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Abstract. Malaria remains a significant public health challenge globally, with its transmission intricately asso-

ciated with climatic factors. Understanding the time lag effect of these variables on malaria incidence is crucial

for developing effective control strategies. The research used monthly malaria incidence data obtained from the

Uganda Ministry of Health, along with climate data from the Uganda National Meteorological Authority to inves-

tigate the impact of climatic factors, specifically rainfall, temperature, humidity and wind, on malaria incidence in

Arua District, using monthly data from 2020 to 2024. To capture both immediate and delayed effects, the study

employed an autoregressive generalized linear model (AR-GLM) with lagged covariates. The results indicate that

increased rainfall and humidity with specific delays are positively associated with the incidence of malaria, while

changes in temperature show a complex and unstable relationship. In addition, the AR-GLM model, which in-

corporates these time-dependent effects, outperforms a standard GLM, as evidenced by lower Akaike Information

Criterion (AIC) and Mean Absolute Percentage Error (MAPE) values. Residual analysis confirms that AR-GLM

adequately captures the temporal dependencies in the malaria data, showing no significant autocorrelation in resid-

uals. The findings contribute to the development of effective malaria control and prevention strategies tailored to
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the specific temporal dynamics of the climate-malaria interactions in Arua district, ultimately aiming to improve

public health outcomes.

Keywords: malaria incidence; climatic factors; autoregressive model; Generalised Linear Models; lagged covari-

ates; Uganda, AR-GLM.
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1. INTRODUCTION

Malaria is a disease caused by a parasitic infection transmitted by a mosquito (female

Anopheles), and it is still a major health problem not only in Africa but worldwide. The world

wide mortality rate for malaria spans from 0.3% to 2.2%; in tropical climate regions, the mor-

tality rate is higher, ranging from 11% to 30%, particularly in cases involving severe forms of

malaria [1]. According to the World Health Organization, children under 5 years of age account

for nearly 80% of all malaria fatalities. According to [2], 249 million cases were estimated glob-

ally in 2022 and this surpassed the pre-pandemic level of 233 millions in 2019 by 16 million

cases.

According to the World Health Organization, there was a decrease in the number of malaria

cases from 238 million in 2000 to 229 million in 2019, but the disease remains widely spread in

many countries, especially in Africa. Malaria cases increased steadily from 2019 to 2021, with a

slower rise observed between 2020 and 2021, culminating in a global total of 247 million cases

in 2021, up from 245 million in 2020 and 232 million in 2019 [3]. Climate change could result

in a rise in annual fatalities from malnutrition, malaria, diarrhea, and heat-related illnesses from

2030 to 2050, according to the World Health Organization. It has been observed that the effects

of climate change on the transmission of malaria are currently evident in many areas, some

locations have shown positive advancements in combating malaria over the past decade [4].

According to [5], malaria transmission varies notably between urban and rural areas in Africa,

with rural areas experiencing increased exposure because of the greater abundance and variety

of mosquitoes that carry the disease. However, research indicates that malaria transmission has

risen in many cities across Sub-Saharan Africa since 2003 [6]. Countries in East and South-

ern Africa experience elevated malaria transmissions, presenting a high risk of malaria, with

many of them having consistently stable transmission patterns [7]. Uganda grappled with the
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third-highest worldwide incidence of malaria cases, accounting for 5.1% of the global burden,

and recorded the seventh-highest mortality rate at 3.2% [3].Uganda holds the highest global

malaria incidence rate at 478 cases per 1,000 population annually, and the malaria-related death

toll in the country is estimated to range between 70,000 and 100,000 deaths each year, surpass-

ing the mortality rate associated with HIV/AIDS [8]. Climatic factors, especially temperature,

rainfall, and humidity, are critical drivers of malaria transmission. These variables influence

mosquito breeding, survival, and the development rate of malaria parasites. For instance, rain-

fall provides breeding sites for mosquitoes, while temperature affects mosquito and parasite life

cycles, with warmer temperatures generally increasing transmission rates [9] [1]. In Uganda,

malaria incidence remains high, particularly in regions like Acholi and West Nile, where recent

data indicate a malaria prevalence rate nearly three times the national average [10]. In areas like

Arua City, the prevalence reaches as high as 56%, over six times the national rate, emphasizing

the urgent need for targeted malaria interventions in these hotspots [11].

Research has increasingly focused on understanding the temporal relationship between cli-

mate factors and malaria transmission to enhance prediction and control efforts. For example,

studies in North Namibia and southwest China have highlighted the importance of incorporating

time-lagged effects of rainfall and temperature to better model malaria transmission dynamics

[12];[13]. Similarly, studies from the Colombian Amazon and Mozambique underscore the role

of seasonal climate patterns, such as El Niño, in influencing malaria peaks, with optimal lag

periods ranging from one to three months [14]; [15].

Despite the insights provided by these studies, there remains a significant research gap in ex-

plicitly modeling delayed climate effects and capturing temporal dependencies in malaria data.

Most existing models, including Generalized Linear Models (GLMs) and Generalized Additive

Models (GAMs), lack the flexibility to handle both complex time dependencies in malaria-

climate relationships while considering lagged factors. Advanced models like the Generalized

Autoregressive Moving Average (GARMA) model have been proposed to address these limita-

tions, but their complexity often limits practical application [16].



4 SUZAN KUTEGEKA, CHARITY WAMWEA, ANTHONY WAITITU

This study seeks to bridge this gap by employing an Autoregressive Generalized Linear

Model (AR-GLM) with lagged covariates to capture the immediate and delayed effects of cli-

matic factors on malaria transmission. An auto-regressive model with sufficient lags can capture

the same dependencies that a moving average component would due to the ability of a stationary

AR process to be expressed as an infinite MA process [17]. By examining the climate-malaria

relationship in Arua District Uganda from 2020 to 2024, this study aims to identify critical time

lags for climate variables, thereby informing effective malaria control and prevention strategies.

The AR-GLM approach offers a simpler yet robust framework for understanding these delayed

associations, ultimately contributing to improved predictive modeling for malaria intervention

planning.

2. METHODS

2.1. Study Area and Data. The study was conducted in Arua district, located approximately

475 kilometers (295 miles) northwest of Kampala, Uganda. Arua district has geographical

coordinates of 03°02’07.0”N latitude and 30°54’39.0”E longitude. It is situated at an average

elevation of 1,310 meters (4,298 feet) above sea level. As of 2020, the population of Arua was

estimated to be 72,400 people.

In this study, secondary data on monthly malaria incidence in the Arua district, covering the

period from January 2020 to July 2024, was obtained from the Ministry of Health, Uganda.

Monthly climate data, including rainfall, temperature, humidity, and wind force, was obtained

from the Uganda National Meteorological Authority. The malaria incidence rate serves as the

response variable, representing the monthly count of reported malaria cases in the district. Cli-

mate variables act as explanatory variables, rainfall measured in millimeters, temperature mea-

sured in degrees Celsius, humidity indicating moisture level, and wind force measured in knots,

monthly average wind speed can influence mosquito dispersion. These variables are included

as potential drivers of malaria transmission patterns in the model.

2.2. Generalized linear model (GLM). Generalized linear models (GLMs) developed by

[18] extend classical linear models by allowing the mean of a population to be linked to a linear

predictor through a potentially nonlinear link function. This framework accommodates response
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variables that follow any distribution within the exponential family, providing greater flexibility

in modeling diverse types of data. Given a response yi, i = 1,2, ...,n where n is the number of

observations and set of covariates Xi = xi1, ...,xim, the generalized linear model (GLM) is given

as

(1) g(µi) = XT
i βββ i,

where βββ i is a vector of coefficients. The GLM consists of three model components, the

random component which specifies the probability distribution of the response variable yi, sys-

tematic component which relates the linear predictor ηi to the explanatory variables (predictors)

as

(2) ηi = XT
i βββ , i = 1, ...,n,

for some vector of parameters βββ = (β1, ...,βm)
T are m unknown regression parameters to be

estimated and covariate Xi = (xi1, ...,xim)
T associated with observation yi [19]

and link components which transforms the mean of the response variable to the linear pre-

dictor scale in such away that

(3) g(µi) = ηi,

g is a monotone, differentiable function called the link function; that is, it is flat, or increasing

or decreasing with mean µi , but it cannot be increasing for some values of µi and decreasing

for other values [20].

In a GLM, the response variable yi is assumed to come from an exponential family distribu-

tion such as normal, binomial, Poisson and others.

2.3. Count Data Distribution. Malaria incidence which is our response variable refers to

the number of new cases of malaria observed within a specific population over a particular

period like monthly or yearly and this can be referred to as count data. Poisson distribution

and the negative binomial distribution are frequently employed to model disease case counts.

Generalized Linear Models (GLMs) provide a framework for regression analysis of count data

[21].
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2.3.1. The Poisson Distribution. The Poisson distribution itself is well-suited for modeling

count data and has a specific probability mass function that characterizes it. The probability

mass function (PMF) for a response variable yi with the mean µ is given by

(4) P(Yi = yi) =
µyie−µ

yi!
, yi = 0,1,2, . . . , and µ > 0,

where P(Yi = yi) is the probability that the discrete random variable Y takes non-negative in-

teger values.Under the Poisson distribution, the probability for negative values is 0, that is

p(y < 0) = 0, and E(Y ) = µ = Var(Y ), meaning the mean is equal to the variance, a prop-

erty known as equi-dispersion of the Poisson distribution.

2.3.2. Negative Binomial. When analyzing disease counts, it’s common to encounter over-

dispersion where the variance exceeds the mean [22]. To address this, the negative binomial

model serves as a refinement of the Poisson regression. This model is designed to handle the

over-dispersion often seen in disease count data. It is an alternative to the Poisson model that

introduces an additional parameter to account for the extra variability. The Negative Binomial

probability mass function (PMF) is

(5) P(Y = y) =
Γ
( 1

α
+ y
)

Γ
( 1

α

)
y!

[
1
α( 1

α

)
+µ

] 1
α
[

µ( 1
α

)
+µ

]y

,

where Γ(.) is a gamma function. The mean and the variance of Y are given by

(6)
E(Y ) = µ

Var(Y ) = µ +αµ
2

As α approaches zero, the variance of Y equals the mean µ implying that the negative bino-

mial converges to the Poisson distribution.

2.4. The Auto-Regressive Model (AR). The auto-regressive model is a type of stochastic

time series model used to describe certain time-varying processes.This model captures the in-

fluence of the past values of the variable on its current value. The auto-regressive process of

order p or AR(p) is defined by the equation
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(7) Yt =
p

∑
j=1

φ jYt− j +ωt ,

where ωt ∼N(0,σ2) is the error term, φ = (φ1,φ2, . . . ,φp) is the vector of model coefficients, Yt

is the value of the time series at time t, Yt− j indicates lagged values of the series, p is the order of

the auto-regressive model which indicates how many past values are included in the model. The

AR model assumes stationarity and that the error term should be white noise, meaning that it has

the following properties such as Zero Mean, Constant Variance over time, no Auto-correlation.

2.5. The Auto-regressive Generalized Linear model (AR-GLM). The AR-GLM is formu-

lated by combining the generalized linear model with the AR model and based on the following

assumptions.

• The response yt depends not only on the current and lagged covariates Xt but also on

the past observations yt− j to capture temporal dependence.

• For count data models, zero values of the response variable are handled by replacing

them with a small positive constant to avoid undefined logarithmic terms.

• Covariates can have both immediate and delayed effects on the response, capturing how

past covariates influence the response variable.

2.5.1. Model Formulation. Consider a time series of count data {yt}n
t=1, where yt represents

the malaria incidences at time t, and the model aims to relate these counts to past values of the

series and other covariates Xt .

The response variable yt is assumed to follow a distribution from the exponen-

tial family ( Poisson or Negative Binomial) conditional on the information set Dt =

{yt−1,yt−2, . . . ,y1,X1, . . . ,Xt} containing past observations yt−1 and covariate vectors Xt =

(xt1, . . . ,xtm) such that

(8) f (yt |Dt) = exp
{

ytθt−b(θt)

ϕ
+ c(yt ,ϕ)

}
,

Similar to the standard GLM, the conditional mean µt = E(yt/Dt) = b′(θt)is related to the

variables by a twice-differentiable one-to-one monotonic function g, which is called the link

function. var(yt |Dt) = ϕb′′(θt) = ϕν(µt) is the conditional variance, where ν(µt) is called the
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variance function. However, unlike the standard GLM, the formula here allows autoregressive

terms to be included additively [16] such that

(9) g(µt) = XT
t βββ +

p

∑
j=1

φφφ j
{

yt− j
}
,

where ∑
p
j=1 φφφ j

{
yt− j

}
are auto-regressive terms.

For count data, the logarithmic link function is used to relate the linear predictor to the con-

ditional mean µt = E(yt |Dt) as

g(µt) = ln(µt),

where g(·) is the link function, ensuring that the mean µt is positive, as is appropriate for count

data. equation(9) becomes

(10) ln(µt) = XT
t β +

p

∑
j=1

φφφ j
{

yt− j
}
,

since the count of yt is always positive and as φ contributes positively to the past values, the

influence of yt− j increases the expected count largely. To reduce on this effect we use ln(yt−1)

instead of yt−l directly. Also to avoid undefined values in these counts we add a constant c to

the past values so that equation (10) becomes

(11) ln(µt) = XT
t β +

p

∑
j=1

φφφ j
{

ln
(
yt− j + c · I(yt− j)

)}
,

where c ∈ (0,1), and I(yt− j) is an indicator function defined as

I(yt− j) =


1 if yt− j = 0

0 if yt− j > 0

Consider the term ∑
m
i=1 ∑

r
k=0 βixt−k,i which captures the immediate effects (when k = 0) and

delayed effects (when k> 0) of the covariates xt−k,i on the current response ln(µt). This captures

how current and past values of the covariates influence the current response, then (11) becomes

(12) ln(µt) = β0 +
m

∑
i=1

r

∑
k=0

βi,kxt−k,i +
p

∑
j=1

φ j
(
ln(yt− j + c · I(yt− j)

)
.

This includes the auto regressive term to account for the influence of past values yt− j of

the response variable adjusted by the effects of the covariates at the specific time lag. The

coefficient φφφ j weights these influences.



MODELING THE EFFECT OF CLIMATIC FACTORS ON MALARIA INCIDENCES 9

2.5.2. Parameter Estimation. The autoregressive generalized linear model fitting procedure

performs a maximum likelihood estimation (MLE). Let Q contain the model parameter to be

estimated. The log-likelihood of the data yr+1, ....,yn is conditional on the first r observations

y1, ......,r and on ηt = g(µt) for r >= max(p) is given by

(13)

l(Q) =
n

∑
t=r+1

log f (yt/Dt)

l(Q) =
n

∑
t=r+1

{
ytθt−b(θt)

ϕ
+ c(yt ,ϕ)

}
=

n

∑
t=r+1

lt

Given that

U(Q) =
∂ l
∂Q

=

(
∂ lt
∂β1

, . . . ,
∂ lt

∂βm
,

∂ lt
∂φ1

, . . . ,
∂ lt
∂φp

, . . .

)
,

is a score equation. At maximum the score function equates to zero,

(14) U(Q) =
∂ l
∂Q

= 0.

Maximum partial likelihood estimators are solved by fishers scoring algorithm.

2.6. Analysis of the Relationship between Climatic factors and Malaria Incidences. The

study used cross correlation analysis to find the significant lags of different covariates, estimated

the parameters using MLE and then used the z-values to test the hypothesis about coefficients

that is whether they are statistically different from zero. These z- values are obtained as

(15) z =
β̂ j

SE(β̂ j)
,

where β̂ j is the estimated coefficient for predictor j, SE(β̂ j) is the standard error of the estimated

coefficient. The z-value is distributed normally with a mean of 0 and a standard deviation of 1

as

z∼ N(0,1)

The p-value associated with the z-value can be calculated using the cumulative distribution

function (CDF) of the standard normal distribution.

p-value = P(Z ≥ |z|) = 2 · (1−Φ(|z|))

where Φ(z) is the CDF of the standard normal distribution. Decisions are made based on the

significance level for the p-values under the statistical hypothesis that,
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H0 : βi = 0 Ha : βi 6= 0

The p-value that is less than the chosen significance level 0.05 leads to rejection of the null

hypothesis. This indicates that there is sufficient evidence to conclude that the predictor has a

statistically significant effect on the response variable.

2.7. Model performance.

2.7.1. Model Comparisions. Model performance was perfomed using tools such as the Auto-

Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) to evaluate temporal

dependencies, and statistical metrics like the Akaike Information Criterion (AIC) and Mean

Absolute Percentage Error (MAPE) to measure model quality and predictive accuracy. The ACF

examines correlations between a time series and its lagged values, with significant correlations

at non-zero lags indicating potential autocorrelation in residuals. The PACF focuses on the

direct effects of individual lags, helping to identify which lags contribute most to the observed

autocorrelation.

The AIC is used to compare models by balancing goodness of fit and complexity, penaliz-

ing those with excessive parameters. The model with the lowest AIC value is preferred, as it

achieves the best trade-off between accuracy and simplicity. MAPE evaluates prediction accu-

racy by calculating the average percentage error between observed and predicted values, with

lower values indicating better performance. Combined, these tools ensure comprehensive eval-

uation of the model’s ability to capture data patterns, handle temporal dependencies, and make

accurate predictions.

2.7.2. Residual Analysis of AR-GLM. Residual analysis evaluates how well a model explains

observed data by comparing predictions to actual values. For count data (e.g., number of

events), traditional methods assuming normality are unreliable. Instead, this study uses the

DHARMa package in R, which generates residuals through simulations tailored to count mod-

els. DHARMa avoids normality assumptions by standardizing residuals to a scale between 0

and 1, making patterns easier to interpret. The analysis relies on two key diagnostic tools.
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First, the residual vs. predicted plot identifies systematic errors, such as overdispersion (exces-

sive variance in the data) or autocorrelation (time-dependent patterns in residuals). Deviations

from a smooth curve centered on zero suggest the model misses important patterns, such as

non-linear relationships between predictors and the response variable. Second, the Q-Q plot

compares residuals to the model’s expected distribution (e.g Poisson or negative binomial). De-

viations in the tails of the plot may indicate outliers or overdispersion, while alignment with

the reference line supports adequate fit. Statistical tests further validate assumptions. The dis-

persion test measures whether the model’s variance aligns with the data. Values greater than 1

signal overdispersion, while values less than 1 indicate underdispersion. The outlier test flags

extreme residuals that could skew results. DHARMa’s approach ensures robust diagnostics

for count data models, addressing challenges like non-normality and overdispersion through

simulation-based residuals. This method simplifies identifying issues like model misspecifica-

tion or outliers.

3. RESULTS

3.1. Data exploration. Monthly malaria counts for the period 2020 January to 2024 July was

used. The data was obtained from the Ministry of Health, Uganda. Table 1 shows results from

analysis of Malaria incidences.

TABLE 1. Summary of Malaria Incidences

Metric Value

Mean 2758

Standard Deviation 830.98

Range 1525–4371

Variance 690521

Overdispersion Statistic (Variance / Mean) 250.34
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FIGURE 1. Histogram of malaria counts

From Table 1, the minimum value for malaria incidences is 1525, the maximum value is 4371

cases, the mean value for the whole period is 2758, the standard deviation is 830.98 and variance

is 690521. the variance mean ratio is 250.34 which shows that malaria data is over-dispersed.

From Figure 1, it is observed that the histogram is skewed to the right which is representation

of count data. We conclude that malaria incidences is count data and we can model it using a

distribution suited for count data which is the negative binomial distribution.

TABLE 2. Stationarity and Autocorrelation Tests

Variable/Test Statistic p-value

ADF Test Results for Stationarity

Rainfall -4.2407 0.0100

Mean Temperature -4.0063 0.0158

Mean Wind -4.9222 0.0100

Mean Humidity -3.5146 0.0484

Malaria incidences -3.7873 0.0256

Ljung-Box Test for Autocorrelation

Malaria incidences 90.94 0.0000



MODELING THE EFFECT OF CLIMATIC FACTORS ON MALARIA INCIDENCES 13

From Table 2, Rainfall, Mean temperature, Mean wind, Mean humidity and malaria inci-

dences have p-values (0.0100,0.0158,0.0100,0.0484,0.0256) respectively which are below the

the significant level (0.05) meaning the ADF test results indicate that each series is stationary

that is these variables have relatively consistent statistical properties over time then we reject the

null hypothesis of non-stationary. The p-value (0.0000) below 0.05 from Ljung-Box Test indi-

cates significant autocorrelation in the malaria counts series. This means that an autoregressive

component should be included in the model to capture this time-dependent structure.

3.2. Relationship between the different covariates and malaria incidence.

FIGURE 2. cross correlation plots

3.2.1. Significant Time Lags. Results from the Cross-Correlation Function (CCF) analysis

Figure 2 show that certain climatic variables Mean Temperature, Mean Humidity, and Rainfall

have significant lagged correlations with malaria incidences, suggesting that these factors may

influence malaria incidence with a delayed effect. Each climate variable shows a distinct pattern

of influence across different time lags for instance, Mean Temperature has significant positive

correlations observed at lags 2, 3, and 4, Mean Humidity and Rainfall have significant positive
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correlations at lags 3, 4, 5, and 6, while Mean Wind does not exhibit any significant lagged

relationship.

The findings of previous studies suggest significant correlations that begin at lower lags, such

as lag 0, lag 1, and lag 2 for most variables. For example, [23] observed that rainfall can in-

fluence mosquito breeding sites almost immediately, with significant impacts seen as early as

lag 1. Similarly, [24] reported that rainfall at lag 1 and lag 2 can directly impact the dynamics

of mosquito population in regions with favorable baseline conditions. Regarding temperature,

[25] highlighted that even short-term temperature increases could accelerate mosquito and par-

asite development, with effects observable at lag 1 or lag 2. Furthermore, [26] demonstrated

that short-term increases in humidity could sustain mosquito populations, influencing malaria

transmission within a month (lag 1).

To fully capture both immediate and delayed effects, lags from 0 to 6 are included in the

model to account for potential influences across a range of time lags.

3.2.2. Regression Results for AR-GLM Model.

TABLE 3. Regression Results for AR-GLM Model

Predictor Estimate Std. Error z-value p-value

Intercept 8.7811 2.2553 3.893 0.0001***

log(malaria lag1) 0.5557 0.1008 5.512 0.0000***

Rainfall 0.0014 0.0006 2.382 0.0172*

Mean Temperature -0.0750 0.0505 -1.485 0.1375

Mean Humidity -0.0093 0.0059 -1.561 0.1184

Rainfall (Lag 1) 0.0015 0.0006 2.589 0.0096**

Temperature (Lag 4) -0.1570 0.0594 -2.642 0.0082**

Fourier Cosine 0.4562 0.1095 4.167 0.0000***

Humidity (Lag 1) -0.0100 0.0067 -1.499 0.1338

Humidity (Lag 2) 0.0136 0.0057 2.383 0.0172*

Note. * p < .05, ** p < .01, *** p < .001



MODELING THE EFFECT OF CLIMATIC FACTORS ON MALARIA INCIDENCES 15

FIGURE 3. Average malaria cases by month.

From Table 3 the intercept (8.7811, p = 0.0001) represents the baseline log-transformed

malaria incidence when all covariates are zero, A one-unit increase in log-transformed malaria

cases from the previous month (lag 1) is associated with a 55.57% increase in current cases

(0.5557, p=0.0000), highlighting the strong influence of past incidence on current trends. Rain-

fall shows a positive effect, where a one-millimeter increase leads to a 0.14% increase in malaria

cases (0.0014, p = 0.0172), Additionally, rainfall from the previous month (lag 1) has a de-

layed effect, with a one-millimeter increase resulting in a 0.15% increase in cases (0.0015, p

= 0.0096). Temperature from four months ago (lag 4) significantly reduces malaria cases by

15.70% for each one-degree Celsius increase (-0.1570, p = 0.0082), The Fourier cosine term

(0.4562, p=0.0000) captures seasonal variability, reflecting cyclical environmental factors that

significantly influence malaria transmission, while humidity from two months ago (lag 2) shows

that a one-unit increase raises malaria cases by 1.36% (0.0136, p = 0.0172), indicating a delayed

positive impact on mosquito development. In contrast, non-significant predictors include mean

temperature and mean humidity.
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3.3. Assessing the performance of the model. The best model for both the standard GLM

and the AR-GLM were considered and compared. The models given below were obtained

(16)

E(yt) = µt = exp(ηt),

ηt = β0 + log(malaria lag1)+ rainfall+mean temp

+mean humidity+ rainfall lag1+ temp lag4

+Fourier cos+humidity lag1+humidity lag2.

(17)
E(yt) = µt = exp(ηt),

ηt = β0 +mean temp+ rainfall lag1+Fourier cos.

where

Fourier cos = cos
(

2π
t

12

)
Equations (16) and (17) are the best model for the AR-GLM with AIC value of 797.76 and

standard GLM with AIC value of 839.01 obtained from the full model respectively using step

function in R-studio and these were used to compare the performance.

3.3.1. Comparision between the GLM and AR-GLM.

FIGURE 4. ACF and PACF Plots
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From Figure 4, the ACF plot for the GLM residuals shows significant auto-correlation at

multiple lags, with several spikes exceeding the confidence bounds. This indicates that the GLM

model has not adequately captured the temporal dependencies in the malaria count data, leaving

autocorrelation in the residuals. The PACF plot reveals significant partial autocorrelation at lag1

indicating the potential need for an autoregressive component model time-dependent patterns

in the GLM residuals.

The ACF plot of the AR-GLM residuals shows a reduction in autocorrelation compared to the

GLM residuals. Most spikes now fall within the confidence bounds, indicating that the inclusion

of an autoregressive term in the model has addressed the temporal dependencies left by the

GLM. The PACF plot also demonstrates a reduction in partial autocorrelation, with most values

now within the confidence bounds. This result suggests that the autoregressive component in

the AR-GLM effectively captures the autocorrelation structure in the malaria data hence the

ability to produce residuals that approximate to white noise.

TABLE 4. Model Performance Comparison for GLM and AR-GLM

Model MAPE (%) AIC Ljung-Box p-value

GLM 21.70 839.01 0.042

AR-GLM 14.37 797.76 0.994

Table 4 displays the AIC, MAPE, and Ljung-Box tests for the two models. The lower AIC

value (793.23) for the AR-GLM as compared to the AIC value (808.42) for the GLM implies

that the AR-GLM provides a better model fit as compared to the GLM. The AR-GLM has a

MAPE of 14.37%, which is lower than the GLM’s MAPE of 21.70% indicating that the AR-

GLM provides more accurate predictions, with a smaller average prediction error compared to

the GLM.

The Ljung-Box test shows a p-value of 0.994, which is greater than the significance level

(0.05) implying that we fail to reject the null hypothesis of no auto-correlation in the residuals

and conclude that there’s no significant evidence of auto-correlation in the residuals.
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3.3.2. Analysis of the AR-GLM residuals.

FIGURE 5. Residual Plots of AR-GLM Residuals.

From 5The points in the QQ plot generally follow the diagonal red line. This indicates that

the distribution of the residuals is consistent with the theoretical distribution assumed by the

model (negative binomial). The outlier test has a p-value of 1 and is labelled as ”Deviation n.s”,

showing that no significant outliers detected in the data. The Kolmogorov-Smirnov test has a

p-value of 0.97079, which is far greater than the significance level (typically 0.05). The ”Devi-

ation n.s.” confirms that there is no reject the null hypothesis that the residuals come from the

expected distribution. This means the residuals’ distribution isn’t statistically different from the

theoretical distribution. The dispersion test has a p-value of 0.904, also much greater than 0.05.

The ”Deviation n.s.” indicates that the model adequately accounts for the dispersion in the data,

and there is no evidence of significant overdispersion or underdispersion. The QQ plot suggests

that the model’s distributional assumptions are reasonably well met. The residuals appear to

be distributed as expected by the negative binomial distribution, and there are no strong indica-

tions of overdispersion or outliers. The residual plot indicates the residuals are generally evenly

scattered around the line. The plot explicitly states, ”No significant problems detected.” This
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suggests that the model residuals do not exhibit any obvious patterns heteroscedasticity, related

to the predicted values. The dashed horizontal lines likely represent the mean residual value for

different groups of predictions, and the gray shaded areas may represent pointwise 95% con-

fidence intervals around those means. The fact that the points are relatively evenly distributed

around these lines reinforces the conclusion that there are no major systematic patterns. This

plot suggests that the model is adequately capturing the relationship between the predictors and

the response variable. There are no apparent issues with non-linearity or heteroscedasticity.

4. DISCUSSIONS

From Table 3, the effect of temperature with a 4-month lag is significant and negative (Es-

timate = −0.1570, p = 0.0082), suggesting that mean temperature four months prior is as-

sociated with reduced malaria incidence. This result could reflect the detrimental effects of

extreme temperatures on mosquito survival and malaria transmission. [27] discuss how temper-

ature extremes, both high and low, can adversely affect mosquito development, reducing their

population and thereby malaria transmission.

The lagged effects observed highlights the complexity of temperature’s impact on malaria

incidence, where both the timing and intensity of temperature variations are considered. These

results are supported by the findings from [28] , who noted that temperature effects on malaria

transmission are not always linear and can depend on the specific timing relative to mosquito

and parasite development cycles. The effect of mean temperature ( p =0.1035) was not sta-

tistically significant, suggesting that temperature at the current month does not have a direct,

immediate effect on malaria incidence. The finding aligns with [28], who noted that immediate

temperature changes might not strongly influence malaria if they do not persist long enough to

affect mosquito and parasite development. Hence the need to consider lagged temperature other

than immediate temperatures.

The results shows that rainfall with a 1-month lag has a significant positive effect on malaria

incidence (estimate =0.0015,p=0.0096), indicating that rainfall from the previous month is as-

sociated with increased malaria cases. Rainfall provides essential breeding sites for mosquitoes,

which subsequently increases malaria transmission in the following months. For instance, [29]

found that rainfall significantly influences mosquito breeding by creating temporary water pools
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that serve as habitats for mosquito larvae, thereby enhancing malaria transmission. This finding

is also consistent with [29], who demonstrated that rainfall is a critical determinant of mosquito

population dynamics Conversely,

There is a significant positive effect of humidity with a 2-month lag (Estimate = -0.0101, p =

0.0238), and not significant at lag 1 and current humidity. The 2-month lag suggests that higher

humidity levels from the previous months could increase malaria incidence, perhaps by creating

favorable conditions for mosquito activity if too high. However, These findings align with [30],

who observed that varying humidity levels have complex impacts on mosquito dynamics, with

both short-term and longer-term effects on malaria incidence.

The autoregressive term (Estimate = 0.7208, p= 0.001) is highly significant, indicating strong

temporal dependence in malaria cases. This result suggests that previous malaria cases are

a strong predictor of current malaria cases, which is a common finding in malaria modeling.

Temporal dependency can occur due to sustained transmission cycles and ongoing mosquito

breeding within a region.

The significant positive coefficient for Fourier cosine ( estimate =0.4562,p=3.09e-05) con-

firms the presence of strong seasonal patterns in malaria transmission. This term captures the

periodicity of malaria incidence, driven by climatic seasonality. Based on the cosine function

and initial month of June, malaria incidence is expected to peak in May, June, and July. These

months likely correspond to the optimal conditions for mosquito breeding and malaria trans-

mission due to favorable climatic factors such as rainfall and temperature. In contrast, malaria

incidence is expected to be lowest in December and January, when conditions are less favorable

for transmission and these results are suported by figure 3. These findings corresponds with the

results from [29], which show that post-rainy season months are associated with higher malaria

cases due to increased mosquito breeding.

5. CONCLUSIONS

Malaria remains a serious public health problem in Arua District, Northern Uganda. The

objective of this study was to model the effect of climate variables such as rainfall, tempera-

ture, humidity, and wind, for both current and lagged effects, on malaria incidences in Arua

District. The significant lagged effects of mean temperature, rainfall, and humidity indicate
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that these climatic factors influence malaria incidence with a delay. Specifically, higher temper-

atures four months prior are associated with a reduction in malaria incidence, suggesting that

extreme temperatures might negatively impact mosquito survival, hence reducing malaria trans-

mission. Similarly, the positive effect of rainfall with a one-month lag highlights the importance

of rainfall in creating mosquito breeding habitats, contributing to higher malaria incidence in

subsequent months.

Malaria incidence peaks in certain months, particularly in May, June, and July, likely due to

the breeding conditions following the rainy season, while it decreases in September, October

and December, which may correspond to drier or less favorable mosquito-breeding periods.

This reflects the unique seasonality of malaria in Arua District, Uganda, which might experience

peaks in malaria incidence primarily in the post-rainy season months rather than in the earlier

or later months of the year. The AR term’s high significance suggests that malaria incidence is

strongly dependent on past values, indicating that previous cases are a strong predictor of current

malaria cases. This temporal dependence might be due to sustained malaria transmission cycles

within the population and the cyclical nature of mosquito breeding.

The AR-GLM outperformed the traditional GLM in capturing the autocorrelation structure in

malaria incidence data, as evidenced by the AIC, MAPE, and R-squared values. The AR-GLM

effectively reduces autocorrelation in residuals, suggesting it better captures the underlying

data structure and provides more accurate predictions of malaria incidence. Given the sea-

sonal peaks, interventions such as mosquito control efforts, awareness campaigns, and resource

allocations ( distribution of bed nets and insecticides) should be intensified in the months fol-

lowing the rainy season, particularly around May, to curb the anticipated rise in malaria cases.

We encourage policymakers to integrate climate data into malaria control planning, enabling

timely and targeted interventions based on climatic conditions to improve prediction accuracy,

models for malaria should consider incorporating lagged climatic variables, especially for rain-

fall, temperature, and humidity, as these factors show delayed but significant effects on malaria

incidence.

Despite its contributions, this study has limitations that need to be addressed in future re-

search. Although this study primarily focused on climatic factors (temperature, rainfall, and
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humidity) and temporal patterns, it did not incorporate socioenvironmental factors such as pop-

ulation density, land use, access to healthcare and socioeconomic status. These variables may

have a critical influence on the dynamics of malaria transmission. Expanding the model to in-

clude these variables could provide a more comprehensive view of the determinants of malaria

incidence. Furthermore, this study was conducted in a specific region (Arua District, Uganda)

with unique climatic and environmental conditions, which may limit the generalizability of the

findings to other regions with different climates or malaria transmission patterns. Expanding the

study to a wider geographic area or comparing the findings between regions with various cli-

matic conditions could provide a more robust understanding of the relationship between climate

and malaria incidence.

Finally, the relatively small sample size used in this study limits the ability to detect some

relationships, increases the risk of overfitting, and may prevent the capture of long-term trends

and seasonal patterns. This can reduce the robustness, generalizability, and reliability of the

model findings. Future research should consider collecting longer time series to increase statis-

tical power and improve model stability.

ABBREVIATIONS

GLM Generalized Linear Model

AR-GLM Autoregressive Generalized Linear Model

NB-GLM Negative Binomial Generalized Linear Model

AIC Akaike Information Criterion

MLE Maximum Likelihood Estimation

PACF Partial Autocorrelation Function

ACF Autocorrelation Function

MAPE Mean Absolute Percentage Error

AR Autoregressive
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