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Abstract: In this paper, the local bifurcation's occurrence conditions have been established for a food web eco-
epidemiological model of four species, including first prey, second prey, susceptible predator, and infected predator
with fear effect, and internal competition among prey populations, incorporating additional food resources and hunting
cooperation among predators, and disease dynamics with treatment in the predator population with Holling type-II
and Lotka-Volterra functional response. This model has fifteen equilibria, the saddle-node bifurcation have been
shown close to the interior equilibrium points P;; and P,,, also at the first-second prey-free equilibrium point P,,
and the second prey-free equilibrium points Py and P;, a transcritical bifurcation occurred, while at the preys-
infected predator-free equilibrium point P;, the predators-free equilibrium point P,, the second prey-infected
predator-free equilibrium point Ps, the first prey-infected predator-free equilibrium point Pg, the infected predator-
free equilibrium point Pg, first prey-free equilibrium points P;; and P;, have a transcritical and pitchfork
bifurcations. Furthermore, conditions for Hopf bifurcation close to positive points P;; and P;, have also been
examined. Numerical results for the set of hypothetical parameters support our analytical results regarding the
persistence of this model and the occurrence of bifurcation using Mathematica.
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1. INTRODUCTION

Mathematical modeling is a powerful tool used to understand complex phenomena and
systems by representing them using mathematical concepts. as it allows us to study the behavior
of complex systems and predict their outcomes under certain conditions, results of stability of
equilibria, bifurcation and persistence, see [1-6] and the reference therein. Also hold great
significance in eco-epidemiology, where the study of the dynamics of infectious diseases intersects
with ecological and environmental factors.

Moreover, prey-predator model analysis is a key component in understanding the predation
relationships between species in an ecosystem [7,8]. Since they need to eat to stay alive, predators
usually try to get better at catching and killing prey because it will help them survive longer.
Cooperative hunting is a common strategy used by several animals to improve their ability to
capture and kill prey [9—-11].

On the other hand, incorporating additional food sources in mathematical models introduces
key ecological realism and flexibility into the model, these richer, more realistic models offer
greater insights into ecological processes, allowing for better predictive power and providing
valuable information for conservation efforts, ecosystem management, and understanding the
resilience of ecosystems in the face of natural or anthropogenic disturbances. Many authors have
merged eco-epidemiological prey-predator models with hunting cooperation, fear, additional food
and treatment see [12-15].

Furthermore, eco-epidemiology looks at the interplay between host populations, infections,
and ecosystems, and these mathematical concepts help explain how diseases spread, persist, or
fade within populations, as well as the conditions under which these dynamics can change abruptly
or stabilize [16,17].

Recent research also emphasizes bifurcation analysis as a powerful tool for exploring how
small changes in parameters can lead to significant shifts in the system, which aligns with your
interest in studying regime shifts in ecological and epidemiological systems, for example [18-20]
and the reference therein.

The study of hunting cooperation among predators and its effects on food-web dynamics is an
important topic in ecological modeling, especially in the context of eco-epidemiological models
that also incorporate disease transmission and additional food sources. Recently, Shawka and
Majeed [21] proposed and analyzed an eco-epidemiological model with fear, internal competition

in the prey populations, and hunting cooperation, additional food, and a treatment in the predator’s
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population where the predators feed on prey using two different types of functional responses. The
purpose of this study is to test the analytic findings with numerical simulation and to establish the
conditions of Hopf bifurcation near the positive equilibrium point and local bifurcation near the

equilibrium points of a mathematical model given in [21].

2. MATHEMATICAL MODEL
A food web eco-epidemiological model comprising two preys, susceptible and infected predator

with treatment, has been proposed and formulation in [21], as the following.

dL, _ a4l 2 BiLiLs —

ar ~ 1+fils Y71 ctanA+Ly

dL, _ ayl, _ 2 _
ar - 1L byL5 — (p + hL3)L,Ls,

— 1
dLs ¢Y)

L3+L C1(Li+nA)L YL
(1-2) + 2208 4 G (p + hLs)loLs — (d + BLyLs + 1

T 353 o+Ly

d

dL, YLy
— = BL3L, — 6L, — .
ar 3Ly — 8L, otl, _

where L{(T),L,(T),L5(T),L,(T) represents the total population density at time T of the first prey,
second prey, susceptible predator, and infected predator, respectively, and the following
assumptions have been assumed in order to construct the model:

1. Itis assumed that a,, a, are the intrinsic growth rates of the first and the second prey,
respectively and there is an internal competition between their populations with b, b,
rates, while f; and f, the fear rates of the first and second prey species from the
susceptible predator, respectively.

2. The susceptible predator L is capable of reproducing in logistic growth with carrying
capacity K > 0, and intrinsic growth rate a; > 0, it is assumed that the susceptible predator
consumes the first prey according to Holling type II functional response with attack rate
B; > 0, half saturation rate € > 1, and with additional food A > 0 and the ratio of search
rate for additional food is n > 0. It is assumed that the maximum growth rate of the
predator when it consumes the prey and additional food is «a.

3. The susceptible predator consumes the second prey with Lotka-Volterra type of functional
response with attack rate p, hunting cooperation rate h, and the conversion rate
constants C; >0 and 0 < C, < 1, respectively, Moreover, the susceptible predator
faces the natural death at arate d > 0.
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4. Finally, it is assumed that the disease transmission between the predator population at a
rate B, with the medical resource for treatment rate y and the saturation factor that
measure the effect of the delay in treatment for the infected with rate  o. Also the infected

predator faces the natural death due to the effect of diseases at a rate § > 0.

3. LOCAL BIFURCATION ANALYSIS

In this section, it has been investigated how altering the parameter values affects the system's
(1) dynamic behavior close to each equilibrium point (EP). Recall that the presence of the system's
(1) non-hyperbolic equilibrium point is a prerequisite for bifurcation, but it is not a sufficient one.
Consequently, an application of Sotomayor's theorem [22] is appropriate in the following theorems.
Now, according to the Jacobian matrix J(L,,L,,Ls,L,) of system (1), which is given in [21].

] = [bij]4x4: 2)

a

(C+anA)B,L3
1+f1L3

(C+anA+Ly)?’

_ _ _ —aifilq BiLq
b12 - b14 - 0' b13 - -

b11 = (1+f1L3)? (C+anA+Lq)

—2b,L, —

by =bys =0, by = —L — 2byL; — (p + hL3)L3, by3 = —Gefalz (p + 2hL3)L,,

1+/2 (1+f1L3)?
c1(C+nA(a-1))Ls
(C+anA+Lq)?

b3y =

, b3y = C(p + hL3)Ls,

C1(L1+nA)
(C+anA+Lq)
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It is obvious to confirm that for every vector that is nonzero ¥ = (¥, ¥, 3, ¥,)T we have:

D*F(X, W), ¥) = [Air]ax1, 3)
Ay =2 [(=by + I ()7 — (g BEHD Yy () (7],

(C+anA+L4)3 (1+f1L3)%2  (C+anA+L,)?

Ay = -2 [bz(tpl)z + (—f +(p+ 2hL3)>¢2¢3 +(h -2 )L2(1P3)2]»

(1+f,L3)? (1+f,L3)3

-C1(C+nA(a-1))Ls
(C+anA+Lq)3

c1(c+na(a-1))
(C+anA+Lq)?

(¥1)* +

Ay =2| Y1 + Cop + 2hLy)haths +
(CohL =2) s)? = (2 + B) ¥stha — (i) W7

Ay =2 [Bl,bgl,l)4 + # (1/’4)2]-
And
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DPFX, )W, ¥, ¥) = [Mi1] a1, %)
My = 6 [(EH s ()3 4 DO (Y2, + By, ()" - 2 ()]
My = 6[(F22 = ) () — (22222 7],
Myy = 6 [AEA DIy y3 - SEACD) (4, Y2, + Colipy () + s (),
6 [(6-3/4)4 (¢4)3]’

where X = (L,,L,,L3,L,)T and p is any parameter.

Theorem 1. system (1) at the (EP) P; = (0, 0, L, 0) with the parameter B = 8:;]/ has a
3
transcritical and pitchfork bifurcation if the following condition holds
4
BW, # — (5)

(C+anA)(azLz+8K)
[(az—d)(C+anA)+CinA]

Where W, = . While saddle-node bifurcation cannot be occurs at B.

Proof. From the Jacobian matrix /5 which is given in Eq.(86) in [21] , system (1) at the

(EP) P, has eigenvalue say (15,,) equal to zero at B = B , then J; with B = B becomes J; =

]3(P3 'E) = [ﬁij]

4x4’

where Q;; = Qy;, i,j =1,2,3,4 whichisgivenin Eq.(86) in [21] accept

ijr
.(_134_ = - (%Zg + 5) and .(_).4,4 = O
Now, let 3] = (1/7{3] ,1/3£3] ,1/3%3], A ) be the eigenvector corresponding to the eigenvalue
(/1314) == 0
_ _ _ 4] —a\T _
Thus (3 — A3, 1)l = 0, that gives P13l = (0 0, -, ,1/)£3]) where W, given in the
state of theorem and 1/7£31 # 0 is any real number.
_ _ _ _ _ T
Let QB = (953] , 0! ,9[33],953]) be the eigenvector of T for A3, = 0.

Thenwe get (7 — A3,,1)Q! = 0 then by solving this equation for Q[ we get

— —_ T —
Qi3 = (0,0,0,9[}31) , where 02! % 0 isany real number.
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ider 2L = _ (h 3f Ofs Of\' _ _ T
Now, consider E_fB(X’B)_(aB’aB’aB’aB) =(0,0,—L3L,,L3L,)".

So, fg(P3,B)=(0,0,0,0)" and hence (5[3])TfB(P3 ,B) =0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since
0 O 0 0 7
[0 0 0 0
Dfg(X,B) = |0 0 —L, —L3,
lo 0 1, L,
where Dfz (X, B) is the derivative of fz(X,B) with respectto X = (L;,L,,Ls,Ls)".

0O 71 7 0
[0 0 0 O]
0 0
- looo of
Further, it is observed that DfB(P3,B)¢[3]=|0 0 0 Z| = S0
B -wpP | | WLy
lo 0 0o I,
Py | Ly

0
0
Do(Py Y P = Few? - (%2 +B)w + L] (55)
2[5, + 2] (3

under condition (5).
Thus, by using Sotomayor’s theorem P; has a transcritical bifurcation at the parameter B.

While if condition (5) not holds then there is no a transcritical bifurcation and by substituting
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[ afi’® - 73] 37
6(1'|'f1L3)4 (Wll/)‘l‘ )

0
BB in (4) we get D3 fy(Py, B)(P), 131, p131) = , SO

o5 (o)
~s5 (o)

(@) [D3f(Ps, BY(PP, 5, BB = —6 L (_F])g 0.

Hence again, by using Sotomayor’s theorem system (1) at P; has pitchfork bifurcation with the

parameter B.
Theorem 2. Assume that condition (99), which is given in [21] and the following condition
holds:

as > C,hKL, (6)

Then system (1) at the (EP) P, = (L, Ly, 0, 0) where L; =% and L, = % with the
1

2

parameter d = ag +—2&t14b) | @G0 oo o transcritical and pitchfork bifurcation, while

a1+b1(C+anA) b,

saddle-node bifurcation cannot be occurs at d.
Proof. From the Jacobian matrix J, which is given in Eqg.(91) in [21] , system (1) at the

(EP) P, has eigenvalue say (/14L3) equal to zeroat d = d , then J, with d = d becomes

[ a?fy a1B;
—a; 0 - ( b, + a1+b1(C+a17A)) 0
—az(as fr+p)
5 . 0 -—a, e S RA 0
]4=]4(P4»d)= b2 y
0 0 0 p
0 0 0 ~(s+2),

~ ~ N~ N~ N~ T - -
Now, let ¢ = (w{‘”, £3],¢£4],¢£4]) be the eigenvector corresponding to the
eigenvalue (2,,,) = 0.

~ ~ ~ ~— ~ ~— ~ ~ T ~—
Thus (J, — A, )P = 0, that gives $[*! = (—Wllpg‘” ,— Wi £4],0) where W,

aifi By = _ (axfatp) 7 [4] H
( by +—a1+b1(c+am)), W, = e and 3 # 0 is any real number.
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— — — — — T . o
Let QM = (954] , ,9[34],95,4]) be the eigenvector of JI for A,;,, = 0.

Thenwe get  (J7 — 2A4,,1)0* = 0 then by solving this equation for Q! we get

- - - T
a4l =(0,0,Q[4] 14 9[34]) where 0 = 0 is any real number.

ider & — _ (%h 3f Ofs Of\' _ CL.0Y
Now, consider ﬁ‘fd(x’d)_(ad’ad’aa'ad) =(0,0,—L5,0)".

So, fa(Py,d) =(0,0,0,0)" and hence (1) (P, ,d) = 0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since

[0 0 0 O
|0 0 0 0
Dfd(X ) d) = )
[0 0 -1 0
l0 0 0 O
where Df,;(X ,d) is the derivative of f;(X,d) withrespectto X = (L;,L,,Ls,Ls)".
RAAN
0 0 0 O
1 7 [4]
N 00 o of W 0
Further, it is observed that Dfy(P, , d)y!* = — 50
0 0 -1 0 v[4] _ v [4]
Y3 V3
0 0 0 O
o 1 L O

alen” T\ l4] — gl _ Y gl 4l 0\ _ _gl4l il
(@) [Da(Ps, )P4 = (0,0, Pl ) (0.0, -7 0) =AML = 0.
Moreover, by substituting 0! in (3) we get D?f;(P,,d)(WP™, P*) = [A;1]4x1-

An =2 [_171]/T/12 + (a1f1 + %) W1 + a1f1 Ll] (J) )

Ay =2 [bZWZZ — (azfz + P)W, + (h — alfzz)iz] ( )

o [cl(c+nA(a 1) 5 W1 n CzPWZ (Cthiz—ag)] (J)g;])

(C+anA+L,)? K

=~
w
=
||

Ay =
Hence, it obtains that
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(@Y [D2£, (P, &) (P14, p14)] = —2 [AlEm4@ D g i, () | ) (¢ N %o,

(C+anA+L,)?
under condition (99) which is given in [21], and condition (6). Thus, by using Sotomayor’s
theorem P, has a transcritical bifurcation at the parameter d.
While if condition (6) not holds then there is no a transcritical bifurcation and by substituting

—

P in (4) weget D3fy(Py,d)(P™, P!, PH) = ;1] 41
_ By(C+and) w, 2 - <141\ 3
M, =6 [# Wy — alf12W1 - a1f13] (I/J£4]) ’

(C+anA+Lq)3

= _ _ i\ 3
My, = _6[(a2f22 - h)Wz + a2f23L2] ( gﬂ) )

= C1(C+nA(a-1)) ~ <[141\3
M3, = [ (1€+anA+L1)3 W1 T CZhWZ]( 3 ) ’
M4_1 = O.
Then
(B0 D%y Y )] = 6 [T + oo 7 (7)o,

under condition (99) which is given in [21].

Hence again , by using Sotomayor’s theorem system (1) at P, has pitchfork bifurcation with the
parameter d.

Theorem 3. Assume that conditions (3,97,98,99), which are given in [21] and the following

condition holds

== %
BW, = L, )
where
A7 11834
WZ N (=C31C13+€11C33)’
Then system (1) at the (EP) Ps=(Ly, O, Ly, 0) with the parameter §=6§Z+y has
3

(transcritical and pitchfork) bifurcation, while saddle-node bifurcation cannot be occur at B.
Proof. From the Jacobian matrix J5 which is given in Eq.(93) in [21], system (1) at the (EP)

Ps has eigenvalue say (ASLJ equal to zeroat B = B , then J; with B =B becomes
Js =Js(Ps,B) = (€], where & = c;, i,j = 1,23,4 which is given in Eq.(93) in [21]

accept 534 = — (%ig + 6) <0 and 54,4 = 0.



10
INAAM IBRAHIM SHAWKA, AZHAR ABBAS MAJEED

Now, let b ( [5], pL5] ,_ 1/;4 ) be the eigenvector corresponding to the
eigenvalue (25,,) = 0.
T 715l 75l — _wglsl 7is)"
Thus (Js — A5, 1)1 = 0, that gives 5! = Wi 0, -, 1) where
W, = & W, given in the state of theorem and 1/7‘[15] # 0 is any real number.
(=C13C31+C11C33)
= o] =[] =fe] =]\ -
Let Q5 (955] ol ,9[35],95,5]) be the eigenvector of J5 for A5, = 0.

Then we get (J7 — A5,,1)Q!%! = 0 then by solving this equation for Q5! we get

= = T =
Qlsl = (O,O,O,QE}S]) where QE}S] # 0 is any real number.

ider & = _ (%h 3f Ofs Of\' _ _ T
Now, consider aB_fB(X’B)_(aB’aB’aB'aB) =(0,0,—LsL,,L5L,)".

So, fz(Ps,B)=(0,0,0,0)" and hence (522[5])TfB(P5 ,B) =0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since

00 0 0

w5 00 0 0
Dfy(X,B) = ,
L 0 0 —L, —L,

0 0 L, L
where Dfz (X, B) is the derivative of fz(X,B) with respectto X = (L;,L,,Ls,Ls)".

w0
0 0 O 0
0 0
- = 0O 0 0 O
Further, it is observed that Dfg(Ps, B)p!lS! = 0 0 0 T = S0
|- | (WLl
00 0 L

(5[5])T[DfB(P5 ) E)l;[s]] = (0 ) O ) O ,555]) (O ,0 ) ]/T/zi3l/j£5] ,i3l/j‘£5] )T = i3§£5]$£5] #* 0

Moreover, by substituting %*! in (3) we get: D?f5(Ps , B)(91°1,915)) = [4,,], .
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= L = 2 = = 2T = = 2
A, =2 [(—bl R 1(““"‘3”3) W+ ( ah Bl(““”_A)z) Wy W, + i WZ] (94

(c+ana+L,)’ (1+£1L3)°  (C+anA+Ly) (1+£1L3)
Zz1 =0
= _ o |clctnAlea-D)is = 2  ci(C+nAa-1)) = = | az=2 ] [5]
Az = 2[ (C+anA+i1)3 W (C+anA+Ly) Wil + K W, ( + B) WZ ( )

1 i [5]
Ay =2|-BW, + 4| () ) .
. . = T =y, = = - = - _ 2
Hence, it obtains that (QIS1) [D%fs(Ps,B) (¥, 9] =2[—BW2+£] QEE]( L[f]) # 0,
under condition (3,97,98,99) which are given in [21], and condition (7). Thus, by using
Sotomayor’s theorem Ps has a transcritical bifurcation at the parameter B.

While if conditions (7) not holds then there is no a transcritical bifurcation and by substituting

P8 in (4) we get D3f(Ps, B) (P18, 11, I8 = [=i1]4x1'
= _ —(C+a7]A)Bli3 — 3 _ (C+a17A)31 = 2 = a1f12 = =, 2 _
M =6 [(C+omA+i1)4 (Wl) (c+ana+L;)’ (Wl) Waz + (1+£iL3)° Wi (WZ)
a1f1
(1+£1L3 ) 2) ] 1/)4 ’
M,, =0,

Vi ci(C+nAla-D)Lz 15 \3 |, Ci(CH+nd(a-1)) r= \2.= ¥ 3] [5]
M, = e AN i i X
31 =0 [ (c+anA+L,)" (Wl) * (c+ana+L,)’ (Wl) W+ o3 () (l/)

= = 3
My = ~62(917)
Then
= T = = = = y = = 3
(@) (D2 (s, BYB, 151, )] = —6 LA (F11) " 0
Hence again , by using Sotomayor’s theorem system (1) at Ps has pitchfork bifurcation with the
parameter B = B.

Theorem 4. Assume that conditions (3,99, 104, 105), which are given in [21] and the following
conditions hold

L3 2
afiWs \ _ By Ly A
(b1 + (1+f123)2) ~ (C+ana) ((C+a11A) WZ)’ )
f1W2 (10)

(1+f1L3)
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where

-~ dy,d
WZ_ 22831

d23d32 d 2d33

(1+f,L3)B1L
Then system (1) at the (EP) Pg = (0, Lz, L3, 0) with the parameter a; = === has

(transcritical and pitchfork) bifurcation, while saddle-node bifurcation cannot be occur at a,.
Proof. From the Jacobian matrix J, which is given in Eq.(100) in [21] , system (1) at the (EP)

P, has eigenvalue say (/16L1) equal to zero at a; = @, , then J, with a, = @, becomes f, =
J (P, @) = [dy], ,, where d;j =dy;; i,j =1234 which are given in Eq.(100) in [21]
accept dy; = 0.
N 6] 51l r : ,

ow, let ol ( ) , 1/;4 ) be the eigenvector corresponding to the
eigenvalue (2¢,,) = 0.

~ ~ ~ o~ ~ o~ T ~ .

Thus (Jo — A6, )P = 0, that gives el = (l/J[6] W1¢1[6],W21/1£6],0) where 1 %0 is
any real number, W, = —2-21— and W, given in the state of theorem.

Let QI8 = (ﬁgﬂ ,Qlel ,6[36],6[}6]) be the eigenvector of fI for (1s,,) = 0.

Then we get (J7 — A¢,,1)Q% = 0 then by solving this equation for (6] we get
— — T - -
alel = (956] ,0, 0,0) , Where 956] # 0 is any real number.

T
Now, con3|der — —fal(X, a,) = (% 9f OFs %) 0,0, 0)

6a1 ’ 0a1 ! 6a1

= (1+f1L3
So, fy,(Ps,@) = (0,0,0,0)7 and hence (A1) £, (Ps,d,) = 0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since
1 —fi1ly
1+f1L3 (1+f1L3)?2

0 0 0 0
Dfal(X’al) = U
0 0 0 0

0 0 0 0
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where Df, (X, ay) is the derivative of f, (X,a;) withrespectto X = (L;,Ly,Ls,Ls)".

plel 1 1L gleh
¥ 1+f;L3 71
0 0 0
1+fiLl3 _"lp"[ﬁ] 0
y ~ 6] 0 00 0 1
Further, it is observed that Df, (P, a;)y'® = = , SO
0 0 0 Ol » +
l J Wyipie! 0
0 0 0 O
0

0
— ~ — ~ T — ~
(009 [0 Pe 9] = (21,0,0,0) (2 91,0,0,0) = 2 QlElglE) 2 0

Moreover, by substituting ¢! in (3) we get: D2f, (Pg,a,)(P!e ,Pl) = [4;1]4x1
~ _ _ a1f1W2 Bl 2:3 _ A7 A[G] 2
An =2 [ (bl + (1+f1Z3)2) + (C+ana) ((C+anA) WZ)] (1111 )

R Y . PN 2 N - 2
Ay = —2 Ibzwl2 - <(1+“]§2’§3)2 +(p+ 2hL3)> Wy W, + (- =L )LZWZZl (1)

(1+/2L3)3

o [-Ci(ctnaa-D)L; | Ci(C+nAla—1)) PN L
Ay =2| e SIS W, = Co(p + RL) Wi W, + (CohL,
as\ vy 21 ( +[6])>
2’| (91
A41 == 0

Hence, it obtains that (ﬁ[ﬁ])T[szal(P6,dl)(t/?[6],lﬁ[6])] = 2[— (b +dlf—1WZ) +

L (1+£L5)2

By Is =~ \]alel (.76} . : .
Crand) ((CmnA) WZ)] Q] (1/)1 ) # 0, under conditions (3,99,104,105), which are given

in [21], and condition (8). Thus, by using Sotomayor’s theorem Pg has a transcritical bifurcation
at the parameter a,.

While if condition (8) not holds and according to condition (9), then there is no a transcritical

bifurcation and by substituting ¢! in (4) we get D3f, (Ps,a,)(p!e!, 18], Plo) = [M;; 141

My =6 [(Cﬂiﬁ (WZ B (C+Z;UA)) + ?ff}j‘izz; (1 B (1]31]:33))] (ﬂ )
Fos = =6 [0 (0, + G2 o+ i, (1)

¢1(C+nA(a-1)) ( i3
(C+an4)3 (C+an4)

5, = 6 — ) = Coh W7 (319)

M41=0
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Then
ot o\T A Te] el ~ L a1 f1 2 W
(8" [D% o, (Pey @) (9191, 91, 1] = 6 | 2 (W, — o) + 2 (1
1w, \] glel (761}
(1+1f123))]ﬂ6( 1 ) * 0,

under conditions (3,99, 104, 105), which are given in [21], and condition (10). Hence again ,

by using Sotomayor’s theorem system (1) at P, has pitchfork bifurcation with the parameter a,.
Theorem 5. Assume that conditions (3,22,110,111), which are given in [21], then system (1)
at the (EP) P,=(0, 0, L;, L,) with the parameter d, = (1+ f,L;)(p+hL;)L; has a
transcritical bifurcation, while neither (saddle-node or pitchfork) bifurcation can be occur at
d,.

Proof. From the Jacobian matrix J; which is given in Eq.(106) in [21] , system (1) at the (EP)
P, has eigenvalue say (/17L2) equal to zero at a, = d,, thenJ, with a, = d, becomes [, =
J, (P, d,) = [éij]4><4’ where ¢&; =e;;; i,j =1,2,3,4 which are given in Eq.(106) in [21]

accept é,, = 0.

Now, let 7 = (1/7{7] R ,ng”,zpf])T be the eigenvector corresponding to the eigenvalue
(17,,) = 0.

Thus (J; — A, )7 = 0, that gives P17 = (0 Y L] ,VT/ZJJZE”)T where %L = 0 is
any real number , W, = ﬁ and W, = %

Let Q7 = (ﬁgﬂ a7 ﬁgﬂ,ﬁiﬂ)T be the eigenvector of JT for (4,,,)=0.

Then we get (J7 — 2,,,1)Q7! = 0 then by solving this equation for Q7! we get

N~ ~ T >~ -
Q71 = (0 ,9[27] ,0,0) , Where Qgﬂ # 0 is any real number.

T T
Now, consider ~L = fo,(X ,a3) = (% 5% 5% %) = (0 L2 ,0,0) :

6a2 - aaz,aaz’aaz’aaz ’1+f2L3
~<171\T
So, fa,(P;,d;) =(0,0,0,0)" and hence (@ fa,(Py,083) = 0.
Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions

cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since
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0 0 0 0

0 1 folp 0
Dfaz (X ,az) = 1+fals  (1+f2L3)?

0 0 0 0

0 0 0 0

where Df,, (X, a,) is the derivative of f;,(X,a,) withrespectto X = (Ly,L,,L3,Ly)".

0 0
K (1) 09 U 1 7]
. g |0 _ 0 0| 2 AL
Further, it is observed that Df;,_(P;, &)yl = 14fLs = 50
0 0 ofl_p g7
l J 17702 0
0 0 0 O
WZI/;;] 0

~ ~ ~ ~ T ~ ~
(@) [Dfa, Py, 8297 = (0,5,0,0) (0, =1 ,0,0) = -G = 0

Moreover, by substituting 1”1 in (3) we get:  D2f,_ (P;, &) (P!, P1"!) = [A]laxs

) 5 R N P
Ay = —2 [bz - ((1:1;2];?23)3 + (,D + 2hL3)> Wll (l/)£7]) ’

Ay = =2[Cy(p + 2hLo) W, + LW, — (2 4 B) W, + LW, (z/5£7])2,

(o+Ly)3
Aoy = 2[ BW, + WZ] W, (5 ])2.

Hence, it obtains that

(8 (021 P ) (57 57) = 2~ s + (o 20) ) 0 (557) 0

under conditions (3,22,110,111), which is given in [21]. Thus, by using Sotomayor’s theorem
P, has a transcritical bifurcation at the parameter a,.
Theorem 6. Assume that conditions (3,99,115,116,117), which are given in [21] and the

following condition holds
—BW, = L (11)

where
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W - f11f22f34— ]
3 (f22f13f31+f11(f23f32—f22f33))
Then system (1) at the (EP) Py = (Ly, L, L3,0) with the parameter §=6;Z+y has
3

(transcritical and pitchfork) bifurcation, while saddel-node bifurcation cannot be occurs at B.
Proof. From the Jacobian matrix Jg whichis givenin Eq.(112) in [21] , system (1) atthe (EP)

Pg has eigenvalue say (ASL4) equal to zero at B = B , then Jg with B = B becomes
Jo = Js(Ps,B) = [fij]4><4’ where f;; = f;;; i,j =1,2,3,4 which are given in Eq.(112) in
N as N
[21] accept f3, = — (?L3 + 6) and f,, = 0.
- - - - - T
Now, let 8 = (1/){8] Pl plel L[f]) be the eigenvector corresponding to the eigenvalue
(/18L4) = 0

- - - —_ —_ —_ - T
Thus (Jg — Ag,, )P = 0, that gives 8! = (—Wllpf] ,— Wl wplet £8]) where

T fi3fez2fz4 W _ fi11f23f34
SR V-1 T S 7 AN V) - S—
(Fezfrafar+Fus(Fesfaz—Fozfas)) (Fezfrafar+fia(foafaz—Fozfas)

ik W, given in the state of

theorem, and 1/1&31 # 0 is any real number.
~ ~ ~ ~ ~ T .
Let Q8 = (958] ol ,9[38],958]) be the eigenvector of JT for (Ag,,) = 0.

Then we get (JT — 2g,,1)Q81 = 0 then by solving this equation for Q1 we get
alsl el al8l -
Q! = (O,O,O,Q4 ) , Where Q," # 0 isany real number.

ider & = _ (2h 3f Ofs Of\' _ _ r
Now, consider 6B_fB(X'B)_(aB'aB'aB'aB) =(0,0,—LgL,,LsL,)" .

So, fa(Ps,B)=1(0,0,0,0)" and hence (ﬁ[g])TfB(P8 ,B) =0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since

00 0 0
0 0 0

PREBI= 0 o 1, Ly
0 0 L L
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where Dfgz(X,B) is the derivative of fz(X,B) withrespectto X = (L;,L,,Ls,Ls)".

Further, it is observed that Dfg(Pg, B)p!®! =

(@) [Dfa(Po, )] = (0,0,0,857) (0,0, ~Lysif? Lyl

0
0
0
0

o o o o
o o o o

A 0
-wal| |0
W31/5£8] ) —Z3W3
Lo L,
) = Ll

Moreover, by substituting 1!®! in (3) we get D?f(Ps, B)(P!®!, P18 = [A;1]4xs

2|(=by +

—2 leVT/ZZ

Bl(C+anA)Z3 ~ 2 a1f1 Bl(C+aT]A) T Ty

(C+anA+Z1)3) Wy + ((1+fll3)2 T (C+anA+Z1)2) WiWs +

_ azf> 7 TYR7T _amf?
((1+le3)2 +(p+ 2hL3)> Wy W5 + (h

— 9 [Cl(C+T)A(a—1))I7I71
(C+anA+L,)?

(ws +

3 (C+anA+Ly)

(5 +8) s+ 2] ()

Ay = 2[BW; + 2 (

78]
4

).

L3y

a1f12Z1

(1+£1L3)3

(1+f2Z3)3) Z2W3zl (

) + Cz(p + 2hz3)W2W3 - (CZhZZ

W3

78]

y SO

Hence, it obtains that (f®1)'[D2fg(Ps, B)(P!!,P1N)] = 2[BW; + L] Gl (lpffl)zqto,

under conditions (3,99,115,116,117) which are given in [21], and condition (11). Thus, by

using Sotomayor’s theorem Pg has a transcritical bifurcation at the parameter B.

While if condition (11) not holds then there is no a transcritical bifurcation and by substituting

P in (4) we get D3f5(Pg, B) (1%, P18, PI81) = [M1] 41

~

- [ 1 ) - S (4 ) (0
(DL R A G

=6 :Cl((i:nyii;t))1W1 <(C+le+z1) + VT/32) + Cth2W32 _ %] (1’2}1[13])3,
= -o[5] (7).
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(89" [D%fo (P BY(F 315, 190)] = —6 L0 (1)

Hence again , by using Sotomayor’s theorem system (1) at Pg has pitchfork bifurcation with the

parameter B.
Theorem 7. Assume that conditions (3,99, 121,122, 123), which are given in [21], then system

(1) at the (EP) Py = (il,o,f3,l:,4) with the parameter a, = (1 +f1l:,3) (p + hZ3) Z3 has a

transcritical bifurcation, while neither (saddle- node or pitchfork) bifurcation can be occur.
Proof. From the Jacobian matrix Jo which is givenin Eq.(118) in [21] , system (1) atthe (EP)

Py has eigenvalue say (Ang) equal to zero at a, = @,, then Jy with a, = @, becomes fg =
Jo (Ps, @) = Gij],,,» where Gi; = gi;; i,j =1,23,4 which are given in Eq.(118) in [21]

accept §,, = 0.

= = = T
Now, let 9 = (I/JP] R ,z/)f]) be the eigenvector corresponding to the eigenvalue

(Aq,) = 0.

Thus ( > — /’lgLZI)lp[‘)] = 0, that gives ¢! = (—W1¢§9] AP WLl — 31/)53]) where

W _ 913932944 7y A 511532544
1= = = = = = = = = ) 2 = = = = = = = = )
(913931944—911(933944—934943)) (913931944—911(933944—934943))

W3 — 511532543
(9:13531544_9:11(9:339:44_9:349:43))

and 1132[9] # 0 is any real number.

r@)!]

= = = = T F
Let Q! (959], o] ,Q?LQP) be the eigenvector of JI for (A,,,) = 0.

Then we get (:9T - )L,Lzl)ﬁ[ I = 0 then by solving this equation for a9 we get

U

= T =
[o] — (0 ik ,0,0) ,where QL) = 0 is any real number.

1+fL 0, 0)

So, fa,(Psy,d;) =(0,0,0,0)" and hence( ) fa,(Ps,@;) = 0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions

% 3 O 94)' _ (o, L

E’ aaz ! aaz ! 6a2

. aof _
Now, consider FPe fa, X ,az) = (

cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since
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0 0 0 O
0 1 fl 0
Df, 0.4 ,az) = 1+fals  (1+f2L3)? I
: 0 0 0 0
0 0 0 O
where Df,, (X, a,) is the derivative of f;,(X,a,) withrespectto X = (Ly,L,,L3,Ly)".
AT 0
0 0 0 O
m ] e 1 =[]
-y = ~ = | O = 0 0 | 2 1+f2Z3
Further, it is observed that Df;,_(Ps, @, )y = | 1+f2Ls | = ,
0 0 0 Ol & =9
| I "= :
0 0 0 O
] Lo
then
~ T ~ ~ ~ T ~rer =
Qlol = 79| — 1kl 1 FI9] __ 1 &6lLFll
(5 [0 o271 (0.520.0) (055278 0.0) = 2RO 0

Moreover, by substituting ! in (3) we get D2f, (P,,&,) (1/7[9] ,1/3[9]) = [4,]

= i ~ 2 ~ =~ 27 =~ 2 = 2
A11 — 2[(—1)1 + 31(C+“77A)L3>W1 _|_< aifi + By (C+anA) > W, + a1f1:L13W2 ]( 59]) )

(c+ana+iy)’ (1+£Ls)"  (c+ana+i,)’

=z _ &zfz = ~ Z[9] 2

Ay =—2|by + <—(1+f2i3)3 +(p+ 2hL3)> Wzl (@),

R = 2 OO (B (),
31 = (c+anA+i1)2 2 (Ctana+iy) 2\ P 3 2 2

(%2 +B) W, W5 + —2 314732] (@9})2,

= = = = = 2
Ay =-2 [BWZ - 3W3l s (D).
Hence, it obtains that

(ﬁ[g])T [szaz (P, &) (15[9],1/3[9])] = -2 lbz + (ng +p+ 2hZ3) Vzlle 6?] (@9])2 # 0,

(1+f2L3)

under conditions (3,99,121,122,123), which are given in [21]. Thus, by using Sotomayor’s
theorem Py has a transcritical bifurcation at the parameter a,.
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Slmllarly fOI‘ (EP) PlO = (fl’ O, 53, 1544).

Theorem 8. Assume that conditions (3,99,127,128,129), which is given in [21] and the

following conditions hold

Ls

(C+anA) =W, (12)

afiv, \ _ _ Bi Ly
(b1 + (1+f1L‘3)2) - (C+anA) ((C+a17A) WZ)' (13)

f1W,
(A+£1L3)’ (14)
where
W, = NpaMN31M4g

2 Tip3N32Maa+12 (Tigaliaz—Tiz3niss)’

Then system (1) at the (EP) Py, = (0, L,, Ls, L,) with the parameter @, = % has

(transcritical and pitchfork) bifurcation, while saddel-node bifurcation cannot be occur at a,.
Proof. From the Jacobian matrix J;; which is given in Eq.(124) in [21], system (1) at the (EP)

P;; has eigenvalue say (Aml) equal to zero at a; = a4, then J;; with a; = a,; becomes
Ji1 =J11(Pyg,dq) = [ﬁij]4x4, where 7;; =n;;; i,j =1,2,3,4 which are given in Eq.(124)
in [21] accept 1y, = 0.

Now, let 11 = (1/){11], it ,1/)§11],¢£11])T be the eigenvector corresponding to the

eigenvalue (A,;,) = 0.

Thus (i — Auag, )™ =0, that gives I = ("), ™, W™, — i)

where W, = "23To1 T4k W, = T22731 743 W, given in the

Np3M32Mas +122 (34743~ T133744) Np3M3Mas +722 (T34 M43 —T33744)

state of theorem, and %! 0 is any real number.

. . i1l T .
Let (M1 = (lel] ol ,QE”,QE”) be the eigenvector of T, for (44,,) = 0.

Then we get (jT; — A44,,1)Q1*1 = 0 then by solving this equation for Q%! we get

. . T L]
Ol = (9511] ,0,0, 0) ,where Q' = 0 is any real number.
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Now, consider a——fal(X ap) = (af1

Of2 9fs %)
daq

6a1 ! aal ’ 6a1

= (57 00.0) -

S0, fo, (P11, @) =(0,0,0,0)7 and hence (A1) £, (Py;,dy) = 0.

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions
cannot be satisfied.

While the transcritical bifurcation's first condition is satisfied. Now, since

1 —fi1l1
1+f1L3 (1+f1L3)2
0 0 0 0
Dfy,(X,a) = | |
l o o o o

l 0 0 0 OJ
where Df, (X,a,) is the derivative of f, (X,a;) withrespectto X = (Ly,Ly,Ls,L,)".

i[11] 7 -1 : [11]

1 1+fiLg 1

1+}1’11Ja 000 1]
. o o o of ¥ 0
Further, it is observed thatDf, (P,4, )yt = -
[ 0 0 O OJ Wz i[11] 0
0 0 0 O
-_W3lj’£11]_ - 0

1 Q[n]l/){n] £ 0

1+fiLz L

(QU)"[Dfy, (Pry, @ 1] = (017,0,0,0) (- 9f™,0,0 0)

Moreover, by substituting »"*) in (3) we get D2f,, (Py1,a) (¥, ") = [Ayylaxs-
. _ _ d1f1W2 Bq L.3 _ i i [11] z
An =2 [ (bl + (1+f1L'3)2> + (C+anA) ((C+anA) WZ)] (1/)1 ) ’

. . . . 2 .. . 2
Ayy = -2 [b2W12 - ( ah 4 (p+ 2hL3)> Wy + (h - 22 LZWZ] (1)’

(1+£,L3)?

Agy = —2 [Cﬂfgjjggjﬂ (s = W) + Calp + 20Ls VAW, — (CohL, — &) " -
(%4 B) it + 2| (9’
Ay = 2|=BW, + Es W | W5 (91 )2.

Hence, it obtains that (Q[“])T[Dzﬁl1 (Pry, ay) (111, pt)]

21

, SO



22
INAAM IBRAHIM SHAWKA, AZHAR ABBAS MAJEED

—_o|_ a, fLWo By Ly = [11] (.; [11] 2

N 2[ (bl + (1+f1L'3)2) + (C+ana) ((c+m;A) WZ)] & (1/)1 ) #0,
under conditions (3,99,127,128,129), which are given in [21] and condition (12). Thus, by
using Sotomayor’s theorem P;; has a transcritical bifurcation at the parameter a.

While if condition (12) not holds and according to condition (13) then there is no a transcritical

bifurcation and by substituting 't in (4) we get D3f, (Py,ay) (1, ], plh) =
[Mi1]4x1-

y _ _d1f12W22 _ f1W> _ By Ls 1 i[11] 3

M11 =6 | (1+f1L3)3 (1 (1+f1L'3)) (C+anA)? ((C+anA) WZ)] (1/)1 ) !

Moy = 6 [0 (i) 4| (91,

| (1+12L3)3 \(1+f>L3)
- [ci(c+nA(a-1)) bs o\ o2 yo 3] 611 3
M3, = 6_ (C+anA)3 ((C+anA) WZ) ChWA W, (0+Ly)3 Ws ](1’01 ) ’
. _ yo 3 (1] 3
Mas = 6(a+L'4)3 Ws ( 1 ) '

Then (1) [D3F,, (Pyy, ) ($11, 141, 1))

_ a1 fi 2w A By Ly o y[11] (,7,[11] 3

- 6[(1+f1L'3)3 (1 (1+f1L'3)) (C+anA)? ((C+anA) WZ)]Q (lpl ) *0,
under conditions (3,99,127,128,129), which is given in [21] and condition (14). Hence
again , by using Sotomayor’s theorem system (1) at P;; has pitchfork bifurcation with the

parameter a,.
Similarly for (EP) Py, = (0, Ly, L3, Ly).

Theorem 9. Assume that conditions (99, 132, 133, 135), which are given in [21] and the
following conditions hold

C1(L§+UA) * * * *
Cranatly) +C,(p + 2hL5)L5 > 22 L += L + BL, +
Xaa(X11X53X32F X522 X13X31) Y X11 X322 X34 X A3
220131 , (15)
X11X22X44
W+ Wy, (16)

Where

v _ [[cranmpiLs )iz ( @1y (C+anA)Bl) : <a1f1 Ly )] :
Ws ([(C+anA+L’1)3W1 + (1+f1L;)2+(C+anA+L*1)2 Wi+ (1+f1L) Wy +

ay * azfzzLE * * as * * *
Km (p + 2hL )) Wy + (1+f2L’§)3] we = [Cohiy + (2 + B) w; | + [BW3]W6>,
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Wy = ([baWy2]wy + [b,Ws2 + hL5|Ws - [Cl((if;f?;“;:))zwf (1+ —(Cﬁnﬁ = )+

Colp +2hLW; + 2+ (=) wy | + [ ws? | we).

(o+L})3 (o+Ly)3
With

x _ X13 « _ X23 « _ Xa3 x _ X31 « _ X32 x _ X34
Wi = Wy =22, Wy=20, Wy =25, Wy =722, Wy =25

"
X11 22 44 11 22 Xaa

Then system (1) at the (EP) Py = (L3, L3, L3, L3) with the parameter d* = az —2-2L5 —

a C (L*+ A) * ( * * * + * * * )+ * * * *
—3L2 1L +7 2 CZ (,0 + ZhLE)LZ _ BLZ _ Xa4\X11X23X32 Xi2X13X31 X11X22X34X43 has a
K (C+anA+L7) X11X22X44

saddle-node bifurcation, while neither a transcritical nor pitchfork bifurcation can be occur at d =
d*.
Proof. From the characteristic equation A* + E;A® + E,A% + E;A + E, = 0 of Jacobian matrix ;5

which is given in Eq.(131) in [21], system (1) at the (EP) P;5 has eigenvalue equal to zero say

(13, = 0) if and only if E, = 0 then P,3 will be non-hyperbolic equilibrium point then J;5

with d = d* becomes Jj; = J;3(Pi3,d*) = [)(2}]4X4, where x;; = xi;; ,j = 1,2,3,4 which are

Xaa(X11X23X32H X322 X13X31) F X11X22 X34 X43
X11X22Xaa

givenin EQq.(130) in [21] accept y33 =
Now, let 3l = (1/){13], [13] ,ngw],tpfﬂ)T be the eigenvector corresponding to the
eigenvalue (A;3;,) = 0.

Thus (]fs _ /113L31)1/)[13] =0, that gives ¢[13] — (—Wl*lll—JElB].—Wz*¢£13],¢£13],—W3*¢3E13])T
where W, W5, W5 given in the state of theorem, and z/)£13] # 0 is any real number.

Let Ql13] = (9513] ol ,QE“,QE“)T be the eigenvector of J;T for 4,5, = 0.

Then we get (J;T — 233,,1)Q*3! = 0 then by solving this equation for Q3! we get

ol = (—w; el —wgal!, ol ,—Wgn[313])T, where W, WZ, W¢ given in the state of

theorem, and Q1**! = 0 is any real number.

ider 2 — _ (20 2 ofs Of\" L. 0T
Now, consider ad_fd(x'd)_(aa'aa'aa'ad) =(0,0,—-L5,0)".
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So, fy(Pi3,d*)=(0,0,—-L%0)T and hence (9[13])de(P13 ,d*) = —L’;Qgﬂ] + 0.
Moreover, by substituting 1[*3! in (3) we get D2f(Py5,d*) (3, p31) = [47 141

* 2% 2
Ail -9 [(_bl + (C+(17IA)31L3) W1*2 + ( aify -+ (C+0”IA)B;1 )Wl* + ( aifi f13)] (l/)£13]) )

(C+anA+L7)3 (1+£1L3) (C+anA+L})? (1+£1L3)

* o __ x2 * _ azf2’ ) * [13] 2
A =2 [bzw2 <—(1 2+ (p+ 2hL )) Wy + (h vy Lzl (¢3 ) ,

Ay = 2 [FOlCmAC DI (4 BV ) e 4 2hLy)W; + (Cohly — %) +

(C+anA+L7)? (C+anA+LY)

(5 + 8)ws = (i) wi] (i)

2
x _ 13
Ay = =2 (B~ s ws|ws (wi)
Hence, it obtains that

T * ( )B1L3 14« f;
(9[13]) [DZf(p13 d )(¢[13]’¢[13])] =2 [_ < wwl 2 4 ((1:1;#3)2 +

(C+anA+L7)3
(C+anA)B, * aifi’Ly * azfa * * asf’Ly *
(C+a71A+L*1)2) Wi+ ((1+f1L*3)3)] Wy + [((1+f2L’§)2 +p+ 2hL3)> Wy + (1+f2L*3)3] Ws

|CohLs + (%2 + B) wy | + [BW3*]W6*> + ([bywi?|wy + [b,W5? + hLy|We —

[Crlomma@ I (1 4 L) 1, (p + 2RLEW + %+ (G ws?] +

(C+anA+L})? (C+anA+Ly)

ol

(1) [D2f Py, d) (0¥, )] = 2w + Wyl (¥ = o,
under conditions (99,132,133,135), which are givenin [21] and condition (15,16) are hold.
Thus, by using Sotomayor’s theorem P;; has a saddle-node bifurcation at the parameter d* but a
transcritical and pitchfork bifurcation cannot be occur.
Similarly for (EP) P, = (LY, Ly, L5, Ly).
4.HOPF BIFURCATION ANALYSIS

In this section, the following theorem shows that when the possibility of a Hopf bifurcation
(HB) happening near the positive (EP) P;; of the system (1), an application to the Hopf
bifurcation [23] for local bifurcation is appropriate.
Theorem 10. Assume that conditions (99,132 — 135) which are given in [21] and the

following conditions hold:
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3

A< %1 (17)
X22Xaa + X11 (K22 + Xaa) > 1 (18)
C1(L?+UA) * * % * % *
3+ s + Cop + 2hLI)L; > (2215 + (2 +B)L3) (19)

E3(d") .
Ej(d*) (—()(11 + X22 + Xaa) + X11X22 + XaaQtan + X22) + 2E3(d )) F
. E3(d"))? .
(r11X22x33 H)Es(d*) — (Ej(d*)) (2()(11)(22 + Xaa(X11 + X22) + E5(d ))) (20)

then at the parameter value d = d* system (1) hasa (HB) near the positive point P;.
Proof. Consider the characteristic equation which is given in Eq.(131) in [21] of system (1) at
P;5, we must choose a parameter let's say (d*) using the (HB) theorem for n = 4, to confirm
that the required and sufficient conditions for (HB) to occur satisfy that
E(d)>0;i=134, A(d*")=EE,—E;>0, E}—4A,>0 and
Ay (d*) = (ELE; — E3)E5 — E22E4 = 0.
Then E;(d*) >0;i= 13,4, A;(d*) >0 and E} — 4A,> 0 under conditions (99,132 — 135)
which are given in [21], with condition (17) are holds.
On the other hand, it is observed that A, = 0 gives
—Rd* + Ryd*? — Ryd* + Ry =0, (21)

where

Ry = [(X11 + X22 t X44)(_1 + X22Xa4 + X11(X22 +X44))],

Ry = 3R H, + Hy,

Rs = BRyH, + 2H)H, + H,,

Ry = (RyHZ + HyH, + Hy))H, + Hs.
With

Hi = X13X31 + X23X32 + XazX3a + X22°Xaa — (2 + X13X31 t X23X32)X442 + x11° (22 +

Xaa) = X22° (2 + X13X31 + XasX3a — 2X44”) + X22Xaa(=5 — 3X13X31 — 2X23X32 —

2X43X34 T X442) + X11(X223 + 6)(222)(44 — (54 2x13X31 + 3x23X32 +
2X43X34) Xaa T X443 — X22(5 + 2(x13x31 + X23X32) + 3X4a3X32 — 6)(442)) +

){112(_2 — X23X32 — X43X34 Tt 2()(222 + 3X22Xa4 + )(442))'
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Hy = [X22(Z + X13X31 + XazX34) M13X31 + X23X32 + XazXza) + (24 Xa3X31 +
X23X32) (X13X31 + X23X32 + XasX3a)Xaa — X22(5 + 3X13X31 + 2X23X32 + 2XasXza)Xaa® — (1 +
X13X31 + X23X32)Xaa” = X22° (U + X13X31 + XazX3s — Xaa®) + X22°Xaa (=5 = 3X13X31 —
2X23X32 = 2Xa3X3a F Xaa®) + X11° (1 4 X22° — XasXz2 — XasXza + 3X22Xaa + Xaa®) +
X112 Q22 + 6X22° Xaa — (5 + 2x13X31 + 3X23X32 + 2Xa3X34) Xaa + Xas® — X22(5 + 2X13X31 +
2X23X32 + 3Xa3X3a — 6Xaa®)) + X11((2 + X23X32 + XasX34) Wa3X31 + X23X32 + XazXza) +
3X22°Xaa — (5 + 2X13X31 + 3X23X32 + 2Xa3X34) Xaa” — X22° (5 + 2X13X31 + 2X23X32 +
3X43X34 — 6X44”) + 3X22X4a(—2(2 + X13X31 + X23X32 + Xa3X34) + Xaa?))],
Hz = D22 (s (a1 + X2sX31X32) + XasXza + X23(a2 + Xa2Xa3X3a)) + X22(X23X32(2 + X23X32)
+ Xa3X34(2 + XasX3a) — X22> (L + X13X31 + XasX3a) + X13X31(2 + X23Xa2
+ Xa3X3a))Xaa + (X13X31 + X2aXzz + (1 + X13X31 + X23X32)XasXza — X22° (2
+ 2x13X31 + X23X32 + XasX3a))Xaa® — X22(1 + XasXa1 + XasXa2)Xaa® + X11® (a2
+ Xaa) (=1 = X23X32 = XasX3a + X22Xaa) + X11 Q22 (X13%X31% + X13Xx31 (2
+ Xa3X34) — X22° (L4 X13X31 + XasXza) + (2 + Xa3X32) (K2sXzz + XazX3a))
+ (r13%X31° + X13X31(2 + X23X32) + (2 + Xazkza) (23X32 + XasXza) — X22°(5
+ 3X13X31 + 3X23X32 + 3Xa3X34))Xaa + X22(=5 + X22° — 3X13X31 — 3X23X32
= 3Xa3X3)Xaa® + (=1 + X22° — X13X31 — X23X32)Xaa>) + X11* (asXa1 + X23X32
+ X23X32X13X31 + XasXza + X13X31Xa3X3a + X22°Xaa — (2 + XasXz1 + 2X23X32
+ XasX3a)Xaa® — X222+ X13X31 + X23Xaz + 2Xa3X3a — 2X4a”) + X22X4a(—5
— 3X13X31 — 3X23X32 — 3Xa3X34 + Xas®))],

C, (L1 +n4)
H,=a —_—
4 3t (C+anA+L?)

+Co(p+2hL5)L5 — (2215 + (24 B) ).
Then by using Descartes rule of sign, Eq.(21) has a unique positive root (d*) if in addition to
conditions (99,132 — 135) which are given in [21] with conditions (18,19) and one of the
following sets of conditions hold

Ry <0,R3 <0,R, <0 OR R, <0,R;>0,R, <0 OR

R, >0,R; <0,R, <0 OR R, >0,R;>0,R, <0

Now, at d = d* the characteristic Eq.(131) which isgivenin [21] can be written as

E; A
A2 +—)()12 +E A +—)=O,
( 13 El 13 113 El

which has four roots A3, ,, = ii\/% and Aq31,1, = %(—E1 + [EZ - 4ﬂ>.
1
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Clearly,at d = d* there are two eigenvalues ()113L1 and /113L2) are pure imaginary and the other

two eigenvalues are real and negative (113L3 and 113L4). Now for all values of d in the

neighborhood of d* the roots in general of the following form
. 1 A

Clearly, Re (/113L1,L2 (d)) |d=d* = ¢,(d*) = 0, thisindicates that at d = d*, the first of the
necessary and sufficient requirements for Hopf bifurcation is met.
In order to confirm the transversality criterion, we need to demonstrate that
0*(d*)w*(d*) + I*(d*)®*(d*) # 0,
Note that for d = d* we have ¢, =0 and ¢, = \/% , substituting the value of ¢, gives the
1
following simplifications:
W (d") = -2 E3(d"),

x [ Jx g, (d») * * *
O*(d") = 225 (B (d)Ex(d) — 2E5(d"),

6"(d") = Ey(d") - Bs(d) 253

() = [2@)(B5@) - B2 5),

E1(d*®)
where

' 0E
E; = a_dl |d=d* =1,
' 0E
E; = a_dz |d=d* = —(¥11 + X22 + Xaa),

P 0E
E3 = a_; d=d* = X11X22 + X2aQr11 + X22))

I aE4, _
E, = 2d |d=d* = —X11X22X33-

* * * * * * * * E (d*)
O*(d")¥*(d*) +I'*(d*)d*(d*) = 2 [% <_(X11 + X2z + Xaa) + X11X22 + XaaQOr11 + X22) +

E3(d*)

2E;(d*) — EL(d) (2()(11)(22 + XaaQr11 + X22) + E3(d*)))> + (X11X22X33)Es(d*) | # 0,

under conditions (99,132 — 135) which are given in [21] and condition (20), so we obtain
that the (HB) happens at the parameter d = d* around the (EP) P,3.
Similarly for (EP) Py, = (LY, Ly, L5, Ly).
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5. NUMERICAL ANALYSES

In order to confirm our analytical findings and investigate the effects of varying the values of

each parameter on the dynamic behaviour of the system, the dynamic behaviour of system (1) is

investigated numerically using the Mathematica program. As shown in Figure (1), system (1) has

a (GAS) positive equilibrium point, with the following hypothetical parameter setup that meets the

stability conditions for the positive equilibrium point.

a; = 0.05, a, = 0.08, az = 0.07, f; = 0.05, f, = 0.06, b; = 0.01, b, = 0.015,
B, =007, C=1 a=19, n=0.06, A=0.05 p=0.05 h=0.03, K=3,
C; =0.06, C, =0.02, d =0.04, B =0.04, y =0.008, ¢ =0.009, § =0.005

| =— L11=0.9 —_L21
| — L12=07

L13=04

N ©

L23

First Prey Population
IS

Second Prey Population

A\\» ”

-

0o 200 400 600 800 1000

—L22=
=05

=08

0.3

— L31=08
=0.6
=04

Infected Predator Population
° -
o ° < <

Susceptible Predator Population
e o
o o
1 k)
| i v
L oW
a8

— L4l =
— L42=
L43 =

0.5
0.4
0.9

Figure -1 The time series of system (1) that started from three different

(22)

initial points

(0.9,0.8,0.8,0.5), (0.7,0.3,0.6,0.4) and (0.4,0.5,0.4,0.9) for the data given in (22). (a)

the trajectory of L; as a function of time, (b) trajectory of L, as a function of time, (c)

trajectory of L; as a function of time, (d) the trajectory of L, as a function of time,

approaches to P;; = (4.647,4.355,0.237,1.774).

Now, to examine how the values of the parameters affect the system's dynamic behavior, we

varied one parameter at each time with the rest parameters given in (22), and the result is displayed

in Table 2.
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Table 2: System (1)'s Dynamical Behavior

Range of Parameter Stable Point Bifurcation Persistence
0.001 < a4 < 0.01985 Py Not Persists
0.01985<a; <1 P 0.01985 Persists
0.001 < a, < 0.0143 Py Not Persists
0.0143<a, <1 P 0.0143 Persists
0.001 <az <5 Pi3 Persists
0.001 < f; < 4.5657 Pi3 Persists

45657 < f; <10 P4 4.5657 Not Persists
0.001 < £, < 20.13 Pi3 Persists
20.13 < £, <30 Py 20.13 Not Persists
0.001 < b; <212 Pi3 Persists
212<bh; <5 Py, 2.12 Not Persists
0.001 < b, < 6.45 Pi3 Persists
6.45 < b, < 10 Py 6.45 Not Persists
0.061 < B, < 0.162 P;3 Persists
0.162<B; <1 Py 0.162 Not Persists
001 <a<10 P;3 Persists
0.001<n<3 Pi; Persists
0.001<A4<10 Pi3 Persists
0.001 <K <0.015 P, Not Persists
0.015 < K < 0.895 Pg 0.015 Not Persists
0.895 < K < 0.91207 Ps 0.895 Not Persists
0.91207 < K <10 Pi3 0.91207 Persists
0.001 < h <0.7696 P Persists
1<C<10 Py Persists
0.001 < C; £0.069 Py Persists
0.0001<(C, <1 Py Persists
0.001 <p<0.31 P Persists
031<p<5 Py 0.31 Not Persists
0.001 < d < 0.09301 Pi3 Persists
0.09301 < d < 0.255 Pg 0.09301 Not Persists
0.255<d<1 P, 0.255 Not Persists
0.0001 < B < 0.0187321 Py Not Persists
0.0187321<B <1 P;; 0.0187321 Persists
0.001 < 6 < 0.0266248 P;; Persists
0.0266248 <6 <1 Py 0.0266248 Not Persists
0.0001 <y < 0.0217155 P;; Persists
0.0217155<y <1 Py 0.0217155 Not Persists
001<o0o<1 P;; Persists
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The effect of varying the intrinsic growth rate of the first prey in the range 0.001 < a; < 0.01985
was studied, it is observed that the solution of system (1) approach to P;; , however increasing

this parameter further 0.01985 < a; < 1 the solution approach to P;3 as shown in Figure (2).

@) (b)

o
o

] — First Prey
| —— Second Prey

—— First Prey
— Second Prey
~— Susceptible Predator | = Susceptible Predator

] 4
8 g
Infected predator ‘i[ | Infected predator
= 1 |

0 . " " ol " L " - L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time Time

Figure -2 The trajectories of system (1) using data given in (22) with different values of a,. (a)
the trajectory approaches to P;; = (0,3.515,0.407,0.698) when a,=0.01, (b) the trajectory
approaches to P;; = (1.852,4.289,0.251,1.573) when a; = 0.025.

Population
TS
Population
'S

The effect of varying the intrinsic growth rate of the second prey in the range 0.001 < a, <
0.0143 was studied, it is observed that the solution of system (1) approach to Py , however
increasing this parameter further 0.0143 < a, < 1 the solution approach to P;3 as shown in

Figure (3).

@) (b)

4 4
53 — First Prey g3 | — FirstPrey
§ — Second Prey fg — Second Prey
s — Susceptible Predator g, — Susceptible Predator
& I
Infected predator Infected predator
1 1 {

0

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Figure -3 The trajectories of system (1) using data given in (22) with different values of a,. (a)
the trajectory approaches to Py = (4.637,0,0.243,1.679) when a,= 0.01, (b) the trajectory
approaches to P,; = (4.640, 1.048,0.241,1.702) when a, = 0.03.

The effect of varying the fear rate of the first prey from susceptible predator in the range 0.001 <
f1 < 4.5657 was studied, it is observed that the solution of system (1) still approaches to P;3,
however increasing this parameter further 4.5657 < f; < 10 the solution approaches to P;, as

shown in Figure (4).
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@) (b)
e R N R B i LN S o SRS Y { et R IR R O ek PSS SO T )
4 o N\~
53 —— First Prey 53 —— First Prey
E | — Second Prey E | — Second Prey
g2 | —— Susceptible Predator g2 | —— Susceptible Predator
o o 1
) Infected predator | Infected predator
1 1 |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time Time

Figure -4 The trajectories of system (1) using data given in (22) with different values of f;. (a)
the trajectory approaches to P;; = (4.673,4.343,0.239,1.732) when f; = 1, (b) the
trajectory approaches to P;; = (0,3.515,0.407,0.698) when f; = 5.

The effect of varying the fear rate of the second prey from susceptible predator in the range
0.001 < f, < 20.13 was studied, it is observed that the solution of system (1) still approaches

to P;3 , however increasing this parameter further 20.13 < f, < 30 the solution approach to

4 |
[ | — First Prey
| —— Second Prey
| = Susceptible Predator
Infected predator | Infected predator
1 5 / 1

|V A— -

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Py as shown in Figure (5).

—— First Prey

Population
Population
N e

o -

Figure -5 The trajectories of system (1) using data given in (22) with different values of f,. (a)
the trajectory approaches to P;; = (4.643,2.693,0.239,1.738) when f, = 2, (b) the
trajectory approaches to Py = (4.637,0,0.243,1.679) when f, = 21.

The effect of varying the internal competition rate of first prey in the range 0.001 < b; < 2.12
was studied, it is observed that system (1) still approach to P;5; , however increasing this

parameter further 2.12 < b; < 5 the system approach to P;; as shown in Figure (6).

@ (b)
4 ! 4 !
53 | — FirstPrey 5 | — FirstPrey
E | — second Prey f;’ | — second Prey
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K |
0 200 400 600 800 1000 %0 200 a0 00 800 1000
Time Time

Figure -6 The trajectories of system (1) using data given in (22) with different values of b,. (a)
the trajectory approaches to P;; = (0.329,4.012,0.309,1.074) when b; = 0.1, (b) the
trajectory approaches to P,;; = (0,3.537,0.403,0.709) when b, = 3.5.
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The effect of varying the internal competition rate of second prey in the range 0.001 < b, < 6.45
was studied, it is observed that the solution of system (1) still approach to P,;5, however

increasing this parameter further 6.45 < b, < 10 the solution approach to Py as shown in Figure

(.

@) (b)
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53 — First Prey 53 — First Prey
fg — Second Prey § — Second Prey
2o —— Susceptible Predator s —— Susceptible Predator
4 &
Infected predator Infected predator
1 1

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Figure -7 The trajectories of system (1) using data given in (22) with different values of b,. (a)
the trajectory approaches to P;; = (4.637,0.129,0.243,1.682) when b, = 0.5, (b) the
trajectory approaches to Py = (4.637,0,0.243,1.679) when b, = 8.

The effect of varying the maximum rate of predation in the range 0.061 < B; < 0.162 was
studied, it is observed that the solution of system (1) still approach to P;5, however increasing

this parameter further 0.162 < B; < 1 the solution approach to P;; as shown in Figure (8).
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4 o a4
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<
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Figure -8 The trajectories of system (1) using data given in (22) with different values of B;. (a)
the trajectory approaches to P;; = (4.262,4.351,0.238,1.759) when B;= 0.15, (b) the
trajectory approaches to P,; = (0,3.515,0.407,0.698) when B; = 0.2.

The effect of varying the maximum rate of predation in the range 0.001 < p < 0.31 was studied,
it is observed that the solution of system (1) still approach to Py, however increasing this

parameter further 0.31 < p < 5 the solution approach to P;; as shown in Figure (9).
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1 1
ol : 0
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~—— First Prey
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Figure -9 The trajectories of system (1) using data given in (22) with different values of p. (a)
the trajectory approaches to Py = (4.637,0,0.243,1.679) when p= 0.32, (b) the trajectory
approaches to P,;; = (4.652,3.589,0.234,1.825) when p = 0.1.

The effect of varying the carrying capacity of the susceptible predator in the range 0.001 < K <
0.015 was studied, it is observed that system (1) approach to P,, however increasing this
parameter further 0.015 < K < 0.895 the system approach to Pg, moreover increasing this
parameter in the range 0.895 < K < 0.91207 the system approach to Ps, again increasing this
parameter further 0.91207 < K < 10 the system approach to P;5 as shown in Figure (10).

Time

—— First Prey

~—— Second Prey

~— Susceptible Predator
Infected predator

~—— First Prey
—— Second Prey

0 1500 2000 2500 3000
Time

ible Predator

Infected predator

~—— First Prey

5
~—— First Prey 4
3 —— Second Prey
2
1
0

5
4
3 —— Second Prey
2
1
0

Population

~— Susceptible Predator
Infected predator

~— Susceptible Predator
Infected predator

1500 2000 2500 3000
Time

0 500 1000 1500 2000 2500 3000 0 500 1000

Time

Figure -10 The trajectories of system (1) using data given in (22) with different values of K. (a)
the trajectory approaches to P, = (4.998,5.328,0,0) when K= 0.001, (b) the trajectory
approaches to Pg = (4.051, 2.533, 0.582,0 )whenK = 0.5, (c) the trajectory approaches to
P; = (3.121,0,0.970,0) K=09 , (d) the
P,; = (4.332,3.401,0.429,0.649) when K = 1.

to

when trajectory  approaches

The effect of varying the natural death rate of susceptible predator in the range 0.001 < d <
0.09301 was studied, it is observed that the solution of system (1) still approach to P, , however
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increasing this parameter further 0.09301 < d < 0.255 the solution approach to Pg, moreover
increasing this parameter in the range 0.255 < d < 1 the solution approach to P, as shown in
Figure (11).
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Figure -11 The trajectories of system (1) using data given in (22) with different values of d. (a)
the trajectory approaches to P;; = (4.626,4.292,0.250,1.581) when d = 0.05, (b) the
trajectory approaches to Pg = (3.590,1.152,0.798,0) when d =0.1 , (c¢) the trajectory
approaches to P, = (5,5.333,0,0) when d = 0.3.

The effect of varying the disease transmission rate in the range 0.0001 < B < 0.0187321 was
studied, it is observed that the solution of system (1) approach to P;, however increasing this
parameter further 0.0187321 < B < 1 the solution approach to P,5 as shown in Figure (12).
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Figure -12 The trajectories of system (1) using data given in (22) with different values of B. (a)
the trajectory approaches to P; = (0,0,1.286,0) when B = 0.0187, (b) the trajectory
approachesto P,; = (4.312,3.341,0.440,2.094) when B = 0.02.

Population

The effect of varying the death rates of infected predator in the range 0.001 < § < 0.0266248
was studied, it is observed that the solution of system (1) still approach to P,; , however
increasing this parameter further 0.174 < § < 1 the solution approach to P; as shown in Figure

(13).
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Figure -13 The trajectories of system (1) using data given in (22) with different values of §. (a)
the trajectory approaches to P;3 = (3.890,2.039,0.663,1.2171) when 8= 0.02, (b) the
trajectory approaches to P; = (0,0,1.286,0) when & = 0.03.

The effect of varying the maximum medical resource supplied for treatment in the range
0.0001 <y < 0.0217155 was studied, it is observed that the solution of system (1) still
approach to P,; , however increasing this parameter further 0.0217155 < y < 1 the solution

approach to P; as shown in Figure (14).
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Figure -14 The trajectories of system (1) using data given in (22) with different values of y. (a)
the trajectory approaches to  P;; = (4.432,3.710,0.370,2.031) when y = 0.02, (b) the
trajectory approachesto P; = (0,0,1.286,0) when y = 0.03.

The effect of varying the carrying capacity and the medical resource for treatment rate was studied,
it is found that solution of system (1) will approach to the (EP) P; = (0, 0.541, 0.886, 0) as
it shows in Figure (15).
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Time

Figure -15 The trajectory of system (1) using data given in (22) approaches to Py =
(0, 0.541, 0.886, 0) when K =2, y = 0.08.
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The effect of varying the intrinsic growth rates of the first and the second prey was studied, it is
found that solution of system (1) will approach to the (EP) P, = (0, 0, 0.473, 0.564) as it
shows in Figure (16).
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— First Prey
—— Second Prey
—— Susceptible Predator

Population
b

Infected predator

fod
o

|
0.0 -
0 500 1000 1500 2000 2500 3000
Time

Figure -16 The trajectory of system (1) using data given in (22) approachesto P, = (0, 0, 0.473, 0.564)
when a; = 0.02 and a, = 0.01.

6. THE CONCLUSIONS AND DISCUSSIONS

In this paper, the conditions of the local bifurcation have been established for a food web eco-
epidemiological model with fear and internal competition effects in the first and second prey
populations, the susceptible predator feeds on preys using two different types of functional
responses, as well as with additional food and hunting cooperation, on the other hand treatment is
presumed to be being administered to the infected predator, and it is observed that near the
equilibrium points:

> At P,,Pyand Py, system (1) possesses a transcritical bifurcation only at the intrinsic
growth rate of the second prey (d,, &) respectively while Ps,P,,Ps,Ps,Ps,Py; and
P,, have a transcritical and pitchfork bifurcations at the disease transmission rate (B),

the natural death rate of susceptible predator (d), the disease transmission rate (B), the

intrinsic growth rate of the first prey (&), the disease transmission rate (B), and the

intrinsic growth rate of the first prey (a,) respectively.
» At P;;and P, system (1) possesses a saddle-node bifurcation at the natural death rate
of susceptible predator (d*).
Furthermore, investigations for (HB) at the natural death rate of susceptible predator (d*) near
P;; and P;, are carried out. On the other hand, numerical simulations were conducted using the
Mathematica program for three distinct initial points and one hypothetical set of data given in (22).
The results showed that:
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1. The parameters that are most efficient in managing the stability of system (1) are a;, f;,
b;,B;,p,K,d,B,y,and 6 ; i =1,2.

2. The stability of system (1), where the solutions are still approaching the positive
equilibrium point, is not affected by the parameters as,C, a, n, 4,h,C; and o; j = 1,2.
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