
                

*Corresponding author 

E-mail address: ihsan.kadhim@qu.edu.iq 

Received February 01, 2025 

1 

  

     Available online at http://scik.org 

     Commun. Math. Biol. Neurosci. 2025, 2025:44 

https://doi.org/10.28919/cmbn/9169 

ISSN: 2052-2541 

 

 

STOCHASTIC DYNAMIC BEHAVIOR FOR THE PREY-PREDATOR PROBLEM 

WITH HOLLING-TYPE II FUNCTIONAL RESPONSE 

IHSAN JABBAR KADHIM1,*, ASMAHAN ABED YASIR2  

1Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Iraq 

2Open Educational College, Al-Qadisiyah Center, Ministry of Education, Al Diwaniyah 58001. Iraq 

Copyright © 2025 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The purpose of our study is to examine the stochastic stability of one of the important problems associated 

with ecology, namely the problem of prey and predators. This study was based on the type II functional response. 

After constructing the stochastic mathematical system that describes the problem, we demonstrated the system’s 

biological acceptability by providing the necessary conditions for the solution to be positive as well as studying the 

stationary distribution. By doing so, we may have studied the stability of the system. The comparison approach is 

often employed to determine the prerequisites for the extinction or persistence of prey. Finally, to demonstrate the 

results’ accuracy and realism, we present a numerical analysis of the problem in question. 

Keywords: stochastic differential equations; stochastic dynamical systems; stochastic prey-predator model; 

stationary distribution; the local Lipschitz condition; the extinction and persistence; positive solution. 

2020 AMS Subject Classification: 60H10, 92D25. 

 

1. INTRODUCTION  

One of the most important problems associated with ecology is the issue of prey and predators. 

This topic has occupied the thoughts of many researchers interested in creating an ecological 

balance by finding a symbiotic relationship between prey and predator in one environment [29]. 



2 

IHSAN JABBAR KADHIM, ASMAHAN ABED YASIR 

A two-dimensional prey-predator model [23, 30, 47], in [14, 41] a multi-Predator model were 

studied, or in [17, 39, 46] a multi-prey model were studied. Models of diseased predator or 

diseased prey animals were studied in [13, 15, 25, 40, 50, 51]. Models with functional responses 

were also presented [8, 28, 30, 36]. The mechanism of pest control is the main point in 

agriculture. Biological pest control is a popular approach. There are new results related to pest 

control [18, 45, 44, 49].  

Kumar, and Gunasundari [22], studied the communication between two prey and one predator 

species and are discuss the stability analysis. Using ergodic theory, Prasad, and Kumar [42], 

investigated the dynamic behavior of the three-species system consisting of prey, predator, and 

scavenger. Additionally, they have examined the dynamic bifurcation character of the 

prey-predator stochastic bifurcation events using a scavenger system.  

An appropriate Lyapunov functions have been used to verify the existence of stable and unique 

ergodic distributions [21, 37, 43]. An ecosystem consisting of three species was studied in [7] with 

the interaction of prey and predator and a third species acting as a predator host for stability. The 

model is the second-type semantic responses in nonlinear differential equations. In order to model 

the phenomenon of predation, Holling [11] depend upon experiments, proposed three different 

types of functional responses. So, we will study the standard model that depends on the following 

model: 

(1)            
𝑑𝑥1

𝑑𝑡
= 𝑟𝑥1(𝑡) (1 −

𝑥1(𝑡)

𝐾
) − 𝑏

𝑥1(𝑡)𝑥2(𝑡)

𝛽+𝑥1(𝑡)
,  

𝑑𝑥2

𝑑𝑡
= 𝑐

𝑥1(𝑡)𝑥2(𝑡)

𝛽+𝑥1(𝑡)
− 𝑑1𝑥2                               

wherever r, K, b, c, d > 0.𝑥1(𝑡) (𝑥2(𝑡)) it epitomizes the density of prey (rep. predator) types. 

For more details about system 1, see B. Liu, Z. Tengb, L. Chen [26]. We outline some ideas 

regarding the necessary prerequisites in Section 2 so that the work requirements can be fulfilled. 

The development of the stochastic system for our primary problem is the focus of Section 3. The 

analysis of the behavior of the stochastic system, which contains the positive solution, and the 

research of the stationary distribution will be covered in Section 4. Section 5 presents the 

numerical results. In Section 6, we briefly discuss the main findings of this article. 

2. PRELIMINARIES 

  Unless otherwise stated, the quartet Ω ≡ (Ω, ℱ, {ℱ𝑡}𝑡≥0, ℙ) will be indicated to  the complete 

probability space. 

 We will provide some basic notations and definitions necessary to complete the search 

requirements. Let  ℝ+
𝑛  be the subset of ℝ𝑛 with positive coordinate and an Euclidean metric.  
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Furthermore, for 𝑧: (0, ∞) ⟶ ℝ, define 

〈𝑧(𝑡)〉∗ = lim
𝑡⟶∞

sup
1

𝑡
∫ 𝑧(𝑠)

𝑡

0
𝑑𝑠, and  〈𝑧(𝑡)〉∗ = lim

𝑡⟶∞
inf

1

𝑡
∫ 𝑧(𝑠)

𝑡

0
𝑑𝑠 

Definition 2.1. [24, 32] If lim
𝑡→∞

𝑋𝑡 = 0, then the 𝑋𝑡 is called go extinct, a.s.  

Lemma 2.1. [37] If 𝑀: ℝ+ × Ω ⟶ ℝ be a function such that 𝑀(∙, 𝜔): ℝ+ ⟶ ℝ is continuous 

for all 𝜔 , 𝑀𝑡(∙) ≡ 𝑀(𝑡,∙): Ω ⟶ ℝ is local martingale and 𝑀(0, 𝜔) = 0 for every 𝜔. Then  

(i) ℙ {lim
𝑡→∞

𝑀𝑡

〈𝑀,𝑀〉𝑡
= 0} = 1 , whenever ℙ {lim

𝑡→∞
〈𝑀, 𝑀〉𝑡 =  ∞} = 1.  

(ii) ℙ {lim
𝑡→∞

𝑀𝑡

𝑡
= 0} = 1, whenever ℙ {lim sup𝑡→∞

〈𝑀,𝑀〉𝑡

𝑡
=  ∞} = 1. 

Lemma 2.2. [2, 48] Let 𝑥: Ω × ℝ+ ⟶ (0, ∞) and 𝐺: Ω × ℝ+ ⟶ ℝ be two functions of class 

𝐶1 and lim
𝑡⟶∞

𝐺𝑡

𝑡
= 0. Then for every 𝑡 ∈ ℝ+ we have  

1. For some 𝜆, 𝑇 ∈ ℝ and , 𝜆0 > 0 with  

ln 𝑋𝑡 ≤ 𝜆𝑡 − 𝜆0 ∫ 𝑋𝑠
𝑡

0
𝑑𝑠 + 𝐺(𝑡) a.s, for every 𝑡 ∈ [𝑇, +∞) 

yield 〈𝑋𝑡〉∗ ≤
𝜆

𝜆0
 a.s, whenever 𝜆 ∈ [0, +∞), lim

𝑡⟶∞
𝑋𝑡 = 0 a.s, whenever 𝜆 ∈ (−∞, 0). 

 (ii) For some 𝜆, 𝜆0, 𝑇 ∈ (0, +∞), with  

ln 𝑋𝑡 ≥ 𝜆𝑡 − 𝜆0 ∫ 𝑋𝑠
𝑡

0
𝑑𝑠 + 𝐺(𝑡) a.s., for every 𝑡 ∈ [𝑇, +∞) 

yield 〈𝑋𝑡〉∗ ≥
𝜆

𝜆0
 a.s. Now, if 𝑋: ℝ+ × Ω ⟶ ℝ𝑙 is a homogeneous Markov stochastic process 

such that  

(2)                𝑑𝑋(𝑡) = 𝑏(𝑋)𝑑𝑡 + ∑ 𝜎𝑟(𝑋)𝑘
𝑟=1 𝑑𝐵𝑟(𝑡).  

Definition 2.2. [1,3]: the system (2) is said to be admit a stationary distribution 𝜋(·) when the 

distribution of 𝑋(𝑡)  converges to 𝜋 = 𝜋𝛾 , where 𝛾  is an initial distribution satisfy 

lim
𝑡⟶∞

ℙ𝛾{𝑋(𝑡) ∈ 𝑀} = 𝜋(𝑀), for every measurable set 𝑀. 

Hypothesis 2.1. [20]: Let 𝐴(𝑥) be the diffusion matrix [10]. The following axioms are admitted 

by a bonded open set 𝑈 ⊂ ℝ𝑙 with a regular boundary 𝜕𝑈. 

(H1) The least eigenvalue of 𝐴(𝑥) is enclosed by zero in 𝑈. 

(H2) whenever 𝑥 ∈ ℝ𝑙\ 𝑈, then for every compact set 𝐾 in ℝ𝑙 we have sup𝑥∈𝐾 ℝ𝑙 𝜏′ < ∞. 

Proposition 2.1. [3]: Let 𝑓(·) be an integrable functional w.r.t 𝜇. If Hypothesis 2.1 satisfies, 

then 𝑋(𝑡) admits a stationary distribution 𝜇(·) . Furthermore, whenever 𝑔(·) is an integrable 
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with respect to   𝜇, then we have  

ℙ𝑥{∫ 𝑔(𝑥)𝜇(𝑑𝑥)
 

ℝ𝑙 } = 1. 

 

3. STOCHASTIC MODEL  

Indeed, environmental white noise is an essential constituent of the ecosystem as it affects 

population dynamics [16]. Nonetheless in the deterministic case, not every parameters are 

affected by the environment. In order to recognize the random effects we formulate the 

population dynamics as system of SDE's, see [1,21, 27,31, 32, 33, 34, 35, 48]. For this purpose 

we will use the technique of [53]. For the system 1, specified 𝑡 ∈ (0, +∞)  and time 

instantaneous 𝑡 = 𝑗Δ𝑡, present 

𝑍𝑗 =  (𝑋𝑗 , 𝑌𝑗)  =  (𝑋𝑗Δ𝑡(𝜔), 𝑌𝑗Δ𝑡(𝜔))𝑇, 𝑗 =  0, 1, . .. 

with 𝑋0 =  (𝑋0(𝜔), 𝑌0(𝜔))𝑇 ∈  ℝ+
2  as the initial value. If  {𝑅𝑖

𝑗
(𝑚)}𝑚=0

∞   is a stochastic 

process with a normal distribution satisfies 

𝐸[𝑅𝑖
∆𝑡(𝑚)]  = 0, 𝐸[𝑅𝑖

∆𝑡(𝑚)]2 =  𝜎𝑖
2∆𝑡, 𝐸[𝑅𝑖

∆𝑡(𝑚)]4 = 𝑜(∆𝑡), 

where 𝑖 = 1, 2 , 𝑚 ∈ ℤ+, and 𝜎𝑖
2 represent the intensities of random disruption. Then  

(3)            
𝑋𝑚+1 = 𝑋𝑚 + 𝑋𝑚𝑅1

∆𝑡(𝑚) + 𝑋𝑚 (𝑟 −
𝑟𝑋𝑚

𝐾
−

𝑏𝑌𝑚

𝛽+𝑋𝑚) ∆𝑡

𝑌𝑚+1 = 𝑌𝑚 + 𝑌𝑚𝑅2
∆𝑡(𝑚) + 𝑌𝑚 (

𝑐𝑋𝑚

𝛽+𝑌𝑚 − 𝑑1) ∆𝑡
 

If 𝑡 ⟶  0, then 𝑍𝑚 weak converges toward the solution of the system: 

(4) 𝑑𝑋𝑡 = 𝑋𝑡 (𝑟 −
𝑟�̅�𝑡

𝐾
−

𝑏𝑌𝑡

𝛽+�̅�𝑡
) 𝑑𝑡 + 𝜎1𝑋𝑡𝑑𝐵1(𝑡),  𝑑𝑌𝑡 = 𝑌𝑡 (

𝑐𝑋𝑡

𝛽+𝑋𝑡
− 𝑑1) 𝑑𝑡 + 𝜎2𝑌𝑡𝑑𝐵2(𝑡) 

wherever 𝐵1(𝑡)  and 𝐵2(𝑡) ,  represent the customary independent Wiener processes (see 

Theorem 7.1 and Lemma 8.2 in [5]). It is worth noting that the System 4 is more general than 

System 1 in [19]. 

  

4. LONG-TERM BEHAVIOR OF THE STOCHASTIC MODEL  

Here we study the behavior of the system (4) and give essential dynamical properties of our 

problem.  

Theorem 4.1. (The Positive Solution) For (𝑋0(𝜔), 𝑌0(𝜔)) ∈ ℝ+
2  , there is a unique positive 

solution (𝑋𝑡(𝜔), 𝑌𝑡(𝜔)) of (4) on [0, +∞), and ℙ{𝜔: (𝑋𝑡(𝜔), 𝑌𝑡(𝜔)) ∈ ℝ+
2 } = 1. 
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Proof: Use the transformation 𝑋𝑡 = 𝑒𝑢, 𝑌𝑡 = 𝑒𝑣 in (4) we get: 

(5)   𝑑𝑢 = (𝑟 −
𝑟𝑒𝑢

𝐾
−

𝑏𝑒𝑣

𝛽+𝑒𝑢
−

𝜎1
2

2
) 𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡),  𝑑𝑣 = (

𝑐𝑒𝑢

𝛽+𝑒𝑢
− 𝑑1 −

𝜎2
2

2
) 𝑑𝑡 + 𝜎2𝑑𝐵2(𝑡)    

where 𝑢0(𝜔) = ln 𝑋0(𝜔) , 𝑣0(𝜔) = ln 𝑌0(𝜔) . Wherever 𝜏𝑒 is the explosion time, the system 

(4) admits the local solution on [0, 𝜏𝑒) . This follows because the factors of system (4) gratify 

the local Lipschitz form. Using Itô's formula, (4) admits a unique local solution 

(𝑋𝑡(𝜔), 𝑌𝑡(𝜔)) ∈ ℝ+
2  for (𝑋0(𝜔), 𝑌0(𝜔)) ∈  ℝ+

2 . This solution is global. For, let 𝑘0 ⟶ +∞ 

such that  (𝑋0(𝜔), 𝑌0(𝜔)) ∈ 𝐷𝑘0
= [1/𝑘0 , 𝑘0] × [1/𝑘0, 𝑘0].  Describe the stopping time via  

𝜏𝑘 = inf {𝑡 ∈ [0, 𝜏𝑒): max{𝑋𝑡, 𝑌𝑡} ≥ 𝑘 or min{𝑋𝑡, 𝑌𝑡} ≤
1

𝑘
 }, 𝑘 ∈ ℤ with  𝑘 > 𝑘0. 

For the empty set ∅, put inf  ∅ = ∞ . Then 𝜏∞  ≤ 𝜏𝑒  a.s. when 𝜏∞ = lim
𝑘→∞

𝜏𝑘 .  Suppose that  

𝜏∞ = ∞. or else, there exist a Τ > 0 and 0 < 𝜀 < 1 with ℙ{𝜏∞ ≤ Τ} > 𝜀. So , there exists a 

𝑘1 > 𝑘0  which satisfies ℙ{𝜏𝑘 ≤ Τ} ≥ 𝜀  for  𝑘 ≥ 𝑘1 . At present, for (𝑋𝑡(𝜔), 𝑌𝑡(𝜔)) ∈ ℝ+
2 , 

define 

𝑉(𝑋𝑡, 𝑌𝑡) ≔ (𝑋𝑡 + 1 − ln 𝑋𝑡) + (𝑌𝑡  + 1 − ln 𝑌𝑡 ). 

We conclude from Itô's formula that 

  𝑑𝑉 = 𝑑𝑋𝑡 −
1

𝑋𝑡
𝑑𝑋𝑡 + 𝑑𝑌𝑡   −

1

𝑌𝑡
𝑑𝑌𝑡  

     = (𝑟𝑋𝑡 −
𝑟𝑋𝑡

2

𝐾
−

𝑏𝑋𝑡𝑌𝑡

𝛽+𝑋𝑡
− 𝑟 +

𝑟𝑋𝑡

𝐾
+

𝑏𝑌𝑡

𝛽+𝑋𝑡
+

𝑐𝑋𝑡𝑌𝑡

𝛽+𝑋𝑡
− 𝑑1𝑌𝑡 −

𝑐𝑋𝑡

𝛽+𝑋𝑡
+ 𝑑1 +

𝜎1
2

2
+

𝜎2
2

2
) 𝑑𝑡 

         +𝜎1(𝑋𝑡 − 1)𝑑𝐵1(𝑡) + 𝜎2(𝑌𝑡 − 1)𝑑𝐵2(𝑡) 

     ≤ [(𝑟 +
𝑟

𝐾
) 𝑋𝑡 + (𝑏 + 𝑐)𝑌𝑡 + 𝑑1 − 𝑟 +

𝜎1
2

2
+

𝜎2
2

2
] 𝑑𝑡  

         +𝜎1(𝑋𝑡 − 1)𝑑𝐵1(𝑡) + 𝜎2(𝑌𝑡 − 1)𝑑𝐵2(𝑡)  

According to Lemma 4.1 in [4], we have  

   (𝑟 +
𝑟

𝐾
) 𝑋𝑡 + (𝑏 + 𝑐)𝑌𝑡 ≤ 2 [(𝑟 +

𝑟

𝐾
) (𝑋𝑡 − ln 𝑋𝑡 + 1) + (𝑏 + 𝑐)(𝑌𝑡 − ln 𝑌𝑡 + 1)] 

Let 𝐶3 = max{𝐶1, 𝐶2} , where 𝐶1 = 𝑑1 − 𝑟 +
𝜎1

2

2
+

𝜎2
2

2
, 𝐶2  = max{𝑟 +

𝑟

𝐾
 , 𝑏 + 𝑐} . 

Consequently, 

𝑑𝑉 ≤  𝐶3(𝑉 + 1)𝑑𝑡 + 𝜎1(𝑋𝑡 − 1)𝑑𝐵1(𝑡) + 𝜎2(𝑌𝑡 − 1)𝑑𝐵2(𝑡). 

Evaluate the integrations   

     ∫  𝑑𝑉
𝜏𝑘∧Τ

0
≤ ∫ 𝐶3(𝑉 + 1) 

𝜏𝑘∧Τ

0
𝑑𝑠 + ∫ 𝜎1(𝑋𝑡 − 1)

𝜏𝑘∧Τ

0
𝑑𝐵1(𝑠) + ∫ 𝜎2(𝑌𝑡 − 1)

𝜏𝑘∧Τ

0
𝑑𝐵2(𝑠),  
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then taking the expectation and using Grownwall’s inequality we get 

𝐸𝑉(𝑋𝜏𝑘∧Τ, 𝑌𝜏𝑘∧Τ) ≤ [𝑉(𝑋0, 𝑌0) + 𝐶3Τ]𝑒𝐶3Τ = 𝑀0, 

So we get 

𝑉(𝑋𝜏𝑘∧Τ, 𝑌𝜏𝑘∧Τ) ≥ (
1

𝑘
 −  1 − ln

1

𝑘
 ) ∧  (𝑘 − 1 − ln 𝑘). 

Then one can be derived that  

𝑀0 ≥  𝐸[1Ω𝑡
𝑉(𝑋𝜏𝑘∧Τ, 𝑌𝜏𝑘∧Τ)]  ≥  𝜀 [

1

𝑘
− 1 − ln

1

𝑘
]  ∧ [𝑘 − 1 − ln 𝑘 ]  , 

wherever 1Ω𝑡
 is a characteristic function of Ω𝑘. But that is a contradiction to the hypothesis. 

Theorem 4.2.  Assume 1 +
1

𝛽
�̅�𝑡  − 𝑐�̅�𝑡 ≥  0, 1 <  

𝑐

𝑑1
 . If  

𝜔 < min {(
𝑟

𝐾
− 𝑏�̅�𝑡 − 𝜎1

2 −
𝑙1𝑏

2
+

𝑏�̅�𝑡

2
) �̅�𝑡

2
, (𝑙1𝑏�̅�𝑡 − 𝑙1

2𝜎1
2 −

𝑙1𝑏

2
+

𝑏�̅�𝑡

2
) �̅�𝑡

2
}, 

where  𝜔 =
𝜎1

2

2
 �̅�𝑡 +

𝑙1𝜎2
2

2
�̅�𝑡 + 𝜎1

2�̅�𝑡
2

+ 𝑙1
2𝜎2

2�̅�𝑡
2
 and  𝑙1  =

𝑏(𝛽+𝑐�̅�𝑡)

𝑐(𝛽+�̅�𝑡)
, 

then the system (4) admits an ergodic stationary distribution. 

Proof. If 𝑑1 < 𝑐, then the equilibrium of (1) is �̅� = (�̅�𝑡, �̅�𝑡) = (
𝑑1𝛽

(𝑐−𝑑1)
,

𝑐𝛽𝑟[𝐾(𝑐−𝑑1)−𝑑1𝛽]

𝐾𝑏(𝑐−𝑑1)
). 

Define 

  𝑉 = 𝑋𝑡 − �̅�𝑡 − �̅�𝑡 ln
𝑋𝑡

�̅�𝑡
+ 𝑙1 (𝑌𝑡 − �̅�𝑡 − �̅�𝑡 ln

𝑌𝑡

�̅�𝑡
) +

1

2
[(𝑋𝑡 − �̅�𝑡) + 𝑙1(𝑌𝑡 − �̅�𝑡)]2 

    = 𝑉1 + 𝑉2 

where   

 𝑉1 = 𝑋𝑡 − �̅�𝑡 − �̅�𝑡 ln
𝑋𝑡

�̅�𝑡
+ 𝑙1 (𝑌𝑡 − �̅�𝑡 − �̅�𝑡 ln

𝑌𝑡

�̅�𝑡
),  𝑉2 =

1

2
[(𝑋𝑡 − �̅�𝑡) + 𝑙1(𝑌𝑡 − �̅�𝑡)]2 . 

We conclude from Itô's formula that 

𝑑𝑉1 = 𝐿𝑉1𝑑𝑡 + 𝜎1(𝑋𝑡 − �̅�𝑡)𝑑𝐵1(𝑡) + 𝑙1(𝑌𝑡 − �̅�𝑡)𝑑𝐵2(𝑡), 

where  

𝐿𝑉1 = (𝑋𝑡 − �̅�𝑡) (𝑟 −
𝑟𝑋𝑡

𝐾
−

𝑏𝑌𝑡

𝛽+𝑋𝑡
) + 𝑙1(𝑌𝑡 − �̅�𝑡) (

𝑐𝑋𝑡

𝛽+𝑋𝑡
− 𝑑1) +

𝜎1
2

2
 �̅�𝑡 +

𝑙1𝜎2
2

2
�̅�𝑡  

   = (𝑋𝑡 − �̅�𝑡) (−
𝑟

𝐾
(𝑋𝑡 − �̅�𝑡) −

𝑏

𝛽+�̅�
(𝑌𝑡 − �̅�𝑡)) +

𝑙1𝑐(
1

𝛽
)(𝑋𝑡−�̅�𝑡)(𝑌𝑡−�̅�𝑡)

[1+
1

𝛽
𝑋𝑡][1+𝑐(

1

𝛽
)�̅�𝑡]

+
𝜎1

2

2
 �̅�𝑡 +

𝑙1𝜎2
2

2
�̅�𝑡  

   ≤ −
𝑟

𝐾
(𝑋𝑡 − �̅�𝑡)2 −

𝑏

𝛽+�̅�𝑡
(𝑋𝑡 − �̅�𝑡)(𝑌𝑡 − �̅�𝑡) +

𝑙1𝑐(
1

𝛽
)(𝑋𝑡−�̅�𝑡)(𝑌𝑡−�̅�𝑡)

1+𝑐(
1

𝛽
)�̅�𝑡

+
𝜎1

2

2
 �̅�𝑡 +

𝑙1𝜎2
2

2
�̅�𝑡  
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≤ −
𝑟

𝐾
(𝑋𝑡 − �̅�𝑡)2 +

𝜎1
2

2
�̅�𝑡 +

𝑙1𝜎2
2

2
�̅�𝑡  

We conclude from Itô's formula that 

𝑉2 =
1

2
[(𝑋𝑡 − �̅�𝑡) + 𝑙1(𝑌𝑡 − �̅�𝑡)]2   

𝑑𝑉2 = 𝐿𝑉2𝑑𝑡 + (𝜎1𝑋𝑡 + 𝑙1𝜎2𝑌𝑡)(𝑋𝑡 − �̅�𝑡)𝑑𝐵1(𝑡) + 𝑙1(𝜎1𝑋𝑡 + 𝑙1𝜎2𝑌𝑡)(𝑌𝑡 − �̅�𝑡)𝑑𝐵2(𝑡), 

and  

𝐿𝑉2 ≤ ((
1

𝛽
) �̅�𝑡 + 𝜎1

2 +
1

2
𝑙1 (

1

𝛽
) �̅�𝑡 −

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡) (𝑋𝑡 − �̅�𝑡)2  

−(𝑙1
𝑏

𝛽+�̅�𝑡
�̅�𝑡 − 𝑙1

2𝜎2
2 −

1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡  (𝑌𝑡 − �̅�𝑡)2 + 𝜎1

2�̅�𝑡
2

+ 𝑙1
2𝜎2

2�̅�𝑡
2
  

Consequently,  
𝑋𝑡

2

2
 ≤  (𝑋𝑡 − �̅�𝑡)  +  �̅�𝑡

2
  and  

𝑌𝑡
2

2
 ≤  (𝑌𝑡 − �̅�𝑡) + 𝑌𝑡

2. Therefore, 

𝐿𝑉 ≤ − (
𝑟

𝐾
− (

1

𝛽
) �̅�𝑡 − 𝜎1

2 +
1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡) (𝑋𝑡 − �̅�𝑡)2  

     −(𝑙1
𝑏

𝛽+�̅�𝑡
�̅�𝑡 − 𝑙1

2𝜎2
2 −

1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡)  (𝑌𝑡 − �̅�𝑡)2   

     +
𝜎1

2

2
�̅�𝑡 +

𝑙1
2𝜎2

2

2
�̅�𝑡 + 𝜎1

2�̅�𝑡
2

+ 𝑙1
2𝜎2

2�̅�𝑡
2
 . 

When 

𝜔 < min {(
𝑟

𝐾
− (

1

𝛽
) �̅�𝑡 − 𝜎1

2 +
1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�
�̅�𝑡) �̅�𝑡

2
, (𝑙1

𝑏

𝛽+�̅�𝑡
�̅�𝑡 − 𝑙1

2𝜎2
2 −

1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡)  �̅�𝑡

2
}, 

the ellipsoid  

− (
𝑟

𝐾
− (

1

𝛽
) �̅�𝑡 − 𝜎1

2 +
1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡) (𝑋𝑡 − �̅�𝑡)2  

− (𝑙1
𝑏

𝛽+�̅�𝑡
�̅�𝑡 − 𝑙1

2𝜎2
2 −

1

2
𝑙1 (

1

𝛽
) �̅�𝑡 +

1

2

𝑏

𝛽+�̅�𝑡
�̅�𝑡) (𝑌𝑡 − �̅�𝑡)2 + 𝜔 = 0   

lies entirely in ℝ+
2 . Let 𝔑 be an open set containing the ellipsoid with �̅� ⊆ 𝐸2\ 𝔑, so there exists 

a �̅� > 0 with 𝐿𝑉 ≤ −�̅� whenever (𝑋𝑡, 𝑌𝑡) ∈ 𝐸2 \ 𝔑. That is, axiom (H2) in Hypothesis 2.5 is 

satisfy. Furthermore, for every (𝑋𝑡, 𝑌𝑡) ∈  �̅̅̅� and 𝜐 ∈ ℝ2, there is 𝜆 > 0 such that 

∑ 𝑎𝑖𝑗𝜉𝑖𝜉𝑗
2
𝑖,𝑗=1 = 𝜎1𝑋𝑡

2𝜉1
2 + 𝜎2𝑌𝑡

2𝜉2
2 ≥ 𝜆‖𝜐‖2.  

Note that 𝜆 it can be chosen as 𝜆 ≔ min{𝜎1𝑋𝑡
2, 𝜎2𝑌𝑡

2, (𝑋𝑡, 𝑌𝑡) ∈ 𝔑}. Therefore axiom (H1) in 

Hypothesis 2.1 is hold. Hence, by Proposition 2.1, we get the result. 
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Theorem 4.3. The population 𝑋𝑡 in (4), satisfied: 

(6)                      lim
𝑡⟶+∞

sup
1

𝑡
ln 𝑋𝑡 ≤ 0 almost surely, 

for any initial value 𝑋0 ∈ ℝ+. 

Proof: Since 𝑑𝑋𝑡 = 𝑋𝑡 (𝑟 −
𝑟�̅�𝑡

𝐾
−

𝑏𝑌𝑡

𝛽+�̅�𝑡
) 𝑑𝑡 + 𝜎1𝑋𝑡𝑑𝐵1(𝑡), Itô's formula yield:  

 𝑑 ln 𝑋𝑡 = (𝑟 −
𝑟𝑋𝑡

𝐾
−

𝑏𝑌𝑡

𝛽+𝑋𝑡
−

𝜎1
2

2
) 𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡) ≤ (𝑟 −

𝑟𝑋𝑡

𝐾
−

𝜎1
2

2
) 𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡) 

Now, 

𝑑 ln 𝑧 = (𝑟 −
𝑟

𝐾
𝑧 −

𝜎1
2

2
) 𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡), 𝑧0 = 𝑥(0). 

Set 𝑉1 = 𝑒𝑡 ln 𝑧 . We conclude from Itô's formula that 

𝑑𝑉1 =  𝐿𝑉1 𝑑𝑡 +  𝑒𝑡𝜎1𝑑𝐵1(𝑡), where 𝐿𝑉1 = 𝑒𝑡 (ln 𝑧 + 𝑟 −
𝑟

𝐾
𝑧 −

𝜎1
2

2
). 

Take the integral from zero toward 𝑡, we can get that 

 𝑒𝑡 ln 𝑧 (𝑡) − ln 𝑧0 = ∫ 𝑒𝑠 [ln 𝑧(𝑠) + 𝑟 −
𝑟

𝐾
𝑧(𝑠) −

𝜎1
2

2
]

𝑡

0
𝑑𝑠 + ∫ 𝑒𝑠𝜎1

𝑡

0
𝑑𝐵1(𝑠). 

Denote 𝑀1(𝑡) = ∫ 𝑒𝑠𝜎1
𝑡

0
𝑑𝐵1(𝑠), then quadratic variation is 〈𝑀1(𝑡), 𝑀1(𝑡)〉 = ∫ 𝑒2𝑠𝜎1

2𝑡

0
𝑑𝑠. 

By the exponential martingale inequality [9], for 𝑇0, 𝑐1, 𝑐2 > 0 , yields  

(7)             ℙ {sup0≤𝑡≤𝑇0
[𝑀1(𝑡) −

𝑐1

2
〈𝑀1(𝑡), 𝑀1(𝑡)〉] > 𝑐2} ≤ 𝑒−𝑐1𝑐2  

Using the analogous technique as Zhu et al. [48], put 𝑇0 = 𝜆0𝑣, 𝑐1 = 𝜀𝑒−𝜆0𝑣, 

𝑐2 =
𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
, where 𝜆0 ∈ ℤ+, 𝑣 > 0, 𝜀 ∈ (0,1) and 𝜃 > 1 . So, 

ℙ {sup0≤𝑡≤𝜆0𝑣 [𝑀1(𝑡) −
𝜀𝑒−𝜆0𝑣

2
〈𝑀1(𝑡), 𝑀1(𝑡)〉] >

𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
} ≤ 𝜆0

−𝜃  

Since ∑ 𝜆0
−𝜃∞

𝜆0=1 < ∞ .Applying Borel–Cantalli Lemma, there is Ω𝑖 ⊂ Ω with the property if 

𝜛 ∈ Ω𝑖, then there is a 𝜆𝑖 = 𝜆𝑖(𝜛), so for every 𝜆0 > 𝜆𝑖, we derive 

𝑀1(𝑡) ≤
𝜀𝑒−𝜆0𝑣

2
〈𝑀1(𝑡), 𝑀1(𝑡)〉 +

𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
, 0 ≤ 𝑡 ≤ 𝜆0𝑣. 

Pick Ω0 = ⋂ Ω𝑖
2
𝑖=1 . Hence ℙ(Ω0) = 1 . For any 𝜛 ∈ Ω0 , define 𝜆0(𝜛) = max{𝜆𝑖(𝜛): 𝑖 =

1,2, … , 𝑛} . So, ∑ 𝑀1(𝑡)𝑛
𝑖=1 ≤

𝜀𝑒−𝜆0𝑣

2
〈𝑀1(𝑡), 𝑀1(𝑡)〉 +

𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
, 0 ≤ 𝑡 ≤ 𝜆0 . holds. 

Consequently, for 0 ≤ 𝑡 ≤ 𝜆0𝑣, it holds that 

 𝑒𝑡 ln 𝑧 (𝑡) − ln 𝑧0 ≤ ∫ 𝑒𝑠 [ln 𝑧(𝑠) + 𝑟 −
𝑟

𝐾
𝑧(𝑠) +

𝜎1
2

2
(𝜀𝑒𝑠−𝜆0𝑣 − 1)]

𝑡

0
𝑑𝑠 +

𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
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Thus, there is  𝑀1 verify  

ln 𝑧(𝑡) + 𝑟 −
𝑟

𝐾
𝑧(𝑡) +

𝜎1
2

2
(𝜀𝑒𝑡−𝜆0𝑣 − 1) ≤ 𝑀1, over [0, 𝜆0𝑣].. 

  If (𝜆0 − 1)𝑣 ≤ 𝑡 ≤ 𝜆0𝑣 ,  𝜆0 = 𝜆0(𝜛), then  

𝑒𝑡 ln 𝑧 (𝑡) − ln 𝑧0 ≤ 𝑀1(𝑒𝑡 − 1) +
𝜃𝑒𝜆0𝑣 ln 𝜆0

𝜀
  

So lim sup𝑡→∞
ln 𝑧(𝑡)

ln 𝑡
≤

𝜃𝑒𝑣

𝜀
. Consequently, by letting 𝑣 ↓ 0, 𝜀 ↑ 1 and 𝜃 ↑ 1, we get 

lim sup𝑡→∞
ln 𝑧(𝑡)

ln 𝑡
≤ 1  a.s. 

Corollary 4.1. Consider  the sumptions of Theorem 4.3. Then  lim sup𝑡→∞
1

𝑡
 ln 𝑋𝑡  ≤  0  a.s.  

Proof  By Theorem 4.3,  

lim sup𝑡→∞
1

𝑡
 ln  𝑋𝑡 = lim sup𝑡→∞

1

ln 𝑡
 ln  𝑋𝑡 lim sup𝑡→∞

1

𝑡
 ln  𝑡 ≤ 0. 

Theorem 4.4.  For  𝑋𝑡 in (4), we have  

(1) if 𝑟 − 
𝜎1

2

2
< 0, then lim

𝑡⟶+∞
𝑋𝑡 = 0. 

(2) if 𝑟 − 
𝜎1

2

2
> 0, then 〈𝑋𝑡〉∗ > 0. 

 Proof: (1) By   

𝑑𝑋𝑡 = 𝑋𝑡 (𝑟 −
𝑟𝑋𝑡

𝐾
−

𝑏𝑌𝑡

𝛽 + 𝑋𝑡
) 𝑑𝑡 + 𝜎1𝑋𝑡𝑑𝐵1(𝑡) ≤ 𝑋𝑡 (𝑟 −

𝑟𝑋𝑡

𝐾
) 𝑑𝑡 + 𝜎1𝑋𝑡𝑑𝐵1(𝑡) 

we construction a comparison stochastic system: 

𝑑𝑋𝑡 = 𝑋𝑡 (𝑟 −
𝑟

𝐾
𝑋𝑡) 𝑑𝑡 + 𝜎1𝑋𝑡𝑑𝐵1(𝑡), with initial condition 𝑋0. 

We conclude from Itô's formula that 

𝑑 ln 𝑋𝑡 = (𝑟 −
𝑟

𝐾
𝑋𝑡 −

𝜎1
2

2
) 𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡). 

By performing the integration from zero toward 𝑡 for the above equation, yields   

     ln 𝑋𝑡 − ln 𝑋0 = ∫ [𝑟 −
𝑟

𝐾
𝑋𝑠 −

𝜎1
2

2
]

𝑡

0
𝑑𝑠 + ∫ 𝜎1

𝑡

0
𝑑𝐵1(𝑠) 

                = ∫ [𝑟 −
𝑟

𝐾
𝑋𝑠 −

𝜎1
2

2
]

𝑡

0
𝑑𝑠 + ∫ 𝜎1

𝑡

0
𝑑𝐵1(𝑠),  

So  ln 𝑋𝑡 = ln 𝑋0 + ∫ [𝑟 −
𝑟

𝐾
𝑋𝑠 −

𝜎1
2

2
]

𝑡

0
𝑑𝑠 + ∫ 𝜎1

𝑡

0
𝑑𝐵1(𝑠) .Thus  

𝑋𝑡 = 𝑋0 exp {∫ [𝑟 −
𝑟

𝐾
𝑋𝑠 −

𝜎1
2

2
]

𝑡

0
𝑑𝑠 + 𝑀1(𝑡)},  
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Where 𝑀1(𝑡) = ∫ 𝜎1
𝑡

0
𝑑𝐵1(𝑠). Hence lim

𝑡⟶+∞
sup

𝑀1(𝑡)

𝑡
= 0. Consequently, 

 lim sup𝑡→∞
1

𝑡
 ln 𝑋𝑡 ≤ 𝑟 −

𝜎1
2

2
< 0 a.s.. So lim sup𝑡→∞

1

𝑡
 ln 𝑋𝑡 < 0, hence lim

𝑡⟶+∞
𝑋𝑡 = 0. 

(2) It is sufficient to show that there exists a 𝑢 > 0 such that any solution of (4) fulfills 〈𝑋𝑡〉∗ ≥

𝑢 > 0. Assume contrary that the consequence is incorrect. Choose 𝜀1 be arbitrary small so that 

−𝑑1 −
𝜎2

2

2
+

𝑐

𝛽
𝜀1 < 0 , 𝑟 −

𝜎1
2

2
−

𝑟

𝐾
𝜀1 > 0. So for all 𝜀1 >  0, there exists the solution (�̅�𝑡, �̅�𝑡) 

with ℙ{ 〈�̅�𝑡〉∗ < 𝜀1} > 0 . Consequently, 𝑑 ln �̅�𝑡 ≤ (
𝑐

𝛽
�̅�𝑡 − 𝑑1 −

𝜎2
2

2
) 𝑑𝑡 + 𝜎2𝑑𝐵2(𝑡) . By 

performing the integration from zero toward 𝑡 for the above equation and then divide by 𝑡, 

yields  

1

𝑡
(ln �̅�𝑡 − ln �̅�0) ≤

1

𝑡
∫ (−𝑑1 −

𝜎2
2

2
)

𝑡

0
𝑑𝑠 +

1

𝑡
∫

𝑐

𝛽
�̅�𝑠

𝑡

0
𝑑𝑠 +

1

𝑡
∫ 𝜎2

𝑡

0
𝑑𝐵2(𝑠) = −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽

1

𝑡
∫ �̅�𝑠

𝑡

0
𝑑𝑠 +

𝑀2(𝑡)

𝑡
, 

so 

(8)              
1

𝑡
(ln �̅�𝑡 − ln �̅�0) ≤ −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽

1

𝑡
∫ �̅�𝑠

𝑡

0
𝑑𝑠 +

𝑀2(𝑡)

𝑡
 ,  

where 𝑀2(𝑡) = ∫ 𝜎2
𝑡

0
𝑑𝐵2(𝑠). So, lim sup𝑡⟶+∞

𝑀2(𝑡)

𝑡
= 0.  

Hence, 

lim
𝑡⟶+∞

sup
1

𝑡
ln �̅�𝑡 ≤ −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽
𝜀1 < 0. So lim

𝑡⟶+∞
�̅�𝑡 = 0.  

Furthermore, 

𝑑 ln �̅�𝑡 = [𝑟 −
𝑟

𝐾
�̅�𝑡 −

𝑏

𝛽 + �̅�𝑡

�̅�𝑡 −
𝜎1

2

2
] 𝑑𝑡 + 𝜎2𝑑𝐵2(𝑡) 

Consequently,  

 
1

𝑡
[ln �̅�𝑡 − ln �̅�0] =

1

𝑡
∫ (𝑟 −

𝜎1
2

2
)

𝑡

0
𝑑𝑠 −

1

𝑡
∫

𝑟

𝐾
�̅�𝑠

𝑡

0
𝑑𝑠 +

1

𝑡
∫

𝑏

𝛽+�̅�𝑠
�̅�𝑠

𝑡

0
𝑑𝑠 +

𝑀1(𝑡)

𝑡
 

 = 𝑟 −
𝜎1

2

2
−

1

𝑡
∫

𝑟

𝐾
�̅�𝑠

𝑡

0
𝑑𝑠 −

1

𝑡
∫

𝑏

𝛽+�̅�𝑠
�̅�𝑠

𝑡

0
𝑑𝑠 +

𝑀1(𝑡)

𝑡
. 

Therefore, lim sup𝑡⟶+∞
𝑀1(𝑡)

𝑡
= 0 is verified.  

Hence, 

lim sup𝑡⟶+∞
1

𝑡
ln �̅�𝑡 = 𝑟 −

𝜎2
2

2
+

𝑟

𝐾
𝜀1  >  0. 
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This lead to a contradiction with Theorem 4.1. Therefore, 〈𝑋𝑡〉∗ >  0. 

Theorem 4.5: Consider the model 3. If  
𝑐

𝛽
𝐾(𝑟 −

𝜎1
2

2
) < 𝑟(𝑑1 +

𝜎2
2

2
), then the population 𝑌𝑡 will 

lean towards extinct a.s. 

Proof: If  𝑟 −
𝜎1

2

2
 ≤  0, then 〈𝑋𝑡〉∗  <  0. According to the same method as inequality 7, we get 

1

𝑡
[ln 𝑌𝑡 − ln 𝑌0] ≤ −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽

1

𝑡
∫ 𝑋𝑠

𝑡

0
𝑑𝑠 +

𝑀2(𝑡)

𝑡
 . 

Consequently, lim sup𝑡⟶+∞
1

𝑡
ln 𝑌𝑡 ≤ −𝑑1 −

𝜎2
2

2
< 0. So lim𝑡→∞  𝑌𝑡  =  0. Furthermore, if 𝑟 −

𝜎1
2

2
 > 0, then for every 𝜀2 > 0 , there exists 𝜏 ∈ (0, +∞) so that  

𝑀2(𝑡)

𝑡
 ≤ 𝜀2. Then 

ln 𝑋𝑡 − ln 𝑋0 ≤ ∫ (𝑟 −
𝜎1

2

2
)

𝑡

0

𝑑𝑠 −
𝑟

𝐾
∫ 𝑋𝑠

𝑡

0

𝑑𝑠 +
𝑀1(𝑡)

𝑡
≤ (𝑟 −

𝜎1
2

2
+ 𝜀2) 𝑡 −

𝑟

𝐾
∫ 𝑋𝑠

𝑡

0

𝑑𝑠 

So 〈𝑋𝑡〉∗ ≤
𝐾(𝑟−𝜎1

2/2+𝜀2)

𝑟
  by Lemma 2.3. Let 𝜀2 ⟶ 0, then 〈𝑋𝑡〉∗ ≤

𝐾(𝑟−𝜎1
2/2)

𝑟
. Therefore  

lim
𝑡⟶+∞

sup
1

𝑡
ln 𝑌𝑡 ≤ −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽
〈𝑋𝑡〉∗,  

so 

(9)             lim
𝑡⟶+∞

sup
1

𝑡
ln 𝑌𝑡 ≤ −𝑑1 −

𝜎2
2

2
+

𝑐

𝛽

𝐾(𝑟−𝜎1
2/2)

𝑟
=

𝑐𝐾(𝑟−𝜎1
2/2)−𝑟𝛽(−𝑑1−𝜎2

2/2)

𝑟𝛽
 

Then lim sup𝑡⟶+∞
1

𝑡
ln 𝑌𝑡 < 0. As a result lim𝑡→∞  𝑌𝑡  =  0. 

5. NUMERICAL ANALYSIS FOR THE PROBLEM  

In order to make our conclusions more realistic and verify the results obtained and find out how 

much they correspond to reality we conduct a numerical simulation. This is done using Milstein's 

higher order Model [12]. The analogous estimation equations are 

(10)      
𝑋𝑘+1 = 𝑋𝑘 + 𝑋𝑘 (𝑟 −

𝑟

𝐾
𝑋𝑘 −

𝑏𝑋𝑘

𝛽+𝑋𝑘
) ∆𝑡 + 𝜎1𝑋𝑘√Δ𝑡𝜉𝑘 +

𝜎1
2𝑋𝑘

2
(𝜉𝑘

2 − 1)Δ𝑡

𝑌𝑘+1 = 𝑌𝑘 + 𝑌𝑘 (
𝑐𝑋𝑘

𝛽+𝑋𝑘
− 𝑑1) ∆𝑡 + 𝜎2𝑌𝑘√Δ𝑡𝜍𝑘 +

𝜎2
2𝑌𝑘

2
(𝜍𝑘

2 − 1)Δ𝑡
 

Consider the system (4), take  (𝑋0, 𝑌0)  =  (0.9, 0.8) as the initial value and take: 

(11)           𝑟 =  0.4, 𝐾 = 1.3, 𝑐 = 2.6,  𝑏 = 0.25, , 𝑑1 = 0.2, 𝛽 = 8                                   

Due to 𝑑1 < 𝑐 , the model 2 be existent the critical point  �̅� = (�̅�, �̅�), where �̅� ≈  0.6667, �̅� ≈

 0.7795. So as to demonstrate the outcome of white noise on populations  𝑋𝑡 and 𝑌𝑡, take 𝜎1 =

 0.05, 𝜎2  =  0.05, as shown in Figure 1. 
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Figure 1. The stochastic system 4 with 𝜎1  = 𝜎2 = 0.05 , where (𝑋0, 𝑌0) = (0.9, 0.8)  and 

further parameters are used as 11. 

Furthermore, set 𝜎1 = 𝜎2 =  0.1 and the rest of the values are as given in 11. Thus  

1 +
1

𝛽
�̅� − (

𝑐

𝛽
) �̅� = 1 + (

1

8
) ( 0.6667) − (

2.6

8
) ( 0.6667) 

                              = 1 + 0.0833375 − 0.2166775 ≈ 0.8666 > 0 

𝛽 + �̅� −  𝑐�̅� ≈ 0.2167 ≥ 0 , ( 
𝑟

𝐾
 − 𝑏�̅� −  𝜎1

2 −
𝑙1𝑏

2
 +  

𝑏�̅�

2
)�̅�2 ≈ 0.0364, 

(𝑙1𝑏�̅� − 𝑙1
2𝜎2

2 −
𝑙1𝑏

2
+

𝑏�̅�

2
)�̅�2  ≈  0.0675, and 𝜔 =

𝜎1
2

2
�̅� +

𝑙1𝜎2
2

2
�̅� + 𝜎1

2�̅�2 + 𝑙1
2𝜎2

2�̅�2 ≈  0.0161.  

Consequently the condition of Theorem 4.3 is fulfilled. Thus there is an ergodic stationary 

distribution in the model 4.  When 

𝜎1 =  0.1, 𝑟 −  
𝜎1

2

2
= 0.395 >  0. 

Thus by Theorem 4.4 (2) 〈𝑋𝑡〉∗ > 0. If the condition remains fixed, then  〈𝑌𝑡〉∗ > 0. Set 𝜎1 =

0.1,  𝜎2 =  0.7 and all other parameters still invariant as shown in Figure 2. By calculating, 

𝑟 −  
 𝜎1

2

2
 ≈  0.395 >  0  and 

𝑐

𝛽
𝐾(𝑟 −

 𝜎1
2

2
) −  𝑟(𝑑1  +

 𝜎2
2

2
)  = −0.0111 < 0 , fulfills the 

hypothesis of Theorems 4.4(2) and 4.5. Consequently, 〈𝑋𝑡〉∗ > 0 and lim
𝑡⟶∞

𝑌𝑡 = 0. 
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Figure 2. The stochastic system (4) with 𝜎1 = 0.1 = 𝜎2 = 0.7, where (𝑋0, 𝑌0) = (0.9, 0.8) and 

other parameters are taken as 11. 

By increasing the value of 𝜎1 such that 𝜎1 =  0.9, we get   𝑟 −
 𝜎1

2

2
=  −0.005 <  0. Therefore 

the hypothesis of Theorem 4.4(1) fulfills. In other words, the population 𝑋𝑡 will lean towards 

extinct. So, if 𝜎2 =  0.2 and other parameters still in accordance with 11, then 

𝑐

𝛽
𝐾(𝑟 −

 𝜎1
2

2
 ) − 𝑟(𝑑1 +

 𝜎2
2

2
 ) ≈  −0.9011 < 0 

where the population 𝑋𝑡 is extinct. Therefore, 𝑌𝑡 will go to extinct. 

6. CONCLUSIONS  

We can outline the results of this paper as follows: 

1. The features and long-term behaviour of the system (4) will change as 𝜎1 and 𝜎2 increase. 

2. When 𝜎1 = 𝜎2 = 0 in the Model 4, white noise has no effect. But the effect is more obvious 

when the values 𝜎1 and 𝜎2 become greater than zero. 

3.  If 𝑟 −
 𝜎1

2

2
>  0 , then 〈𝑋𝑡〉∗ > 0 .  If 𝜎2  is large enough, then 𝑌𝑡  will be inclined to 

extinction a.s. 

4.  The 𝑋𝑡 and 𝑌𝑡 will be inclined to extinction a.s. when 𝜎1 is large enough. 
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5. From the proof of Theorem 4.2, for an appropriate Lyapunov function 𝑉 we get 𝐿𝑉 < 0, and 

so by Theorem 3.6 in [10] (see also [19]), the reference solution of the system (4) is globally 

asymptotically stable. Consequently, the reference solution of the system (4) is dissipative [52]. 

6.  From the proof of Theorem 4.4(1), we get lim sup𝑡→∞
1

𝑡
 ln 𝑋𝑡 < 0. Thus, the trivial solution 

of the first equation of the system (4) is almost sure exponential stable in the sense of Definition 

3.1 in [38, pp.119]. Similarly, from the proof of Theorem 4.5 we get lim sup𝑡⟶+∞
1

𝑡
ln 𝑌𝑡 < 0 , 

so the second equation of the system (4) is almost sure exponential stable. 
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