − 
(𝑐 + 𝑚𝑦)𝐼𝑦

𝐵
− 𝑑1𝐼 ]

+ [(𝑏1𝑠 + 𝑏2𝐼)
(𝑐 + 𝑚𝑦)𝑦

𝐵
− 𝑑2𝑦 − 𝜇𝑠𝑦 − 𝑞2𝑦] .

 

Hence  

𝑑𝐿1
𝑑𝑡

≤ −
𝑟

𝑘𝐴
(𝑠 − �̂�)2 −

𝛼𝑟

𝐴
[1 −

�̂�

𝑘
] 𝑠𝑦 − [𝑞2 + 𝑑2 − (𝑐 +𝑚𝑦)�̂� −

𝛼𝑟 

𝐴
(1 −

�̂�

𝑘
)] 𝑦

− [𝑑1 − 𝛿�̂� −
𝑟�̂�

𝑘
] 𝐼,

 

where 𝐴 = 1 + 𝛼𝑦 and 𝐵 = 1 + ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼). Therefore, if the inequalities in (21a)-(21c) 

hold,
𝑑𝐿1

𝑑𝑡
 is negative definite. Hence, �̂�1 is GAS. 
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Theorem 6. The 𝑃𝐹𝐸𝑃 of the system (2) is GAS if the forthcoming inequalities hold. 

                           �̅� + 𝐼 ̅ < 𝑘.                             (22a) 

         
1

2
(
𝑟

𝑘 
+ 𝛿 − 𝛿𝐼)̅

2

<
𝑟

(1+𝛼𝑦𝑚𝑎𝑥)𝑘 
.                                 (22b) 

                  𝛿𝑠𝑚𝑎𝑥 +
1

2
< 𝑑1.                                   (22c) 

𝑟𝛼�̅� (1 −
�̅�+𝐼̅

𝑘
) + (�̅� + (𝐼 ̅ + 𝑏2)𝐼𝑚𝑎𝑥 + 𝑏1𝑠𝑚𝑎𝑥)(𝑐 + 𝑚𝑦𝑚𝑎𝑥) <  𝑑2 + 𝑞2.      (22d) 

Proof. By selecting an appropriate positive definite function about �̅�2 as 

 𝐿2 = [𝑠 − �̅� − �̅� ln (
𝑠

�̅�
)] +

(𝐼−𝐼)̅2

2
+ 𝑦. 

Then, the derivative 
𝑑𝐿2

𝑑𝑡
  can be determined as 

  

𝑑𝐿2
𝑑𝑡

= (𝑠 − �̅�) [−
𝑟𝛼𝑦

𝐴 
(1 −

�̅� + 𝐼 ̅

𝑘
) −

𝑟

𝐴𝑘 
(𝑠 − �̅�) − (

𝑟

𝐴𝑘 
+ 𝛿) (𝐼 − 𝐼)̅ −

(𝑐 + 𝑚𝑦)𝑦

𝐵
]

+(𝐼 − 𝐼)̅ [𝛿(𝑠(𝐼 − 𝐼)̅ + (𝑠 − �̅�)𝐼)̅ −
(𝑐 + 𝑚𝑦)𝐼𝑦

𝐵
− 𝑑1(𝐼 − 𝐼)̅]

+ [(𝑏1𝑠 + 𝑏2𝐼)
(𝑐 + 𝑚𝑦)𝑦

𝐵
−  𝑑2𝑦 − 𝜇𝑠𝑦 − 𝑞2𝑦]

 

Hence  

𝑑𝐿2

𝑑𝑡
< − [

𝑟

𝐴𝑘 
−
1

2
(
𝑟

𝐴𝑘 
+ 𝛿 − 𝛿𝐼)̅

2

] (𝑠 − �̅�)2 − [𝑑1 − 𝛿𝑠 −
1

2
] (𝐼 − 𝐼)̅2                     

− [ 𝑑2 + 𝑞2 − 𝑟𝛼�̅� (1 −
�̅�+𝐼̅

𝑘
) − (�̅� + (𝐼 ̅ + 𝑏2)𝐼𝑚𝑎𝑥 + 𝑏1𝑠𝑚𝑎𝑥)(𝑐 + 𝑚𝑦𝑚𝑎𝑥)] 𝑦

. 

Using the inequalities in (22a)-(22d), make 
𝑑𝐿2

𝑑𝑡
  negative definite. Hence, �̅�2 is GAS. 

Theorem 7. The 𝐷𝐹𝐸𝑃 of the system (2) is GAS if the forthcoming inequalities hold 

                        𝑏1�̃� < 1.                                   (23a) 

                  𝑏2𝑦𝑚𝑎𝑥 < 1 +
ℎ𝑏1𝛽(𝑐+𝑚�̃�)�̃��̃�

�̃�
+ 𝑏2�̃�.                    (23b) 

                  
𝑟�̃�

𝑘
+ 𝛿�̃� <  𝑑1.                                (23c) 

ℎ�̃�(𝑐+𝑚�̃�)(𝑐+𝑚𝑦𝑚𝑎𝑥)

�̃�
+
(𝑄𝑚𝑎𝑥)

2

2
<

𝑟

𝑘(1+𝛼𝑦𝑚𝑎𝑥)
.                     (23d) 

                          
�̃�

𝑘�̃�
< 1.                            (23e) 
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𝑏1𝑠𝑚𝑎𝑥

�̃�
[ℎ𝑐�̃�𝑦𝑚𝑎𝑥(𝑚 + 𝑐) + 𝑚�̃� + (𝑐 + 𝑚𝑦𝑚𝑎𝑥)(1 + 𝑚ℎ�̃��̃�)] +

1

2
< 𝑑2 + 𝑞2 + 𝜇�̃�,    (23f) 

where 𝑄𝑚𝑎𝑥 = 𝜇𝑦𝑚𝑎𝑥 + 𝑟𝛼 (1 −
�̃�

𝑘�̃�
) +

(𝑐+𝑚�̃�)(1+ℎ𝑐�̃�−𝑏1�̃�)+𝑚(1+ℎ𝑐�̃�+ℎ𝑚�̃��̃�)𝑦𝑚𝑎𝑥

�̃�
  while 𝑠𝑚𝑎𝑥  and 

𝑦𝑚𝑎𝑥 are the upper bound for the 𝑠 and 𝑦 respectively. 

Proof. By selecting an appropriate positive definite function about 𝑝3 as 

 𝐿3 = [𝑠 − �̃� − �̃�𝑙𝑛 (
𝑠

�̃�
)] + 𝐼 +

(𝑦−�̃�)2

2
. 

Then, the derivative 
𝑑𝐿2

𝑑𝑡
  can be determined as 

𝑑𝐿3

𝑑𝑡
= −

𝑟𝛼(𝑠−�̃�)(𝑦−�̃�)

𝐴
−
𝑟�̃�(𝑠−�̃�)2

𝑘𝐴�̃�
+
𝑟𝛼�̃�(𝑠−�̃�)(𝑦−�̃�)

𝑘𝐴�̃�
                                          

−
𝑟(𝑠−�̃�)𝐼

𝑘𝐴
+ 𝛿�̃�𝐼 −

𝑐(1+ℎ𝑐�̃�)(𝑠−�̃�)(𝑦−�̃�)

𝐵�̃�
+
𝑐ℎ�̃�(𝑐+𝑚𝑦)(𝑠−�̃�)2

𝐵�̃�

+
𝑐�̃�ℎ(𝑐+𝑚𝑦)(𝑠−�̃�)𝛽𝐼

𝐵�̃�
−
[𝑚(1+ℎ𝑐�̃�)(𝑦+�̃�)+ℎ𝑚2𝑦�̃��̃�](𝑠−�̃�)(𝑦−�̃�)

𝐵�̃�

+
𝑚ℎ(𝑐+𝑚𝑦)�̃�2(𝑠−�̃�)2

𝐵�̃�
+
𝑚ℎ�̃�2(𝑐+𝑚𝑦)𝛽(𝑠−�̃�)𝐼

𝐵�̃�
− 

(𝑐+𝑚𝑦)𝐼𝑦

𝐵
−  𝑑1𝐼

+
𝑏1𝑠(𝑐+𝑐

2ℎ�̃�𝑦+𝑚2ℎ�̃��̃�𝑦)(𝑦−�̃�)2

𝐵�̃�
+
𝑏1�̃�(𝑐+𝑚�̃�)(𝑠−�̃�)(𝑦−�̃�)

𝐵�̃�

+
𝑚𝑏1𝑠(1+ℎ𝑐�̃�)(𝑦+�̃�)(𝑦−�̃�)

2

𝐵�̃�
−
ℎ(𝑐+𝑚𝑦)(𝑐𝑏1�̃��̃�+𝑚𝑏1�̃��̃�

2)𝛽(𝑦−�̃�)𝐼

𝐵�̃�

−(𝑑2 + 𝑞2 + 𝜇�̃�)(𝑦 − �̃�)
2 − 𝜇(𝑠 − �̃�)(𝑦 − �̃�)𝑦 +

(𝑐+𝑚𝑦)𝑦𝑏2(𝑦−�̃�)𝐼

𝐵

, 

where �̃� = 1 + 𝛼�̃�, and �̃� = 1 + ℎ(𝑐 + 𝑚�̃�)�̃�. 

Hence  

  

𝑑𝐿3

𝑑𝑡
< −[

𝑟

𝑘𝐴
−
ℎ�̃�(𝑐+𝑚�̃�)(𝑐+𝑚𝑦)

𝐵�̃�
−
𝑄2

2
] (𝑠 − �̃�)2                                         

− [𝑑2 + 𝑞2 + 𝜇�̃� −
𝑏1𝑠

𝐵�̃�
(ℎ𝑐�̃�𝑦(𝑚 + 𝑐) + 𝑚�̃� + (𝑐 +𝑚𝑦)(1 + 𝑚ℎ�̃��̃�))

−
1

2
] (𝑦 − �̃�)2 − [ 𝑑1 −

𝑟�̃�

𝑘𝐴
− 𝛿�̃�] 𝐼

. 

Therefore, 
𝑑𝐿3

𝑑𝑡
 is a negative definite function, Thus, 𝑝3 is GAS under the given conditions. 

Theorem 8.  The CO𝐸𝑃 of the system (2) is GAS if the forthcoming inequalities hold. 

                      
(𝑁12)

2

2
+
(𝑁13)

2

2
< 𝑁11.                            (24a) 

                           
(𝑁23)

2

2
+
1

2
< 𝑁22 .                                (24b) 

                     1 < 𝑁33.                                    (24c) 

Where 𝑁𝑖𝑗 are given in the proof. 
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Proof. Consider the appropriate positive definite function about �̌�4 that is given by 

 𝐿4 = [𝑠 − �̌� − �̌�𝑙𝑛 (
𝑠

�̌�
)] +

(𝐼−𝐼)2

2
+
(𝑦−�̌�)2

2
. 

Then the derivative of 𝐿4 can be determined by 

𝑑𝐿4
𝑑𝑡

= (𝑠 − �̌�) [
𝑟

𝐴
(1 −

𝑠 + 𝐼

𝑘
) − 𝛿𝐼 −

(𝑐 + 𝑚𝑦)𝑦

𝐵
− 𝑞1]             

+(𝐼 − 𝐼) [𝛿𝑠𝐼 − 
(𝑐 + 𝑚𝑦)𝐼𝑦

𝐵
−  𝑑1𝐼 ]

+(𝑦 − �̌�) [
(𝑏1𝑠 + 𝑏2𝐼)(𝑐 + 𝑚𝑦)𝑦

𝐵
− (𝑑2 + 𝑞2)𝑦 − 𝜇𝑠𝑦] .

 

Hence  

 

𝑑𝐿4

𝑑𝑡
= −𝑁11(𝑠 − �̆�)

2 − 𝑁22(𝐼 − 𝐼)
2
− 𝑁33(𝑦 − �̌�)

2 − 𝑁12(𝑠 − �̌�)(𝐼 − 𝐼)

−𝑁13(𝑠 − �̌�)(𝑦 − �̌�) − 𝑁23(𝐼 − 𝐼)(𝑦 − �̌�),
 

where 

 𝑁11 =
𝑟�̆�

𝑘𝐴�̆�
+ ℎ�̆�(𝑐 + 𝑚𝑦)(𝑐 + 𝑚�̆�), 

𝑁22 =  𝑑1 +
1

𝐵�̆�
(�̆�(𝑐 + 𝑚�̆�)(1 + ℎ�̆�(𝑐 + 𝑚𝑦))) − 𝛿𝑠, 

𝑁33 = 𝑑2 + 𝑞2 + 𝜇𝑠 −
(𝑏1𝑠+𝑏2𝐼)[𝑐+ℎ(𝑐+𝑚�̌�)(𝑐+𝑚𝑦)(�̆�+𝛽𝐼)+𝑚(𝑦+�̌�)]

𝐵�̆�
, 

𝑁12 =
𝑟�̆�

𝑘𝐴�̆�
+ 𝛿 + 𝛽ℎ�̆�(𝑐 + 𝑚𝑦)(𝑐 + 𝑚�̆�) − 𝛿𝐼 +

1

𝐵�̆�
ℎ𝐼�̆�(𝑐 + 𝑚�̆�)(𝑐 + 𝑚𝑦), 

𝑁13 =
𝛼𝑟

𝐴�̆�
(1 −

(�̆�+𝐼)

𝑘
) +

(𝑐(1+ℎ𝑐(�̆�+𝛽𝐼))+ℎ𝑚2�̆�𝑦(�̆�+𝛽𝐼))

𝐵�̆�

−𝑚(1 + ℎ𝑐(�̆� + 𝛽𝐼)) (𝑦 + �̌�) + 𝜇�̆�

−
(𝑐+𝑚�̆�)�̆�[𝑏1−(𝑐+𝑚𝑦)ℎ𝐼(𝑏2−𝑏1𝛽)]

𝐵�̆�

 ,

𝑁23 =
(𝑐𝐼+ℎ𝐼(�̆�+𝛽𝐼)(𝑐2+𝑚2�̆�𝑦)+𝑚𝐼(1+ℎ𝑐(�̆�+𝛽𝐼))(𝑦+�̌�))

𝐵�̆�

−
(𝑐+𝑚�̆�)�̆�[𝑏2+(𝑏2−𝑏1𝛽)ℎ�̆�(𝑐+𝑚𝑦)]

𝐵�̆�
,

 

with �̆� = 1 + 𝛼�̆�; and �̆� = 1 + ℎ(𝑐 + 𝑚�̆�)(�̆� + 𝛽𝐼). Now further computation gives that 

𝑑𝐿4

𝑑𝑡
< − [𝑁11 −

(𝑁12)
2

2
−
(𝑁13)

2

2
] (𝑠 − �̆�)2 − [𝑁22 −

(𝑁23)
2

2
−
1

2
] (𝐼 − 𝐼)

2
− [𝑁33 − 1](𝑦 − �̌�)

2. 

Accordingly, if the inequalities in (24a)-(24c) hold,
𝑑𝐿4

𝑑𝑡
 is negative definite. Hence, �̌�4 is GAS. 
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6. LOCAL BIFURCATION 

The occurrence of local bifurcation is investigated in this section using the Sotomayor theorem   

Recall that a non-hyperbolic equilibrium point represents a necessary but not sufficient condition 

for a local bifurcation to occur. Now, the next theorems examine whether or not LB might occur 

near a non-hyperbolic EP.  

Theorem 9. System (2) at the 𝐸𝐸𝑃  undergoes a transcritical bifurcation (TB) whenever the 

parameter 𝑞1 passes the value 𝑞1
∗. 

Proof. The JM  at (�̇�0, 𝑞1
∗)  can be represented by   

𝐽0 = 𝐽(�̇�0,𝑞1∗) = (
0 0 0
0 −𝑑1 0
0 0 −(𝑑2 + 𝑞𝟐)

) 

Therefore, the eigenvalues of 𝐽0 are given by  𝜆01
∗ = 0, 𝜆02

∗ = −𝑑2,   𝜆03
∗ = −(𝑑2 + 𝑞2). So, the 

𝐸𝐸𝑃 is a non-hyperbolic point. 

Suppose, 𝝕𝟎 = (ϖ01, ϖ02, ϖ03)
𝑇  be the eigenvectors corresponding to 𝜆01

∗ = 0 .  Then it is 

obtained from  𝐽0𝝕𝟎 = 0 that 𝝕𝟎 = (𝜛01, 0, 0)
𝑇 , with ( 𝜛01 ≠ 0 ).  

Now, let  𝑼𝟎 = (𝑢01, 𝑢02, 𝑢03)
𝑇  refers to the eigenvector corresponding  𝜆01

∗ = 0  for  𝐽0
𝑇 . 

Then   𝐽0
𝑇𝑼𝟎 = 0  gives 𝑼𝟎 = (𝑢01, 0, 0)

T, with ( 𝑢01 ≠ 0) . Since 𝐹𝑞1 = (−𝑠, 0, 0)𝑇 . Hence 

𝐹𝑞1(�̇�0, 𝑞1
∗) = (0, 0, 0)𝑇. Then 𝑼𝟎

𝑇𝐹𝑞1(�̇�0, 𝑞1
∗) = 0.  

Following the “Sotomayor theorem” at the 𝐸𝐸𝑃, the first requirement for TB is satisfied. 

Now, we have 𝑼𝟎
𝑇[𝐷𝐹𝑞1(�̇�0, 𝑞1

∗)𝝕𝟎] = −ϖ01𝑢01 ≠  0. 

Also, 𝑼𝟎
𝑇 [𝐷2𝐹(�̇�0, 𝑞1

∗)(𝝕𝟎, 𝝕𝟎)] =
−2𝑟

𝑘
ϖ01

2𝑢01
2 ≠ 0, where 𝐷2𝐹 is given in  Appendix B. 

Hence, TB takes place near �̇�0. 

Theorem 10. The system (2) undergoes a TB near 𝑃𝐷𝐹𝐸𝑃 when the parameter 𝑑1 crosses the 

value 𝑑1
∗= 𝛿�̂� if the following condition holds. 

                 
2

(1+ℎ𝑐�̂�)3
≠ (1 + ℎ𝑐�̂�)3𝛿𝜋1                                      (25) 

Proof.  The JM at (�̂�1, 𝑑1
∗) can be represented by   
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𝐽1 = 𝐽(�̂�1, 𝑑1
∗)

(

 
 

−𝑟�̂�

𝑘
     −

𝑟�̂�

𝑘
− 𝛿�̂� −𝑟𝛼�̂� −

𝑐�̂�

1 + ℎ𝑐�̂�
+
�̂�2𝛼𝑟

𝑘
0     0       0

0           0             
𝑏1𝑐�̂�

1 + ℎ𝑐�̂�
− 𝑑2 − 𝜇�̂� − 𝑞𝟐)

 
 

 

Thus, the eigenvalues of 𝐽1 are given by 𝜆11
∗ =

−𝑟�̂�

𝑘
, 𝜆12

∗ = 0,  and  𝜆13
∗ =

𝑏1𝑐�̂�

1+ℎ𝑐�̂�
− 𝑑2 − 𝜇�̂� −

𝑞𝟐. So, the 𝑃𝐷𝐹𝐸𝑃 is a non-hyperbolic point. 

Let 𝝕𝟏 = (𝜛11, 𝜛12, 𝜛13)
𝑇  be the eigenvectors corresponding to 𝜆12

∗ = 0 . Thus 𝐽1𝝕𝟏 = 0 

gives 𝝕𝟏 = (𝜋1𝜛12, 𝜛12, 0)
𝑇, where (𝜛12 ≠ 0) with 𝜋1 = −(1 +

𝛿𝑘

𝑟
) < 0. 

Now, let 𝑼𝟏 = (𝑢11, 𝑢12, 𝑢13)
𝑇 refers to the eigenvector corresponding to 𝜆12

∗ = 0 of 𝐽1
𝑇 then 

𝐽1
𝑇  𝑼𝟏 = 0 gives 𝑼𝟏 = (0, 𝑢12, 0)

𝑇, where (𝑢12 ≠ 0). 

Since  𝐹𝑑1 = (0,−𝐼, 0)𝑇, as result we find that  𝐹𝑑1(�̂�1, 𝑑1
∗) = (0, 0, 0)𝑇. 

So, 𝑼𝟏
𝑇𝐹𝑑1(�̂�1, 𝑑1

∗) = 0. Hence, system (2) has no SNB due to the Sotomayor theorem. 

Now, we have  𝑼𝟏
𝑇[𝐷𝐹𝑑1(�̂�1, 𝑑1

∗)𝝕𝟏] = −𝜛12 𝑢12 ≠  0. 

Additionally, 𝑼𝟏
𝑇 [𝐷2𝐹(�̂�1, 𝑑1

∗)(𝝕𝟏, 𝝕𝟏)] = [
2

(1+ℎ𝑐�̂�)3
+ (1 + ℎ𝑐�̂�)3𝛿𝜋1]𝜛12

2𝑢12 ≠  0  under 

the condition (25). Hence, TB takes place near �̂�1.   

Theorem 11. The system (2) undergoes under the following a TB near 𝑃𝐹𝐸𝑃 when the parameter 

𝑞2 crosses the value 𝑞2
∗ =

𝑐(𝑏1�̅�+𝑏2𝐼)̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅
− 𝑑2 − 𝜇�̅�, condition  

                         Μ1 ≠ 0,                                    (26)        

where Μ1 is defined in the proof. 

Proof.  The JM at (�̅�2, 𝑞2
∗) can be represented by   

    𝐽2 = 𝐽(�̅�2,𝑞2∗) =

(

 

−𝑟�̅�

𝑘
              −

𝑟�̅�

𝑘
− 𝛿�̅�           −𝑟𝛼�̅� −

𝑐�̅�

1+ℎ𝑐(�̅�+𝛽𝐼)̅
+
(�̅�+𝐼)̅�̅�𝛼𝑟

𝑘

𝛿𝐼 ̅        0                            
−𝑐𝐼̅

1+ℎ𝑐(�̅�+𝛽𝐼)̅

0       0                0 )

 = (�̅�𝑖𝑗) . 

Then the matrix has two eigenvalues having negative real parts, while the third is zero.  

Hence it is a non-hyperbolic point. 

Let 𝝕𝟐 = (𝜛21, 𝜛22, 𝜛23)
𝑇  be the eigenvectors corresponding to 𝜆23

∗ = 0 . Thus 𝐽2𝝕𝟐 = 0 
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gives that 𝝕𝟐 = (𝜋2𝜛23, 𝜋3𝜛23, 𝜛23)
𝑇  , where 𝜋2 =

−�̅�23

�̅�21
 > 0  and 𝜋3 =

�̅�23�̅�11−�̅�21�̅�13

�̅�12�̅�21
  and, 

(ϖ23 ≠ 0). 

 Now, let 𝑼𝟐 = (𝑢21, 𝑢22, 𝑢23)
𝑇  represents the eigenvector corresponding to 𝜆23

∗ = 0  of 𝐽2
𝑇 

then 𝐽2
𝑇  𝑼𝟐 = 0 yields  𝑼𝟐 = (0, 0, 𝑢23)

𝑇, where (𝑢23 ≠ 0). 

Since  𝐹𝑞2 = (0, 0, −𝑦)
𝑇. Hence 𝐹𝑞2(�̅�2, 𝑞2

∗) = (0, 0, 0)𝑇 

Therefore, 𝑼𝟐
𝑇𝐹𝑞2(�̅�2, 𝑞2

∗) = 0. Hence system (2) has no SNB with the Sotomayor theorem.Now,  

 𝑼𝟐
𝑇[𝐷𝐹𝑞2(�̅�2, 𝑞2

∗)𝝕𝟐] = −𝜛23𝑢23 ≠  0. 

Also, 

𝑼𝟐
𝑇[𝐷2𝐹(�̅�2, 𝑞2

∗)(𝝕𝟐, 𝝕𝟐)] = −
𝑏1ℎ𝑐

2

(1 + ℎ𝑐(�̅� + 𝛽𝐼)̅)
2 𝜋2

2𝑢23ϖ23
2

+[
𝑏1𝑐

1 + ℎ𝑐(�̅� + 𝛽𝐼)̅
− 2𝜇 +

𝑏1ℎ𝑐
2�̅� − 𝑏2ℎ𝐼𝑐

2

(1 + ℎ𝑐(�̅� + 𝛽𝐼)̅)
2] 𝜋2𝑢23ϖ23

2

− [
𝑏1ℎ𝛽𝑐

2�̅� − 𝑏2ℎ𝛽𝑐
2𝐼 ̅

(1 + ℎ𝑐(𝑠 + 𝛽𝐼))
2 −

2𝑐𝑏2

1 + ℎ𝑐(�̅� + 𝛽𝐼)̅
] 𝜋3𝑢23ϖ23

2

+[
2𝑏1𝑚�̅� + 𝑏2𝑚𝐼̅

(1 + ℎ𝑐(�̅� + 𝛽𝐼)̅)
−
2(ℎ𝑚𝑐�̅� + ℎ𝑚𝑐𝛽𝐼)̅(𝑏1�̅� + 𝑏2𝐼)̅

(1 + ℎ𝑐(�̅� + 𝛽𝐼)̅)
2 ] 𝑢23ϖ23

2 = Μ1𝑢23ϖ23
2

 

Consequently, 𝑼𝟐
𝑇[𝐷2𝐹(�̅�2, 𝑞2

∗)(𝝕𝟐,𝝕𝟐)] ≠ 0 .  Hence, TB occurs near �̅�2  under the 

condition (26).  

Theorem  12. The system (2) undergoes a TB near 𝐷𝐹𝐸𝑃  when the parameter 𝛿 = 𝛿∗ =

(𝑐+𝑚�̃�)

(1+ℎ�̃�(𝑐+𝑚�̃�))
+
𝑑1

�̃�
, if the following condition holds. 

                     Μ2 ≠ 0,                                      (27) 

where Μ2 is defined in the proof. 

Proof.  The JM at (𝑝3, 𝛿
∗) can be represented by   

     𝐽3 = 𝐽(�̃�3,𝛿∗) = (
�̃�11 �̃�12 �̃�13
0 0 0
�̃�31 �̃�32 �̃�33

) 

Then the matrix has two eigenvalues having negative real parts, while the third is zero.  

Hence it is a non-hyperbolic point.  



21 

PREY-PREDATOR MODEL WITH DISEASE 

Let 𝝕𝟑 = (ϖ31, ϖ32, ϖ33)
𝑇  be the eigenvectors corresponding to 𝜆32

∗ = 0 . Thus 𝐽3𝝕𝟑 = 0 

gives that 𝝕𝟑 = (𝜋4ϖ32, ϖ32, 𝜋5ϖ32)
𝑇  , where 𝜋4 =

�̃�13�̃�32−�̃�12�̃�13

�̃�11�̃�33−�̃�13�̃�31
  and 𝜋5 =

�̃�31�̃�12−�̃�11�̃�32

�̃�11�̃�33−�̃�13�̃�31
 

and, (ϖ32 ≠ 0). 

 Now, let 𝑼𝟑 = (𝑢31, 𝑢32, 𝑢33)
𝑇 represents the eigenvectors corresponding to 𝜆32

∗ = 0 for 𝐽3
𝑇 

then 𝐽3
𝑇  𝑼𝟑 = 0 leads to  𝑼𝟑 = (0, 𝑢32, 0)

𝑇, where ( 𝑢32 ≠ 0). 

Since  𝐹𝛿 = (−𝑠𝐼, 𝑠𝐼, 0)
𝑇. Hence, we obtain that 𝐹𝛿(�̃�3, 𝛿

∗) = (0, 0, 0)𝑇 

Therefore, 𝑼𝟑
𝑇𝐹𝛿(�̃�3, 𝛿

∗) = 0, which shows that system (2) has no SNB. 

Now, we have  𝑼𝟑
𝑇[𝐷𝐹𝛿(𝑝3, 𝛿

∗)𝝕𝟑] = �̃�ϖ32 ≠  0. 

Also, 

𝑼𝟑
𝑇[𝐷2𝐹(�̃�3, 𝛿

∗)(𝝕𝟑, 𝝕𝟑)] = [ℎ�̃�(𝑐 + 𝑚�̃�)2(1 + ℎ�̃�(𝑐 +𝑚�̃�))𝛽

−((𝑐 + 𝑐3ℎ2�̃�2) + 𝑚�̃�(2 + ℎ𝑚�̃��̃�(3 + ℎ𝑚�̃��̃�))

+𝑐2ℎ(�̃�(2 + 3ℎ𝑚�̃��̃�)) + 𝑐ℎ𝑚�̃��̃�(5 + 3ℎ𝑚�̃��̃�))𝜋5
+(ℎ�̃�(𝑐 +𝑚�̃�)2(1 + ℎ�̃�(𝑐 + 𝑚�̃�)) + (1 + ℎ(𝑐 + 𝑚�̃�)�̃�)3𝛿)𝜋4

+𝑚�̃�(3 + ℎ𝑚�̃��̃�))𝜋4𝜋5]ϖ32
2 = Μ2ϖ32

2

 

Then 𝑼𝟑
𝑇[𝐷2𝐹(�̃�3, 𝛿

∗)(𝝕𝟑, 𝝕𝟑)] ≠  0 under the condition (27). Hence, TB takes place near 𝑝3.  

Theorem 13. The system (2) undergoes an SNB near COEP when the parameter 𝜇 = 𝜇∗ =

[
−�̌�11(�̌�22�̌�33−�̌�23�̌�32)+�̌�21(�̌�12�̌�33−�̌�13�̌�32)

(�̌�22�̌�13−�̌�12�̌�23)
+ (

(𝑐+𝑚�̌�)𝑏1

(1+ℎ(𝑐+𝑚�̌�)(�̂�+𝛽𝐼)
−

ℎ(𝑐+𝑚�̌�)2(𝑏1�̌�+𝑏2𝐼)

(1+ℎ(𝑐+𝑚�̌�)(�̂�+𝛽𝐼))
2
�̌�
)] , if the 

following condition holds. 

                𝑚11𝜏1𝑢43 +𝑚21𝜏2𝑢43 +𝑚31𝑢43 ≠ 0,                         (28)  

where 𝑚11, 𝑚21, and 𝑚31 are given in the Appendix B. 

Proof. The JM of the system (2) at (�̌�4, 𝜇
∗) can be represented by   

   𝐽4 = 𝐽(𝑝4,𝜇∗) = (�̌�𝑖𝑗)(𝑝4,𝜇∗)
  

Therefore, it is straightforward to check that the coefficient 𝜃3 = 0 at 𝜇 = 𝜇∗ in equation (16g). 

Hence the characteristic equation has a zero root 

 Let 𝝕𝟒 = (ϖ41, ϖ42, ϖ43)
𝑇  be the eigenvectors corresponding to 𝜆41

∗ = 0 . Thus 𝐽4𝝕𝟒 = 0 

gives that 𝝕𝟒 = (𝜋6ϖ43, ϖ43, 𝜋7ϖ43)
𝑇  , where 𝜋6 =

�̌�12�̌�23−�̌�22�̌�13

�̌�11�̌�22−�̌�12�̌�21
  and 𝜋7 =

�̌�21�̌�13−�̌�11�̌�23

�̌�11�̌�22−�̌�12�̌�21
 

and, (ϖ43 ≠ 0). 



22 

AMEER M. SAHI, HUDA ABDUL SATAR 

 Now, let 𝝕𝟒 = (𝑢41, 𝑢42, 𝑢43)
𝑇 represents the eigenvectors corresponding to 𝜆41

∗ = 0 of 𝐽4
𝑇 

then 𝐽4
𝑇𝑼𝟒 = 0  yields 𝑼𝟒 = (𝜏1𝑢43, 𝜏2𝑢43, 𝑢43)

𝑇 , where , ( 𝑢43 ≠ 0)  with 𝜏1 =

�̌�21�̌�32−�̌�22�̌�31

�̌�11�̌�22−�̌�12�̌�21
, 𝜏2 =

�̌�12�̌�31−�̌�11�̌�32

�̌�11�̌�22−�̌�12�̌�21
. 

Since  𝐹𝜇 = ( 0, 0, −�̂��̂�)
𝑇. Hence we obtain that 𝐹𝜇(�̌�4, 𝜇

∗) = (0,0, −�̂��̂�)𝑇 

Therefore, 𝑼𝟒
𝑇𝐹𝜇(�̌�4, 𝜇

∗) = −�̂��̂�𝑢43 ≠  0.  

Also, by using the condition (28) it is obtained that 

𝑼𝟒
𝑇[𝐷2𝐹(�̌�4, 𝜇

∗)(𝝕𝟒, 𝝕𝟒)] = 𝑚11𝜏1𝑢43 +𝑚21𝜏2𝑢43 +𝑚31𝑢43 ≠ 0. 

Hence, SNB takes place near �̌�4. 

7. NUMERICAL SIMULATIONS 

This section explores the aspects of system (2) dynamics. The primary objective is understanding 

how the system behaves as its parameters are altered. 

The obtained theoretical results are verified utilizing numerical simulation. System (2) is solved 

numerically utilizing Matlab version R2021a. 

     𝑟 = 2.8;  𝛼 = 0.3;  𝐾 = 10 ; 𝛿 = 0.3;  𝑐 = 0.6 ;𝑚 = 0.02; 𝑏1 = 0.5; 𝑏2 = 0.25;  

                ℎ = 0.12; 𝑑1 = 0.1; 𝑑2 = 0.2;  𝛽 = 0.1;  𝜇 = 0.2; 𝑞1 = 0.1; 𝑞2 = 0.05;               (29)                                     

Now, utilizing the above data starting from different initial points, system (2) approaches 

asymptotically to COEP, �̌�4 = (3.21,0.60,1.70), as illustrated in Figure (1).  

 

Figure 1. System’s trajectory utilizes the set of data (29) and starting from various initial points 

approach asymptotically to �̌�4 = (3.20,0.60,1.70).(a) Phase portrait of system (2). (b) Evolution 

of time series. 
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As seen in Fig. 1, it is found that the system's (2) trajectories approach the COEP asymptotically 

given the following set of hypothetical parameter values, stsrting from various initial conditions. 

According to Fig. 1, the obtained theoretical finding of theorem 8 is confirmed. 

   Now, the influence of  𝑟 is studied in Fig. 2, it is observed that for 𝑟 ∈ [0.1,0.5] the system 

approaches the 𝑃𝐹𝐸𝑃, while for 𝑟 ≤ 0.09 the system approach to 𝐸𝐸𝑃, as shown in Fig. 2 

however, for 𝑟 ≥ 0.6 it approaches the 𝐶𝑂𝐸𝑃, as illustrated in Fig. 1. 

 

 

Figure 2. The system’s trajectories (2) with data set (29) and different values of 𝑟. (a) The system 

approaches asymptotically to �̅�2 = (0.33,1.09,0)  when 𝑟 = 0.5. (b) Time series for 𝑟 = 0.5. 

(c)The system approaches asymptotically to �̇�0  for 𝑟 = 0.009. (d) Time series for 𝑟 = 0.009. 

The effect of varying the value of 𝑘 of system (2) is investigated. Obviously, for 𝑘 ≤ 0.35 then 

the system’s trajectory (2) approaches to  𝑃𝐷𝐹𝐸𝑃 , Also for 𝑘 ∈ [0.36,2.3] then the system’s 

trajectory (2) approaches to 𝑃𝐹𝐸𝑃, and for  𝑘 ≥ 11 then the system’s trajectory converges to 

3𝐷 period attractor as illustrated in Fig. 3. While for 𝑘 ∈ [2.4,10] the system’s trajectory 
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approaches 𝐶𝑂𝐸𝑃, as illustrated in Fig. 1.  

 

Fi 

 

Figure 3. The system’s trajectories (2) with Eq. (29) with different values of 𝑘. (a) Approaches 

asymptotically to �̂�1 = (0.28,0,0)  for 𝑘 = 0.3 . (b) Time series for 𝑘 = 0.3 . (c) The system 

approaches asymptotically to �̅�2 = (0.33,1.31,0)  for 𝑘 = 2 . (d) Time series for 𝑘 = 2 . (e) 

Approaches to periodic attractor in  ℛ+
3  for 𝑘 = 15. (d) Time series for 𝑘 = 15.  
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Moreover, for the parameter 𝛼 , it observed that for 𝛼 ≤ 0.01  the system’s trajectory(2) 

approaches  to 𝑃𝐷𝐹𝐸𝑃 , for 𝛼 ∈ [0.02,0.2]  the system’s trajectory converges to 3𝐷 period 

attractor as illustrated in Fig 4, while 𝛼 ≥ 0.3 the system approaches the 𝐶𝑂𝐸𝑃, as illustrated in  

Fig. 1. 

 

 

Figure 4. The system’s trajectories(2) with Eq. (29) with different values of 𝛼. (a) Approaches 

asymptotically to �̂�1 = (9.64,0,0) for 𝛼 = 0.01. (b) Time series for 𝛼 = 0.01. (c) Approaches 

to periodic attractor in  ℛ+
3  for 𝛼 = 0.2. (d) Time series for 𝛼 = 0.2.    

 

The influence of varying the value 𝑐 of the system (2) is numerically investigated  with data 

(29), clearly, for 𝑐 ≤ 0.2  the system’s trajectory(2) approaches to 𝑃𝐹𝐸𝑃 , Morevere, for 𝑐 ∈

[0.7,0.9]  then the system’s trajectory approaches to 𝐷𝐹𝐸𝑃 , while for 𝑐 ≥ 0.95  the system’s 

trajectory approaches  periodic attractor in 2D  as illustrated in Fig. 5, and where 𝑐 ∈ [0.3,0.6] 

the system approaches the 𝐶𝑂𝐸𝑃, as illustrated in Fig. 1. 
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Figure 5. The system’s trajectories (2) with Eq. (29) and different values of c. (a) Approaches 

asymptotically to �̅�2 = (0.33,4.4,0)  for 𝑐 = 0.1. (b) Time series for 𝑐 = 0.1. (c) The system 

approaches asymptotically to 𝑝3 = (2.35,0,2.01) for 𝑐 = 0.7. (d) Time series for 𝑐 = 0.7. (e) 

Approaches to periodic attractor in  ℛ+
3   for 𝑐 = 0.98. (f) Time series for 𝛼 = 0.98. 

Moreover, for the parameter in the range 𝑚 ∈ [0.04,0.053] and 𝑚 ≥ 0.2  then the system’s 

trajectory converges to 3𝐷 period attractor, Also, for 𝑚 ∈ [0.06,0.08]  the system approaches 

𝐷𝐹𝐸𝑃 . While for 𝑚 ∈ [0.09,0.1]  the system’s trajectory converges to 2𝐷 period attractor as 
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illustrated in Fig. 6. When 𝑚 ≤ 0.03 the system’s approaches to the 𝐶𝑂𝐸𝑃, as illustrated in Fig. 

1. 

  

 

 

Figure 6. The system’s trajectories (2) with Eq. (29) and different values of 𝑚. (a) Approaches 

periodic attractor in ℛ+
3   for 𝑚 = 0.05 . (b) Time series for 𝑚 = 0.05.  (c) The system 

approaches asymptotically to 𝑝3 = (2.10,0,2.01)  for 𝑚 = 0.08 . (d) Time series for 𝑚 =

0.08. (e) Appeoches periodic attractor in  𝑆𝑌 − plane for 𝑚 = 0.1. (f) Time series for 𝑚 = 0.1. 
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Now, the effect of varying the value of 𝑏1  is investigated. Clearly, for 𝑏1 ≤ 0.4  the system’s 

trajectory converges to 3𝐷 period attractor. Moreover, for 𝑏1 ≥ 0.54 the system’s approaches to 

𝐷𝐹𝐸𝑃. as illustration in Fig. 7. Otherwise, the 𝐶𝑂𝐸𝑃 of the system(2) is a GAS as illustrated in 

Fig. 1. 

   

 

Figure 7. The system’s trajectories (2) with Eq. (29) and different values of 𝑏1. (a) Approaches 

Periodic attractor in ℛ+
3  for 𝑏1 = 0.2. (b) Time series for 𝑏1 = 0.2. (c) The system approaches 

asymptotically to 𝑝3 = (1.16,0,2.30) for 𝑏1 = 0.7. (d) Time series for 𝑏1 = 0.7.  

 

The impact of value 𝑏2 of the system is studied. For 𝑏2 ≤ 0.08 the system’s approaches to 

𝐷𝐹𝐸𝑃. Also, for 𝑏2 ≥ 0.27. The system approaches a stable limit cycle as illustration in Fig. 8. 

Otherwise, the𝐶𝑂𝐸𝑃 of the system (2) is a GAS, as illustrated in Fig. 1.  
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Figure 8. The system’s trajectories (2) with Eq. (29) and different values of 𝑏2. (a) Approaches 

asymptotically to �̅�2 = (3.56,4.49,0)   for  𝑏2 = 0.08 . (d) Time series for 𝑏2 = 0.08 . (c) 

Approaches periodic attractor in  ℛ+
3  for 𝑏2 = 0.3. (d) Time series for 𝑏2 = 0.3.  

 

Now, when  𝜇 ≤ 0.18,  the solution of system (2) approaches 𝐷𝐹𝐸𝑃. In addition, for 𝜇 ≥ 0.23 

the system approaches a stable limit cycle, as illustration in Fig. 9. Otherwise, the 𝐶𝑂𝐸𝑃 of the 

system (2) is a GAS if 𝜇 ∈ [0.19,0.22] as illustrated in Fig. 1. Similar effect has been obtained, 

as that happened with varying 𝜇 when we varying the value ℎ. 
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Figure 9. The system’s trajectories (2) with Eq. (29) and different values of  𝜇. (a) Approaches 

asymptotically to 𝑝3 = (1.29,0,2.29)  for 𝜇 = 0.1. (d) Time series for 𝜇 = 0.1. (c) Approaches 

periodic attractor in  ℛ+
3  for 𝜇 = 0.5. (d) Time series for 𝜇 = 0.5.  

 

It is observed that the influence of varying the values 𝑑1, 𝛽, and 𝑞1 on the system (2) dynamics is 

only a quantitative effect when the parameter values (29) are used, and the system trajectory 

approaches asymptotically to 𝐶𝑂𝐸𝑃 with a different position. 

The influence the value of 𝑑2  of system (2) is studied. For 𝑑2 ≤ 0.1  the system approaches 

𝐷𝐹𝐸𝑃 . While, for 𝑑2 ≥ 0.7  the system’s approaches to 𝑃𝐹𝐸𝑃 , as illustration in Fig. 10. 

Otherwise, the 𝐶𝑂𝐸𝑃 of the system (2) is a GAS if 𝑑2 ∈ [0.2,0.6] as illustrated in Fig. 1. 
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Figure 10. The trajectories of system (2) using Eq. (29) with different values of  𝑑2. (a) The system 

approaches asymptotically to 𝑝3 = (1.81,0,2.24)  for 𝑑2 = 0.1. (b) Time series for 𝑑2 = 0.1. 

(c) The system approaches to �̅�2 = (0.33,4.49,0)  for 𝑑2 = 0.8. (d) Time series for 𝑑2 = 0.8.  

 

Finally, for the parameter 𝑞2 ≤ 0.02 the system approaches a stable limit cycle, while for 𝑞2 ≥

0.5 the system approaches 𝑃𝐹𝐸𝑃, as illustration in Fig. 11. Otherwise, the 𝐶𝑂𝐸𝑃 of the system 

(2) is a GAS if 𝑞2 ∈ [0.03,0.4] as illustrated in Fig. 1.   
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Figure 11. The system’s trajectories (2) with Eq. (29) and different values of 𝑞2. (a) Approaches 

periodic attractor in ℛ+
3   for 𝑞2 = 0.01 . (b) Time series for 𝑞2 = 0.01.  (c) The system 

approaches asymptotically �̅�2 = (0.33,4.49,0) for 𝑞2 = 0.6. (d) Time series for 𝑞2 = 0.6.  

 

8. CONCLUSION 

An investigation of the influence of hunting cooperation and anti-predator behavior induced 

by the fear of predation for a Holling-II prey-predator model has been carried out analytically and 

numerically. The analytical and numerical findings show that cooperation leads the maximal 

number of individuals to escape predation through fear. The existence and stability of equilibria of 

the model are given and the existence of bifurcation is investigated. In addition, the influence of 

the fear effect on the population dynamics of the model is investigated, and find that the fear effect 

can not only reduce the population density of both predator and prey but also prevent the 

occurrence of limit cycle oscillation and increase the stability of the system. 
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Appendix A: 

The coefficients of the equation (5) can be determined as follows: 

𝐿0 = 𝑐ℎ
2𝐾𝑚𝜇3 − 𝑐2ℎ2𝐾𝛼𝜇3 + ℎ2𝐾𝑚2𝑟𝜇2𝑏1 + 2ℎ𝑚

2𝑟𝜇𝑏1
2 − 2ℎ2𝑚2𝑟𝜇𝑏1𝑑2

− ℎ2𝐾𝑚2𝜇2𝑏1𝑞1 + 𝑐ℎ
2𝐾𝑚𝛼𝜇2𝑏1𝑞1 − 2ℎ

2𝑚2𝑟𝜇𝑏1𝑞2
 

𝐿1 = ℎ𝐾𝑚𝜇
3 − 2𝑐ℎ𝐾𝛼𝜇3 − 2𝑐ℎ𝐾𝑚𝜇2𝑏1 + 2𝑐

2ℎ𝐾𝛼𝜇2𝑏1 − 2ℎ𝐾𝑚
2𝑟𝜇𝑏1

2 −𝑚2𝑟𝑏1
3

+3𝑐ℎ2𝐾𝑚𝜇2𝑑2 − 3𝑐
2ℎ2𝐾𝛼𝜇2𝑑2 + 2ℎ

2𝐾𝑚2𝑟𝜇𝑏1𝑑2 + 2ℎ𝑚
2𝑟𝑏1

2𝑑2 − ℎ
2𝑚2𝑟𝑏1𝑑2

2

+ℎ𝐾𝑚𝛼𝜇2𝑏1𝑞1 + 2ℎ𝐾𝑚
2𝜇𝑏1

2𝑞1 − 2𝑐ℎ𝐾𝑚𝛼𝜇𝑏1
2𝑞1 − 2ℎ

2𝐾𝑚2𝜇𝑏1𝑑2𝑞1
+2𝑐ℎ2𝐾𝑚𝛼𝜇𝑏1𝑑2𝑞1 + 3𝑐ℎ

2𝐾𝑚𝜇2𝑞2 − 3𝑐
2ℎ2𝐾𝛼𝜇2𝑞2 + 2ℎ

2𝐾𝑚2𝑟𝜇𝑏1𝑞2
+2ℎ𝑚2𝑟𝑏1

2𝑞2 − 2ℎ
2𝑚2𝑟𝑏1𝑑2𝑞2 − 2ℎ

2𝐾𝑚2𝜇𝑏1𝑞1𝑞2
+2𝑐ℎ2𝐾𝑚𝛼𝜇𝑏1𝑞1𝑞2 − ℎ

2𝑚2𝑟𝑏1𝑞2
2

 

𝐿2 = −𝐾𝛼𝜇3 − 𝐾𝑚𝜇2𝑏1 + 2𝑐𝐾𝛼𝜇
2𝑏1 + 𝑐𝐾𝑚𝜇𝑏1

2 − 𝑐2𝐾𝛼𝜇𝑏1
2 + 𝐾𝑚2𝑟𝑏1

3 + 3ℎ𝐾𝑚𝜇2𝑑2

− 6𝑐ℎ𝐾𝛼𝜇2𝑑2 − 4𝑐ℎ𝐾𝑚𝜇𝑏1𝑑2 + 4𝑐
2ℎ𝐾𝛼𝜇𝑏1𝑑2 − 2ℎ𝐾𝑚

2𝑟𝑏1
2𝑑2

+ 3𝑐ℎ2𝐾𝑚𝜇𝑑2
2 − 3𝑐2ℎ2𝐾𝛼𝜇𝑑2

2 + ℎ2𝐾𝑚2𝑟𝑏1𝑑2
2 − 𝐾𝑚𝛼𝜇𝑏1

2𝑞1 − 𝐾𝑚
2𝑏1

3𝑞1

+ 𝑐𝐾𝑚𝛼𝑏1
3𝑞1 + 2ℎ𝐾𝑚𝛼𝜇𝑏1𝑑2𝑞1 + 2ℎ𝐾𝑚

2𝑏1
2𝑑2𝑞1 − 2𝑐ℎ𝐾𝑚𝛼𝑏1

2𝑑2𝑞1

− ℎ2𝐾𝑚2𝑏1𝑑2
2𝑞1 + 𝑐ℎ

2𝐾𝑚𝛼𝑏1𝑑2
2𝑞1 + 3ℎ𝐾𝑚𝜇

2𝑞2 − 6𝑐ℎ𝐾𝛼𝜇
2𝑞2

− 4𝑐ℎ𝐾𝑚𝜇𝑏1𝑞2 + 4𝑐
2ℎ𝐾𝛼𝜇𝑏1𝑞2 − 2ℎ𝐾𝑚

2𝑟𝑏1
2𝑞2 + 6𝑐ℎ

2𝐾𝑚𝜇𝑑2𝑞2

− 6𝑐2ℎ2𝐾𝛼𝜇𝑑2𝑞2 + 2ℎ
2𝐾𝑚2𝑟𝑏1𝑑2𝑞2 + 2ℎ𝐾𝑚𝛼𝜇𝑏1𝑞1𝑞2 + 2ℎ𝐾𝑚

2𝑏1
2𝑞1𝑞2

− 2𝑐ℎ𝐾𝑚𝛼𝑏1
2𝑞1𝑞2 − 2ℎ

2𝐾𝑚2𝑏1𝑑2𝑞1𝑞2 + 2𝑐ℎ
2𝐾𝑚𝛼𝑏1𝑑2𝑞1𝑞2

+ 3𝑐ℎ2𝐾𝑚𝜇𝑞2
2 − 3𝑐2ℎ2𝐾𝛼𝜇𝑞2

2 + ℎ2𝐾𝑚2𝑟𝑏1𝑞2
2 − ℎ2𝐾𝑚2𝑏1𝑞1𝑞2

2

+ 𝑐ℎ2𝐾𝑚𝛼𝑏1𝑞1𝑞2
2 

𝐿3 = −3𝐾𝛼𝜇2𝑑2 − 2𝐾𝑚𝜇𝑏1𝑑2 + 4𝑐𝐾𝛼𝜇𝑏1𝑑2 + 𝑐𝐾𝑚𝑏1
2𝑑2 − 𝑐

2𝐾𝛼𝑏1
2𝑑2 + 3ℎ𝐾𝑚𝜇𝑑2

2

− 6𝑐ℎ𝐾𝛼𝜇𝑑2
2 − 2𝑐ℎ𝐾𝑚𝑏1𝑑2

2 + 2𝑐2ℎ𝐾𝛼𝑏1𝑑2
2 + 𝑐ℎ2𝐾𝑚𝑑2

3 − 𝑐2ℎ2𝐾𝛼𝑑2
3

− 𝐾𝑚𝛼𝑏1
2𝑑2𝑞1 + ℎ𝐾𝑚𝛼𝑏1𝑑2

2𝑞1 − 3𝐾𝛼𝜇
2𝑞2 − 2𝐾𝑚𝜇𝑏1𝑞2 + 4𝑐𝐾𝛼𝜇𝑏1𝑞2

+ 𝑐𝐾𝑚𝑏1
2𝑞2 − 𝑐

2𝐾𝛼𝑏1
2𝑞2 + 6ℎ𝐾𝑚𝜇𝑑2𝑞2 − 12𝑐ℎ𝐾𝛼𝜇𝑑2𝑞2 − 4𝑐ℎ𝐾𝑚𝑏1𝑑2𝑞2

+ 4𝑐2ℎ𝐾𝛼𝑏1𝑑2𝑞2 + 3𝑐ℎ
2𝐾𝑚𝑑2

2𝑞2 − 3𝑐
2ℎ2𝐾𝛼𝑑2

2𝑞2 − 𝐾𝑚𝛼𝑏1
2𝑞1𝑞2

+ 2ℎ𝐾𝑚𝛼𝑏1𝑑2𝑞1𝑞2 + 3ℎ𝐾𝑚𝜇𝑞2
2 − 6𝑐ℎ𝐾𝛼𝜇𝑞2

2 − 2𝑐ℎ𝐾𝑚𝑏1𝑞2
2

+ 2𝑐2ℎ𝐾𝛼𝑏1𝑞2
2 + 3𝑐ℎ2𝐾𝑚𝑑2𝑞2

2 − 3𝑐2ℎ2𝐾𝛼𝑑2𝑞2
2 + ℎ𝐾𝑚𝛼𝑏1𝑞1𝑞2

2

+ 𝑐ℎ2𝐾𝑚𝑞2
3 − 𝑐2ℎ2𝐾𝛼𝑞2

3 

𝐿4 = −3𝐾𝛼𝜇𝑑2
2 − 𝐾𝑚𝑏1𝑑2

2 + 2𝑐𝐾𝛼𝑏1𝑑2
2 + ℎ𝐾𝑚𝑑2

3 − 2𝑐ℎ𝐾𝛼𝑑2
3 − 6𝐾𝛼𝜇𝑑2𝑞2

− 2𝐾𝑚𝑏1𝑑2𝑞2 + 4𝑐𝐾𝛼𝑏1𝑑2𝑞2 + 3ℎ𝐾𝑚𝑑2
2𝑞2 − 6𝑐ℎ𝐾𝛼𝑑2

2𝑞2 − 3𝐾𝛼𝜇𝑞2
2

− 𝐾𝑚𝑏1𝑞2
2 + 2𝑐𝐾𝛼𝑏1𝑞2

2 + 3ℎ𝐾𝑚𝑑2𝑞2
2 − 6𝑐ℎ𝐾𝛼𝑑2𝑞2

2 + ℎ𝐾𝑚𝑞2
3 − 2𝑐ℎ𝐾𝛼𝑞2

3 

𝐿5 = −ℎ2𝑚2𝑟𝑥6𝜇2𝑏1 − 𝐾𝛼𝑑2
3 − 3𝐾𝛼𝑑2

2𝑞2 − 3𝐾𝛼𝑑2𝑞2
2 − 𝐾𝛼𝑞2

3. 
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Appendix B: 

Reformulating the system (2) in the vector form as follows 

 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), 

where 𝑋 = (𝑠, 𝐼, 𝑦)𝑇  and 𝐹 = (𝑠𝑓1, 𝐼𝑓2, 𝑦𝑓3)
𝑇  . Then direct computation to obtain the second 

derivative of 𝐹 can be written as 

 𝐷2𝐹(𝑋) = (𝑚𝑖1)3×1, 

where 

 

𝑚11 =
2

𝑘(1+𝛼𝑦)
(−𝑟 +

ℎ𝑘𝑦(𝑐+𝑚𝑦)2(1+𝛼𝑦)(1+ℎ(𝑐+𝑚𝑦)𝛽𝐼)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
) 𝑣1

2

+2𝑣1 [(−
𝑟

𝑘(1+𝛼𝑦)
+
ℎ𝑦(𝑐+𝑚𝑦)2𝛽(1+ℎ(𝑐+𝑚𝑦)(−𝑠+𝛽𝐼))

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
− 𝛿)𝑣2

+(
𝑟(−𝑘+2𝑠+𝐼)𝛼

𝑘(1+𝛼𝑦)2
+

2ℎ𝑚𝑠𝑦(𝑐+𝑚𝑦)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
+

−𝑚𝑦+ℎ𝑠(𝑐+𝑚𝑦)2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))2
−

(𝑐+𝑚𝑦)

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))
) 𝑣3]

+𝑠 [−
2ℎ2𝑦(𝑐+𝑚𝑦)3𝛽2𝑣2

2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
+ 2(

𝑟𝛼

𝑘(1+𝛼𝑦)2

+
ℎ(𝑐+𝑚𝑦)𝛽(𝑐+𝑐2ℎ(𝑠+𝛽𝐼)+2𝑐ℎ𝑚𝑦(𝑠+𝛽𝐼)+𝑚𝑦(3+ℎ𝑚𝑦(𝑠+𝛽𝐼)))

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
) 𝑣2𝑣3

+2(
𝑟(𝑘−𝑠−𝐼)𝛼2

𝑘(1+𝛼𝑦)3
−

𝑚(1+𝑐ℎ(𝑠+𝛽𝐼))

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
) 𝑣3

2]

 

 

𝑚21 =
2

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
[−ℎ2𝐼𝑦(𝑐 + 𝑚𝑦)3𝑣1

2 + ℎ𝑦(𝑐 +𝑚𝑦)2(1 + ℎ𝑠(𝑐 + 𝑚𝑦))𝛽𝑣2
2

−(𝑐 + 𝑐3ℎ2𝑠(𝑠 + 𝛽𝐼) + 𝑚𝑦(2 + ℎ𝑚𝑠𝑦(3 + ℎ𝑚𝑦(𝑠 + 𝛽𝐼)))

+𝑐2ℎ(𝛽𝐼 + 𝑠(2 + 3ℎ𝑚𝑦(𝑠 + 𝛽𝐼))) + 𝑐ℎ𝑚𝑦(𝛽𝐼 + 𝑠(5 + 3ℎ𝑚𝑦(𝑠 + 𝛽𝐼))))𝑣2𝑣3
−𝑚𝐼(1 + 𝑐ℎ(𝑠 + 𝛽𝐼))𝑣3

2 + 𝑣1((ℎ𝑦(𝑐 + 𝑚𝑦)
2(1 + ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼))

+(1 + ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼))3𝛿)𝑣2 + ℎ𝐼(𝑐 + 𝑚𝑦)(𝑐 + 𝑐
2ℎ(𝑠 + 𝛽𝐼)

+2𝑐ℎ𝑚𝑦(𝑠 + 𝛽𝐼) + 𝑚𝑦(3 + ℎ𝑚𝑦(𝑠 + 𝛽𝐼)))𝑣3)]

 

 

𝑚31 =
1

(1+ℎ(𝑐+𝑚𝑦)(𝑠+𝛽𝐼))3
[−2(1 + ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼))3𝜇𝑣1𝑣3

+2𝑏2(ℎ
2𝐼𝑦(𝑐 + 𝑚𝑦)3𝑣1

2 − ℎ𝑦(𝑐 + 𝑚𝑦)2(1 + ℎ𝑠(𝑐 + 𝑚𝑦))𝛽𝑣2
2

+(𝑐 + 𝑐3ℎ2𝑠(𝑠 + 𝛽𝐼) + 𝑚𝑦(2 + ℎ𝑚𝑠𝑦(3 + ℎ𝑚𝑦(𝑠 + 𝛽𝐼)))

+𝑐2ℎ(𝛽𝐼 + 𝑠(2 + 3ℎ𝑚𝑦(𝑠 + 𝛽𝐼))) + 𝑐ℎ𝑚𝑦(𝛽𝐼 + 𝑠(5 + 3ℎ𝑚𝑦(𝑠 + 𝛽𝐼))))𝑣2𝑣3
+𝑚𝐼(1 + 𝑐ℎ(𝑠 + 𝛽𝐼))𝑣3

2 + ℎ(𝑐 + 𝑚𝑦)𝑣1(−𝑦(𝑐 + 𝑚𝑦)(1 + ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼))𝑣2
−𝐼(𝑐 + 𝑐2ℎ(𝑠 + 𝛽𝐼) + 2𝑐ℎ𝑚𝑦(𝑠 + 𝛽𝐼) + 𝑚𝑦(3 + ℎ𝑚𝑦(𝑠 + 𝛽𝐼)))𝑣3))

−2𝑏1(ℎ𝑦(𝑐 + 𝑚𝑦)
2(1 + ℎ𝐼(𝑐 + 𝑚𝑦)𝛽)𝑣1

2 + 𝑣1(ℎ𝑦(𝑐 + 𝑚𝑦)
2𝛽(1 − ℎ(𝑐 + 𝑚𝑦)(𝑠 + 𝛽𝐼))𝑣2

−(𝑐 + 2𝑚𝑦 + 𝑐ℎ𝑠(𝑐 + 𝑚𝑦) + ℎ𝐼(𝑐 + 𝑚𝑦)(𝑐2ℎ𝑠 + 2𝑐(1 + ℎ𝑚𝑠𝑦)

+𝑚𝑦(3 + ℎ𝑚𝑠𝑦))𝛽 + ℎ2𝐼2(𝑐 + 𝑚𝑦)3𝛽2)𝑣3)

+𝑠(−ℎ2𝑦(𝑐 + 𝑚𝑦)3𝛽2𝑣2
2 + ℎ(𝑐 + 𝑚𝑦)𝛽(𝑐 + 𝑐2ℎ(𝑠 + 𝛽𝐼) + 2𝑐ℎ𝑚𝑦(𝑠 + 𝛽𝐼)

+𝑚𝑦(3 + ℎ𝑚𝑦(𝑠 + 𝛽𝐼)))𝑣2𝑣3 −𝑚(1 + 𝑐ℎ(𝑠 + 𝛽𝐼))𝑣3
2))]
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