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Abstract: This study discusses the use of a semiparametric regression model approach based on Fourier series 

penalized least square estimator to determine the relationship between relative humidity and dew point in Surakarta 

city of Indonesia. The proposed method can address complex climate data patterns. A dataset of 100 observations 

was analyzed under three training data scenarios, for sample sizes of 𝑛 = 70, 𝑛 = 80, and 𝑛 = 90. It yields the 

optimal Fourier coefficients of 2, 2, and 2, and smoothing parameter values of 0.018, 0.0124, and 0.039, with 

minimum generalized cross validation values of 4.410572, 4.191036, and 5.989094. The results of this study show 
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that the proposed method provided good performance for prediction purpose with Mean Absolute Percentage Error 

(MAPE) values of 2.471245, 2.270436, and 2.93358. This means that category of the proposed method is highly 

accurate for prediction purpose. These results underline the ability of the proposed method to capture the inverse 

relationship between humidity and dew point. In other words, based on these results, this study highlights the 

effectiveness of the semiparametric regression model approach based on Fourier series penalized least square 

estimator in dynamic scenarios and recommends its application to other climate variables or regions to further 

evaluate its adaptability and resilience. 

Keywords: relative humidity; dew point; semiparametric regression; Fourier series; penalized least square. 

2020 AMS Subject Classification: 62G05, 62G08, 62P99, 65D10. 

 

1. INTRODUCTION 

Relative humidity is often a key topic of discussion when addressing weather conditions and 

the comfort of living environments. In the city of Surakarta, located in Indonesia's tropical region, 

this phenomenon is particularly relevant, especially during summer when high humidity levels 

can make the actual temperature feel much hotter than the recorded temperature [1]. This 

phenomenon not only affects human comfort but also has significant implications for energy 

consumption, particularly regarding air conditioning systems [2]. High humidity can increase the 

workload of cooling systems, thereby raising energy consumption and operational costs [3]. By 

better understanding the impact of relative humidity, interventions can be planned to mitigate its 

effects on daily life and the environment [4]. 

Meanwhile, the dew point, which indicates the temperature at which air becomes saturated 

and water vapor starts to condense, plays an essential role in understanding air moisture 

conditions [5]. For example, in Surakarta city of Indonesia, high dew point levels often signal the 

likelihood of heavy rainfall [6]. This information is highly beneficial for agricultural planning 

and disaster management, enabling early interventions for potential disasters [7]. In agriculture 

specifically, knowledge about possible rainfall can influence planting and harvesting schedules, 

as well as irrigation use, thereby enhancing the efficiency of water resource utilization [8].  

Understanding the relationship between relative humidity and the dew point is crucial for 

illustrating climate change [9], where minor changes in these variables can result in significant 

shifts in weather patterns in Surakarta city [10]. Therefore, this study determines and analyzes 

this relationship between relative humidity and dew point. The dataset were collected from 

various geographical locations in Indonesia, including Surakarta city. We evaluated how this 
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relationship varies with seasonal changes and geographical conditions [11]. The study aims to 

identify patterns or trends that may not be immediately apparent but have long-term impacts on 

the region's climate and hydro-meteorological conditions [12].  

The analysis involves collecting extensive historical data from meteorological stations, 

including data from the National Aeronautics and Space Administration (NASA) website [13], 

and data specific to Surakarta. This data is analyzed to assess the relationship between relative 

humidity and dew point [14], focusing on how these variables interact during extreme weather 

conditions such as heat-waves or prolonged cold spells [15]. Through this analytical approach, 

the research aims to develop predictive models that can assist policymakers and the general 

public in better preparing for and responding to extreme and unpredictable weather phenomena    

[16]. One of the hypotheses tested in this study is that an increase in the dew point will 

significantly raise relative humidity, particularly in areas experiencing significant climate change 

like Surakarta [17]. This hypothesis is based on the principle that warmer air can hold more 

water vapor [18], which in turn leads to faster air saturation and reaching the dew point at higher 

temperatures [15]. By understanding this relationship, more effective mitigation strategies can be 

developed, such as using drought-resistant crops in agriculture or improving infrastructure to 

counteract the negative effects of increased humidity [19]. 

The study also highlights the importance of a better understanding of the relationship between 

relative humidity and dew point for more accurate weather and climate modeling [14]. This is 

particularly crucial for scientists and meteorologists to predict extreme weather conditions and 

plan effective interventions in response to climate change in Surakarta. The models developed 

can aid in designing more reliable early warning systems, thus enabling preventive actions before 

extreme weather events occur [20]. Additionally, the results of this analysis are expected to aid in 

developing more robust climate models, which can better predict and mitigate the impact of 

climate change on natural resources and society [21]. This includes water resource planning, 

agricultural strategies, and public health, particularly in areas vulnerable to extreme climate 

variability such as Surakarta city. Improved accuracy in these models can also facilitate more 

efficient and effective resource allocation, reduce economic losses, and enhance community 

resilience to climate change [22].  

This study also includes an analysis of diurnal and seasonal variations in the relationship 

between relative humidity and dew point [23]. This provides in-depth insights into how the 

interaction between these two variables changes throughout the day and across different seasons, 
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allowing for a better understanding of atmospheric processes in Surakarta. Such analysis is 

highly valuable for sectors heavily dependent on weather conditions, such as agriculture, tourism, 

and natural resource management, as it provides the necessary information to adapt their 

activities to changing weather conditions [24]. Thus, this study is not only relevant to 

atmospheric science and climatology but also has broad implications for environmental policy 

and adaptation strategies to climate change [25]. Understanding the complex relationship 

between relative humidity and dew point is key to addressing some of the most significant 

challenges faced by climate science and society today [14], particularly in Surakarta city. 

Through comprehensive and focused research, this study aims to generate knowledge that can be 

applied to help mitigate risks and improve quality of life in the face of increasingly complex 

weather and climate challenges [26].  

Therefore, careful analysis and the use of cutting-edge technology in data collection and 

analysis in this study aim to provide answers to key questions that will help design more 

effective and sustainable solutions for adapting to and mitigating global climate change. This 

research hopes to make a valuable contribution to science and practice in managing natural 

resources and reducing disaster risks related to weather and climate in Surakarta city, ensuring 

that the adaptation and mitigation strategies developed are not only scientific but also practical 

and sustainable in the long term. 

 

2. PRELIMINARIES 

Previous research on estimating the semiparametric regression model using penalized least 

square (PLS) method has been carried out by [27–29]. Also, estimating semiparametric 

regression model using PLS method based on Fourier series has been carried out by [30–33]. 

Suppose that given a paired dataset (𝑦, 𝑡, 𝑢1, 𝑢2, . . . , 𝑢𝑝)  that follows a semiparametric 

regression model as follows [32]: 

(1)     𝑦 = 𝛽0 + 𝛽1𝑢1 + 𝛽2𝑢2+. . . +𝛽𝑝𝑢𝑝 + 𝑔(𝑡) + 𝜀. 

Next, based on equation (1), for 𝑖 = 1,2, … , 𝑛, the paired observations (𝑦𝑖, 𝑡𝑖, 𝑢1𝑖 , 𝑢2𝑖 , . . . , 𝑢𝑝𝑖) 

follows the following semiparametric regression model: 

(2)   𝑦𝑖 = 𝛽0 + 𝛽1𝑢1𝑖 + 𝛽2𝑢2𝑖+. . . +𝛽𝑝𝑢𝑝𝑖 + 𝑔(𝑡𝑖) + 𝜀𝑖,   𝑖 = 1, 2, . . . , 𝑛. 

We may write the equation (2) into a matrix notation as follows: 

(3)   𝒚 = 𝐔′𝜷 + 𝒈(𝒕) + 𝜺 
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where 𝒚 represents a vector of response variables, 𝑼 represents a matrix of predictor variables 

for parametric component, 𝜷 is a vector of parameter for parametric component, 𝒈(𝒕) is a 

vector of nonparametric regression functions, and 𝜺 is a vector of random errors that is 

Normally distributed, namely 𝜺~𝑵𝒏(𝟎, 𝜎2𝐈). 

The nonparametric component 𝒈(𝒕) can be approached by a Fourier series estimator. The 

Fourier series estimator has high flexibility, so that it is really good to use for volatile data. The 

function for Fourier series in previous study was introduced by [30–33]. It can be presented as 

follows: 

(4)   𝑔(𝑡𝑖) = 𝛼0 + ∑ [𝑐𝑗(𝑐𝑜𝑠(2𝜋𝑗𝑡𝑖)) + 𝑑𝑗(𝑠𝑖𝑛(2𝜋𝑗𝑡𝑖))]𝐽
𝑗=1 . 

According to [34], the PLS is a good optimization method to avoid over-fitting effect. Based 

on [30–33] the PLS method in the semiparametric regression based on Fourier series estimator is 

provided by the optimization function as follows: 

(5)    min
𝛽𝜖𝑅𝑟+1,𝑔𝜖𝐶(0,1)

[𝑛−1(𝒚∗ − 𝒈(𝒕))′(𝒚∗ − 𝒈(𝒕)) + 𝜆 ∫ (𝒈(2)(𝒕))
2

𝑑𝑡
1

0
]. 

Based on equation (5), we obtain estimation of the semiparametric regression model (3) as 

follows:  

     �̂�(𝒖, 𝒕) = 𝐔′�̂� + �̂�(𝒕) 

where �̂� = [𝐔′𝐕𝐔]−𝟏𝐔′𝐕𝐲 ; �̂�(𝒕) = 𝐇(𝐈 − 𝐇𝐔[𝐔′𝐕𝐔]−𝟏𝐔′𝐕)𝐲 ; 𝐲 = (𝑦1 𝑦2 ⋯ 𝑦𝑛)′ ; 

  𝐇 = 𝐅(𝑛−1𝐅′𝐅 + 𝜆∗𝐃)−1𝑛−1𝐅′ ; = (𝐈 − 𝐇)′(𝐈 − 𝐇) ; and 

   𝐔′ = [

1 𝑢11 𝑢21

1 𝑢12 𝑢22

⋯ 𝑢𝑝1

⋯ 𝑢𝑝2

⋮ ⋮ ⋮
1 𝑢1𝑛 𝑢2𝑛

⋱ ⋮
⋯ 𝑢𝑝𝑛

]. 

To get the best estimation, one of the most important things is to select an optimal bandwidth 

with associated Kernel function. This can be performed by using Generalized Cross-Validation 

(GCV) criterion with formula as follows [35]:  

(6)     GCV =
𝑛−1‖(𝐈−𝐔𝐊−𝐋)𝐲‖2

(𝑛−1𝑡𝑟𝑎𝑐𝑒(𝐈−𝐔𝐊−𝐋))
2 

where = [𝐔′V𝐔]−1𝐔′𝐕 ;  𝐋 = 𝐇(𝐈 − 𝐇𝐔[𝐔′V𝐔]−1𝐔′𝐕), and ‖. ‖ is a norm of a vector. 

The error rate measurement to compare the best estimator is based on the value of the 

following Mean Absolute Percentage Error (MAPE) [36]: 

(7)     𝑀𝐴𝑃𝐸 =
1

𝑇
∑

|𝑦𝑡−�̂�𝑡|

𝑦𝑡
×𝑇

𝑡=1 100% 
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where T is the size of the sample, �̂�𝑡 is the value predicted by the model for time point t , and y is 

the value observed at time point t. The criteria for MAPE values are shown in Table 1 [36].  

Table 1. MAPE Value Criteria 

MAPE Definition 

< 10 Highly Accurate 

10 – 20 Accurate 

20 – 50 Reasonable 

>50 Inaccurate 

 

Hereinafter, the steps of statistical analysis in this study are as follows: (1). Collecting the 

data of  relative humidity and dew point as the main variables; (2). Inputting the relative 

humidity data at time 𝑡 and dew point data at time 𝑡 for further analysis; (3). Creating the 

scatter plots between relative humidity at time 𝑡 and dew point at time 𝑡, as well as between 

relative humidity at time 𝑡 and time 𝑡, to understand the relationship patterns among variables; 

(4). Selecting a suitable semiparametric regression model to represent the relationship between 

relative humidity, dew point, and time 𝑡; (5). Applying the semiparametric regression model to 

analyze the relationship between relative humidity at time 𝑡, dew point at time 𝑡, and time 𝑡; 

(6). Optimizing the model using the GCV technique to select the best model parameters; (7). 

Using the MAPE criteria to assess accuracy of the model in predicting relative humidity; (8). 

Selecting the model with the best performance based on the MAPE evaluation results; (9). Using 

the selected model to make future predictions of relative humidity and validate the results using 

additional data; (10). Analyzing the prediction results and report the identified patterns in the 

relationship between relative humidity and dew point from the model. 

The following flow-chart (see Figure 1) outlines the process for determining and analyzing 

relative humidity and dew point data. The process begins with data collection and input, 

followed by scatter plot creation to visualize the relationships between relative humidity, dew 

point, and time. A semiparametric regression model is then selected, optimized using GCV, and 

evaluated with MAPE. The best-performing model is applied for future predictions, and the 

results are analyzed to identify patterns in relative humidity and dew point data. 
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Figure 1. Flow-chart of Determining Relative Humidity Variations in Surakarta City. 

3. MAIN RESULTS 

The data used in this study consists of 100 observations which are divided into training data 

and testing data. The distribution of training data is sequentially divided into 70, 80, and 90 data 

points. Meanwhile, the testing data is sequentially distributed into 30, 20, and 10 data points. The 

first step in this study is to examine the relationship between relative humidity at 2 meters and 

dew point at 2 meters for the three sets of training data. This examination is conducted using 

correlation statistical analysis, which aims to determine the strength and direction of the 

relationship between of two variables: relative humidity at 2 meters, denoted as RH2M, and dew 

point at 2 meters, denoted as T2MDEW. To measure the correlation, the Pearson correlation 

coefficient is used, providing values between -1 and 1. A positive value indicates a positive 

correlation, while a negative value indicates a negative correlation. The following figure (see 

Figure 2) illustrates the correlation between RH2M and T2MDEW. 

 

Figure 2. Correlation Plots of : (a). 70 Training Data; (b). 80 training data. (c) 90 training data. 

 

 a b 

 

 c 
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Based on Figure 2, the following table presents the correlation values derived from the 

correlation matrix between RH2M and T2MDEW. 

Table 2. Correlation Matrix For Each N. 

 

 N =70 N = 80 N = 90 

 RH2M T2MDEW RH2M T2MDEW RH2M T2MDEW 

RH2M 1.0000000 0.8341989 1.0000000 0.8072026 1.0000000 0.8140003 

T2MDEW 0.8341989 1.0000000 0.8072026 1.0000000 0.8140003 1.0000000 

 

In Table 2, correlation values of 0.8341989, 0.8072026, and 0.8140003 present the correlation 

between T2MDEW and RH2M. These values indicate that the relationship between T2MDEW 

and RH2M is positive, meaning that the higher the humidity, the more the dew point increases. 

The next step is to create a time-series plot for each training dataset, which includes relative 

humidity and dew point, to examine the data distribution. The scatter-plots of relative humidity 

and dew point are given in Figure 3. 

 

Figure 3. Scatter-plots of Relative Humidity Versus Dew Point for: (a). 70 training data,  

 (b). 80 training data, and (c). 90 Training data. 

 

The scatter-plots in Figure 3 indicate that all three training datasets exhibit a pattern following 

a linear assumption, with a downward-sloping line, suggesting a negative parametric relationship 

between RH2M and T2MDEW in the three datasets. To reinforce this assumption, a linearity test 

was conducted using a linear regression model, and the results are presented in Table 3. 

 

 a b 

 

c 
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Table 3. Significance Test of Linear Model Parameters. 

 

 N = 70 N = 80 N = 90 

 Pr(>|t|)     Pr(>|t|)     Pr(>|t|)     

(Intercept)  <2e-16 *** <2e-16 *** <2e-16 *** 

RH2M         <2e-16 *** <2e-16 *** <2e-16 *** 

 

From the Table 3, for each training data comparison, the coefficient values are less than 

significance level value (𝛼 = 0.05). This indicates that the linear model coefficients are 

significant. It can be concluded that there is a linear relationship between the variables of RH2M 

and T2MDEW. Next, we create a scatter-plot between RH2M and time, and the results are given 

in Figure 4.  

 

Figure 4. Scatter-Plots of RH2M versus Time for : (a). 70 training data,  

(b). 80 training data, and (c). 90 training data. 

 

Based on Figure 4, the scatter plot between RH2M and Time does not appear to form a 

specific pattern. This indicates that a nonparametric regression approach can be utilized. 

Therefore, knowing that the functional relationship between RH2M and T2MDEW is linear, 

while the functional relationship between RH2M and time does not exhibit a specific pattern, a 

semi-parametric regression approach is used in this case. This approach involves finding the 

minimum value of GCV using the Fourier series estimator. In this study, the Fourier series 

coefficient limit is set to 15. The GCV plots for each Fourier coefficient for the three training 

dataset are given in Figure 5. 

 

 a b 

 
c 
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Figure 5. Plots of GCV Values for : (a). 𝑛 = 70, (b). 𝑛 = 80, and (c). 𝑛 = 90. 
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Based on Figure 5, it can be observed that each Fourier coefficient has a minimum GCV value 

and the corresponding lambda for each other. The GCV and lambda values for each Fourier 

coefficient are presented in Table 4. 

Table 4. GCV and Lambda values K = 1 to K = 10 for each sample size (𝑛). 

n = 70 n = 80 n = 90 

K GCV Lambda K GCV Lambda K GCV Lambda 

1 5.233924  0.0139  1 6.842198 0.0563  1 7.004737  0.057  

2 4.410572  0.018  2 4.191036 0.0124 2 5.989094  0.039 

3 7.094387  0.116  3 7.752289 0.19  3 7.65772  0.2  

4 7.704155 69  4 8.101509 79  4 7.999226 89  

5 7.697598  3.3  5 7.81449 0.25  5 7.512814  0.14  

6 7.496283  0.34  6 8.100980 79  6 8.000358 89 

7 7.547716  0.41  7 7.967005 0.43  7 7.793134  0.27  

8 7.701461  69 8 8.071495 1.2  8 7.910492  0.53  

9 7.703256  69 9 8.101751 79  9 7.999180 89 

10 7.703289  69 10 8.102196 79 10 8.000171 89 

11 7.625082  0.67  11 8.022154 0.62  11 7.901593  0.51  

12 7.569197 0.48  12 8.084105 1.6  12 7.984896  1.7  

13 7.580269  0.49  13 8.095577 3.2  13 7.998925 89  

14 7.701049  69  14 8.092627 2.5  14 7.998550 89  

15 7.703692 69  15 8.101425 79  15 7.999927 89  

Based on the Figure 5 and Table 4, it can be seen that the GCV value for each Fourier 

coefficient in the training data reaches its minimum for the first Fourier coefficient for 𝑛 = 70, the 

second Fourier coefficient for 𝑛 = 80, and the second Fourier coefficient for 𝑛 = 90. It can be 

concluded that the best semiparametric model for 𝑛 = 70  is found at the second Fourier 

coefficient with a minimum GCV value of 4.410572 and lambda of 0.018. For 𝑛 = 80, the best 

model is at the second Fourier coefficient with a minimum GCV value of 4.191036 and lambda of 

0.0124. For 𝑛 = 90, the best model is at the second Fourier coefficient with a minimum GCV 

value of 5.989094 and lambda of 0.039. The best semi-parametric model based on the minimum 

GCV characteristics using the Fourier series estimator can be written as follows: 

For 𝑛 = 70, we have: 

𝑦𝑖 = 1.086104E − 15 + 2.612595 𝑢1𝑖 + 24.22774 + 0.01392463 cos (2𝜋𝑡𝑖)

+ 0.0003796424 sin(2𝜋𝑡𝑖) + (−0.001884484) cos (4𝜋𝑡𝑖)

+ 0.001011526 sin(4𝜋𝑡𝑖) 
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For 𝑛 = 80, we have: 

𝑦𝑖 = −1.461667E − 16 + 2.62754 𝑢1𝑖 + 23.48827 + 0.009920683 cos (2𝜋𝑡𝑖)

+ 0.0005859833 sin(2𝜋𝑡𝑖) +  0.004703738 cos (4𝜋𝑡𝑖)

+ 0.0008128012 sin(4𝜋𝑡𝑖) 

For 𝑛 = 90, we have: 

𝑦𝑖 = −2.160557E − 15 + 2.767361 𝑢1𝑖 + 20.63976 + 0.008129007 cos (2𝜋𝑡𝑖)

+ 0.0003912754 sin(2𝜋𝑡𝑖) +  0.004112282 cos (4𝜋𝑡𝑖)

+ 0.000621312 sin(4𝜋𝑡𝑖) 

After obtaining the best semi-parametric regression model for each training dataset, the next 

step is to evaluate the model's accuracy and performance. This evaluation uses the Fourier series 

estimator with the Mean Absolute Percentage Error (MAPE) as the metric. MAPE measures the 

percentage prediction error, where lower values indicate higher accuracy. This analysis aims to 

ensure that the resulting model effectively captures the relationship between variables. 

Additionally, the Fourier coefficients from the best model will be included to demonstrate the 

contribution of each component in improving accuracy. Plots of actual and prediction values 

using the best Fourier coefficients are given in Figure 6. 

 

 

Figure 6. Plots of Actual and Prediction Values for: (a). 𝑛 = 70, (b). 𝑛 = 80, and (c). 𝑛 = 90. 

 

 

a 

 

b 

 

c 
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Based on Figure 6, it can be seen that the plots of prediction model provide good performance. 

For each 𝑛 with the best Fourier coefficients, the model shows a strong ability to explain data 

variability and a low error rate in the testing data. Therefore, the semiparametric regression 

model approach based on Fourier series penalized least square estimator can be used to evaluate 

predicting performance by comparing the actual and prediction values. Plots of the actual and 

prediction values are given in Figure 7. 

 

Figure 7. Plots of Actual and Prediction Values for: (a). 𝑛 = 30, (b). 𝑛 = 20, and (c). 𝑛 = 10. 

It can be seen in Figure 7 that the prediction values do not much different from the actual 

values, where this assumption is also reinforced by obtaining the MAPE values as presented in 

Table 5. 

Table 5. MAPE Values for Each 𝑛. 

 

 

4. CONCLUSIONS 

In this study we propose a new method that can address complex climate data patterns by using a 

semiparametric regression model approach based on Fourier series penalized least square 

estimator to determine the relationship between surface relative humidity represented by RH2M 

and dew point represented by T2MDEW in Surakarta city of Indonesia. By combining 

parametric and nonparametric components, the model effectively handles fluctuating data 

  

 a b 

 

c 

𝑛 = 30 𝑛 = 20 𝑛 = 10 

2.471245  2.270436   2.93358   
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patterns in three training scenarios (𝑛 = 70, 80, 90). The estimation results show minimal 

differences between the actual and predicted values, indicating reliable performance. This model 

successfully made good predictions for testing data sizes of 30, 20, and 10, with MAPE values of 

2.471245, 2.270436, and 2.93358, respectively. These results highlight the effectiveness of the 

semiparametric regression model approach based on Fourier series penalized least square 

estimator in modeling the inverse relationship between humidity and dew point while 

maintaining accuracy in analyzing complex data. Future research could extend this approach to 

other regions or variables, enhancing its application for climate-related studies and policy 

development. 
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