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Abstract: In this paper, the local bifurcation's occurrence conditions have been established for a food web eco-

epidemiological model of four species, including first prey, second prey, susceptible predator, and infected predator 

with fear effect, and internal competition among prey populations, incorporating additional food resources and hunting 

cooperation among predators, and disease dynamics with treatment in the predator population with Holling type-II 

and Lotka-Volterra functional response. This model has fifteen equilibria, the saddle-node bifurcation have been 

shown close to the interior equilibrium points 𝑃13 and 𝑃14, also at the first-second prey-free equilibrium point 𝑃7, 

and the second prey-free equilibrium points 𝑃9  and 𝑃10  a transcritical bifurcation occurred, while at the preys-

infected predator-free equilibrium point 𝑃3 , the predators-free equilibrium point 𝑃4 , the second prey-infected 

predator-free equilibrium point 𝑃5, the first prey-infected predator-free equilibrium point 𝑃6, the infected predator-

free equilibrium point 𝑃8 , first prey-free equilibrium points 𝑃11  and 𝑃12  have a transcritical and pitchfork 

bifurcations. Furthermore, conditions for Hopf bifurcation close to positive points 𝑃13  and 𝑃14  have also been 

examined. Numerical results for the set of hypothetical parameters support our analytical results regarding the 

persistence of this model and the occurrence of bifurcation using Mathematica. 
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1. INTRODUCTION 

Mathematical modeling is a powerful tool used to understand complex phenomena and 

systems by representing them using mathematical concepts. as it allows us to study the behavior 

of complex systems and predict their outcomes under certain conditions, results of stability of 

equilibria, bifurcation and persistence, see [1-6] and the reference therein. Also hold great 

significance in eco-epidemiology, where the study of the dynamics of infectious diseases intersects 

with ecological and environmental factors. 

Moreover, prey-predator model analysis is a key component in understanding the predation 

relationships between species in an ecosystem [7,8]. Since they need to eat to stay alive, predators 

usually try to get better at catching and killing prey because it will help them survive longer. 

Cooperative hunting is a common strategy used by several animals to improve their ability to 

capture and kill prey [9–11]. 

On the other hand, incorporating additional food sources in mathematical models introduces 

key ecological realism and flexibility into the model, these richer, more realistic models offer 

greater insights into ecological processes, allowing for better predictive power and providing 

valuable information for conservation efforts, ecosystem management, and understanding the 

resilience of ecosystems in the face of natural or anthropogenic disturbances. Many authors have 

merged eco-epidemiological prey-predator models with hunting cooperation, fear, additional food 

and treatment see [12-15]. 

Furthermore, eco-epidemiology looks at the interplay between host populations, infections, 

and ecosystems, and these mathematical concepts help explain how diseases spread, persist, or 

fade within populations, as well as the conditions under which these dynamics can change abruptly 

or stabilize [16,17]. 

Recent research also emphasizes bifurcation analysis as a powerful tool for exploring how 

small changes in parameters can lead to significant shifts in the system, which aligns with your 

interest in studying regime shifts in ecological and epidemiological systems, for example [18-20] 

and the reference therein. 

The study of hunting cooperation among predators and its effects on food-web dynamics is an 

important topic in ecological modeling, especially in the context of eco-epidemiological models 

that also incorporate disease transmission and additional food sources. Recently, Shawka and 

Majeed [21] proposed and analyzed an eco-epidemiological model with fear, internal competition 

in the prey populations, and hunting cooperation, additional food, and a treatment in the predator’s 



3 

FOOD-WEB ECO-EPIDEMIOLOGICAL MODEL 

population where the predators feed on prey using two different types of functional responses. The 

purpose of this study is to test the analytic findings with numerical simulation and to establish the 

conditions of Hopf bifurcation near the positive equilibrium point and local bifurcation near the 

equilibrium points of a mathematical model given in [21]. 

2. MATHEMATICAL MODEL 

A food web eco-epidemiological model comprising two preys, susceptible and infected predator 

with treatment, has been proposed and formulation in [21], as the following. 

      
𝑑𝐿1

𝑑𝑇
=

𝑎1𝐿1

1+𝑓1𝐿3
− 𝑏1𝐿1

2 −
𝐵1𝐿1𝐿3

𝐶+𝛼𝜂𝐴+𝐿1
, 

     
𝑑𝐿2

𝑑𝑇
=

𝑎2𝐿2

1+𝑓2𝐿3
− 𝑏2𝐿2

2 − (𝜌 + ℎ𝐿3)𝐿2𝐿3,   

     
𝑑𝐿3

𝑑𝑇
= 𝑎3𝐿3 (1 −

𝐿3+𝐿4

𝐾
) +

𝐶1(𝐿1+𝜂𝐴)𝐿3

𝐶+𝛼𝜂𝐴+𝐿1
+ 𝐶2(𝜌 + ℎ𝐿3)𝐿2𝐿3 − (𝑑 + 𝐵𝐿4)𝐿3 +

𝛾𝐿4

σ+𝐿4
, 

     
𝑑𝐿4

𝑑𝑇
= 𝐵𝐿3𝐿4 − δ𝐿4 −

𝛾𝐿4

σ+𝐿4
 .    

where 𝐿1(𝑇), 𝐿2(𝑇), 𝐿3(𝑇), 𝐿4(𝑇) represents the total population density at time T of the first prey, 

second prey, susceptible predator, and infected predator, respectively, and the following 

assumptions have been assumed in order to construct the model: 

1. It is assumed that 𝑎1, 𝑎2 are the intrinsic growth rates of the first and the second prey, 

respectively and there is an internal competition between their populations with 𝑏1, 𝑏2 

rates, while 𝑓1 and 𝑓2  the fear rates of the first and second prey species from the 

susceptible predator, respectively. 

2. The susceptible predator 𝐿3 is capable of reproducing in logistic growth with carrying 

capacity K > 0, and intrinsic growth rate 𝑎3 > 0, it is assumed that the susceptible predator 

consumes the first prey according to Holling type II functional response with attack rate 

𝐵1 > 0, half saturation rate 𝐶 ≥ 1, and with additional food A > 0 and the ratio of search 

rate for additional food is 𝜂 > 0. It is assumed that the maximum growth rate of the 

predator when it consumes the prey and additional food is 𝛼. 

3. The susceptible predator consumes the second prey with Lotka-Volterra type of functional 

response with attack rate  𝜌 , hunting cooperation rate  ℎ,  and the conversion rate 

constants  𝐶1 > 0  and 0 < 𝐶2 < 1 , respectively, Moreover, the susceptible predator 

faces the natural death at a rate 𝑑 > 0.  

(1) 
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4. Finally, it is assumed that the disease transmission between the predator population at a 

rate B, with the medical resource for treatment rate 𝛾  and the saturation factor that 

measure the effect of the delay in treatment for the infected with rate  𝜎. Also the infected 

predator faces the natural death due to the effect of diseases at a rate 𝛿 > 0. 

3. LOCAL BIFURCATION ANALYSIS 

In this section, it has been investigated how altering the parameter values affects the system's 

(1) dynamic behavior close to each equilibrium point (EP). Recall that the presence of the system's 

(1) non-hyperbolic equilibrium point is a prerequisite for bifurcation, but it is not a sufficient one. 

Consequently, an application of Sotomayor's theorem [22] is appropriate in the following theorems. 

Now, according to the Jacobian matrix 𝐽(𝐿1 , 𝐿2 , 𝐿3 , 𝐿4) of system (1), which is given in [21]. 

   𝐽 = [𝑏𝑖𝑗]4×4
 ,                                                            (2) 

   𝑏11 =
𝑎1

1+𝑓1𝐿3
− 2𝑏1𝐿1 −

(𝐶+𝛼𝜂𝐴)𝐵1𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)2
 ,  𝑏12 = 𝑏14 = 0,  𝑏13 =

−𝑎1𝑓1𝐿1

(1+𝑓1𝐿3)2
−

𝐵1𝐿1

(𝐶+𝛼𝜂𝐴+𝐿1)
< 0, 

   𝑏21 = 𝑏24 = 0,  𝑏22 =
𝑎2

1+𝑓2𝐿3
− 2𝑏2𝐿2 − (𝜌 + ℎ𝐿3)𝐿3,  𝑏23 =

−𝑎2𝑓2𝐿2

(1+𝑓1𝐿3)2
− (𝜌 + 2ℎ𝐿3)𝐿2, 

   𝑏31 =
𝐶1(𝐶+𝜂𝐴(𝛼−1))𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)2
,   𝑏32 = 𝐶2(𝜌 + ℎ𝐿3)𝐿3, 

   𝑏33 = 𝑎3 −
𝑎3

𝐾
(2𝐿3 + 𝐿4) +

𝐶1(𝐿1+𝜂𝐴)

(𝐶+𝛼𝜂𝐴+𝐿1)
+ 𝐶2(𝜌 + 2ℎ𝐿3)𝐿2 − (𝑑 + 𝐵𝐿4) , 

   𝑏34 = −(
𝑎3

𝐾
+ 𝐵)𝐿3 +

𝜎𝛾

(σ+𝐿4)2
,  𝑏41 = 𝑏42 = 0,  𝑏43 = 𝐵𝐿4,   𝑏44 = 𝐵𝐿3 − 𝛿 −

𝜎𝛾

(σ+𝐿4)2
. 

It is obvious to confirm that for every vector that is nonzero 𝜓 = (𝜓1, 𝜓2, 𝜓3, 𝜓4)
𝑇 we have: 

   𝐷2𝐹(𝑋, 𝜇)(𝜓 , 𝜓) = [𝐴𝑖1]4𝑥1,                                               (3) 

   𝐴11 = 2 [(−𝑏1 +
𝐵1(𝐶+𝛼𝜂𝐴)𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)3
) (𝜓1)

2 − (
𝑎1𝑓1

(1+𝑓1𝐿3)2
+

𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+𝐿1)2
)𝜓1𝜓3 + (

𝑎1𝑓1
2𝐿1

(1+𝑓1𝐿3)3
) (𝜓3)

2], 

   𝐴21 = −2 [𝑏2(𝜓1)
2 + (

𝑎2𝑓2

(1+𝑓2𝐿3)2
+ (𝜌 + 2ℎ𝐿3))𝜓2𝜓3 + (ℎ −

𝑎2𝑓2
2

(1+𝑓2𝐿3)3
) 𝐿2(𝜓3)

2], 

   𝐴31 = 2 [
−𝐶1(𝐶+𝜂𝐴(𝛼−1))𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)3
(𝜓1)

2 +
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+𝐿1)2
𝜓1𝜓3 + 𝐶2(𝜌 + 2ℎ𝐿3)𝜓2𝜓3 +

          (𝐶2ℎ𝐿2 −
𝑎3

𝐾
) (𝜓3)

2 − (
𝑎3

𝐾
+ 𝐵)𝜓3𝜓4 − (

𝜎𝛾

(𝜎+𝐿4)3
) (𝜓4)

2], 

   𝐴41 = 2 [𝐵𝜓3𝜓4 +
𝜎𝛾

(𝜎+𝐿4)3
(𝜓4)

2]. 

And 
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   𝐷3𝐹(𝑋, 𝜇)(𝜓 , 𝜓 , 𝜓) = [𝑀𝑖1]4𝑥1,                                                  (4) 

   𝑀11 = 6 [
−(𝐶+𝛼𝜂𝐴)𝐵1𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)4
(𝜓1)

3 +
(𝐶+𝛼𝜂𝐴)𝐵1

(𝐶+𝛼𝜂𝐴+𝐿1)3
(𝜓1)

2𝜓3 +
𝑎1𝑓1

2

(1+𝑓1𝐿3)3
𝜓1(𝜓3)

2 −
𝑎1𝑓1

3

(1+𝑓1𝐿3)4
(𝜓3)

3], 

   𝑀21 = 6 [(
𝑎2𝑓2

2

(1+𝑓2𝐿3)3
− ℎ)𝜓2(𝜓3)

2 − (
𝑎2𝑓2

3𝐿2

(1+𝑓2𝐿3)4
) (𝜓3)

3], 

   𝑀31 = 6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))𝐿3

(𝐶+𝛼𝜂𝐴+𝐿1)4
(𝜓1)

3 −
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+𝐿1)3
(𝜓1)

2𝜓3 + 𝐶2ℎ𝜓2(𝜓3)
2 +

𝜎𝛾

(𝜎+𝐿4)4
(𝜓4)

3], 

   𝑀41 = −6 [
𝜎𝛾

(𝜎+𝐿4)4
(𝜓4)

3], 

where 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇 and 𝜇 is any parameter. 

Theorem 1. system (1) at the (EP) 𝑃3 = (0, 0, �̅�3, 0)  with the parameter �̅� =
𝛿𝜎+𝛾

𝜎�̅�3
 has a 

transcritical and pitchfork bifurcation if the following condition holds  

�̅��̅�1 ≠
𝛾

σ2
                                                                           (5) 

Where �̅�1 =
(𝐶+𝛼𝜂𝐴)(𝑎3�̅�3+𝛿𝐾)

[(𝑎3−𝑑)(𝐶+𝛼𝜂𝐴)+𝐶1𝜂𝐴]
. While saddle-node bifurcation cannot be occurs at �̅�. 

Proof. From the Jacobian matrix  𝐽3  which is given in Eq.(86)  in [21]  , system (1) at the 

(EP) 𝑃3 has eigenvalue say (𝜆3𝐿4
) equal to zero at 𝐵 = �̅� , then 𝐽3 with 𝐵 = �̅� becomes 𝐽3̅ =

𝐽3(𝑃3 , �̅�) = [Ω̅𝑖𝑗]4×4
, 

where  Ω̅𝑖𝑗 = Ω𝑖𝑗 ,   𝑖, 𝑗 = 1,2,3,4 which is given in  Eq.(86) in [21] accept 

    Ω̅34 = −(
𝑎3

𝐾
�̅�3 + 𝛿)  and Ω̅44 = 0. 

Now, let �̅�[3] = (�̅�1
[3]

 , �̅�2
[3]

 , �̅�3
[3]

, �̅�4
[3]

)
𝑇

be the eigenvector corresponding to the eigenvalue 

(𝜆3𝐿4
) = 0. 

Thus  (𝐽3̅ − 𝜆3𝐿4
𝐼)�̅�[3] = 0 , that gives �̅�[3] = (0 ,0 , −�̅�1�̅�4

[3]
 , �̅�4

[3]
)
𝑇

 where �̅�1  given in the 

state of theorem and �̅�4
[3]

≠ 0 is any real number. 

Let  Ω̅[3] = (Ω̅1
[3]

 , Ω̅2
[3]

 , Ω̅3
[3]

, Ω̅4
[3]

)
𝑇

 be the eigenvector of  𝐽3̅
𝑇  for 𝜆3𝐿4

= 0. 

Then we get  (𝐽3̅
𝑇 − 𝜆3𝐿4

𝐼)Ω̅[3] = 0 then by solving this equation for Ω̅[3] we get  

   Ω̅[3] = (0 , 0 , 0 , Ω̅4
[3]

)
𝑇

,  where  Ω̅4
[3]

≠ 0  is any real number.  
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Now, consider   
𝜕𝑓

𝜕𝐵
= 𝑓𝐵(𝑋 , 𝐵) = (

𝜕𝑓1

𝜕𝐵
,
𝜕𝑓2

𝜕𝐵
,
𝜕𝑓3

𝜕𝐵
,
𝜕𝑓4

𝜕𝐵
)
𝑇

= (0 ,0 , −𝐿3𝐿4 , 𝐿3𝐿4)
𝑇 . 

So,  𝑓B(𝑃3 , �̅�) = (0 , 0 , 0, 0)𝑇 and hence (Ω̅[3])
𝑇
𝑓B(𝑃3 , �̅�) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

𝐷𝑓𝐵(𝑋 , 𝐵) =  

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −𝐿4 −𝐿3

0 0 𝐿4 𝐿3 ]
 
 
 
 
 

, 

where 𝐷𝑓𝐵(𝑋 , 𝐵) is the derivative of 𝑓𝐵(𝑋 , 𝐵) with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that  𝐷𝑓𝐵(𝑃3 , �̅�)�̅�[3] =

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 0 −�̅�3

0 0 0 �̅�3 ]
 
 
 
 
 

[
 
 
 
 
 
 
 
 

0

0

−�̅�1�̅�4
[3]

�̅�4
[3]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0

0

�̅�1�̅�3�̅�4
[3]

�̅�3�̅�4
[3]

]
 
 
 
 
 
 
 
 

, so 

(Ω̅[3])
𝑇
[𝐷𝑓B(𝑃3 , �̅�)�̅�[3]] = (0 , 0 , 0 , Ω̅4

[3]
) (0 ,0 , �̅�1�̅�3�̅�4

[3]
 , �̅�3�̅�4

[3]
)
𝑇

= �̅�3Ω̅4
[3]

�̅�4
[3]

≠ 0. 

Moreover, by substituting �̅�[3] in (3) we get: 

𝐷2𝑓B(𝑃3 , �̅�)(�̅�[3] , �̅�[3]) =

[
 
 
 
 
 
 
 
 

0

0

−2 [
𝑎3

𝐾
�̅�1

2
− (

𝑎3

𝐾
+ �̅�) �̅�1 +

𝛾

σ2
] (�̅�4

[3]
)
2

2 [−�̅��̅�1 +
𝛾

σ2
] (�̅�4

[3]
)
2

]
 
 
 
 
 
 
 
 

 

Hence, it obtains that (Ω̅[3])
𝑇
[𝐷2𝑓B(𝑃3 , �̅�)(�̅�[3] , �̅�[3])] = 2 [−�̅��̅�1 +

𝛾

σ2] Ω̅4
[3]

(�̅�4
[3]

)
2

≠ 0, 

under condition (5).  

Thus, by using Sotomayor’s theorem 𝑃3 has a transcritical bifurcation at the parameter �̅�. 

 

While if condition (5) not holds then there is no a transcritical bifurcation and by substituting 
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 �̅�[3] in (4)  we get 𝐷3𝑓B(𝑃3 , �̅�)(�̅�[3], �̅�[3], �̅�[3]) =

[
 
 
 
 
 
 
 
 
 6

𝑎1𝑓1
3

(1+𝑓1𝐿3)4
(�̅�1�̅�4

[3]
)
3

0

6
𝛾

σ3 (�̅�4
[3]

)
3

−6
𝛾

σ3
(�̅�4

[3]
)
3

]
 
 
 
 
 
 
 
 
 

, so 

   (Ω̅[3])
𝑇
[𝐷3𝑓B(𝑃3 , �̅�)(�̅�[3], �̅�[3], �̅�[3])] = −6

𝛾

σ3  Ω̅4
[3]

(�̅�4
[3]

)
3

≠ 0. 

Hence again, by using Sotomayor’s theorem system (1) at 𝑃3 has pitchfork bifurcation with the 

parameter �̅�. 

Theorem 2. Assume that condition (99), which is given in [21] and the following condition 

holds: 

𝑎3 > 𝐶2ℎ𝐾�̆�2                                                                            (6) 

Then system (1)  at the (EP) 𝑃4 = (�̆�1, �̆�2, 0, 0)  where  �̆�1 =
𝑎1

𝑏1
 and  �̆�2 =

𝑎2

𝑏2
  with the 

parameter �̆� = 𝑎3 +
𝐶1(𝑎1+𝜂𝐴𝑏1)

𝑎1+𝑏1(𝐶+𝛼𝜂𝐴)
+

𝑎2𝐶2𝜌

𝑏2
 has a transcritical and pitchfork bifurcation, while 

saddle-node bifurcation cannot be occurs at �̆�. 

Proof. From the Jacobian matrix  𝐽4  which is given in Eq.(91) in [21]  , system (1)  at the 

(EP) 𝑃4 has eigenvalue say (𝜆4𝐿3
) equal to zero at 𝑑 = �̆� , then  𝐽4 with 𝑑 = �̆� becomes 

 𝐽4 = 𝐽4(𝑃4 , �̆�) =

[
 
 
 
 
 
 −𝑎1 0 −(

𝑎1
2𝑓1

𝑏1
+

𝑎1𝐵1

𝑎1+𝑏1(𝐶+𝛼𝜂𝐴)
) 0

0 −𝑎2
−𝑎2(𝑎2𝑓2+𝜌)

𝑏2
0

0 0 0
𝛾

𝜎

0 0 0 −(𝛿 +
𝛾

𝜎
)]
 
 
 
 
 
 

. 

Now, let �̆�[4] = (�̆�1
[4]

 , �̆�2
[3]

 , �̆�3
[4]

, �̆�4
[4]

)
𝑇

be the eigenvector corresponding to the 

eigenvalue (𝜆4𝐿3
) = 0. 

Thus (𝐽4 − 𝜆4𝐿3
𝐼)�̆�[4] = 0, that gives �̆�[4] = (−�̆�1�̆�3

[4]
 , −�̆�2�̆�3

[4]
 , �̆�3

[4]
, 0)

𝑇
 where       �̆�1 =

(
𝑎1𝑓1

𝑏1
+

𝐵1

𝑎1+𝑏1(𝐶+𝛼𝜂𝐴)
) , �̆�2 =

(𝑎2𝑓2+𝜌)

𝑏2
 and �̆�3

[4]
≠ 0 is any real number. 
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Let  Ω̆[4] = (Ω̆1
[4]

 , Ω̆2
[4]

 , Ω̆3
[4]

, Ω̆4
[4]

)
𝑇

 be the eigenvector of  𝐽4
𝑇  for 𝜆4𝐿3

= 0. 

Then we get  (𝐽4
𝑇 − 𝜆4𝐿3

𝐼)Ω̆[4] = 0  then by solving this equation for  Ω̆[4]  we get  

   Ω̆[4] = ( 0 ,0 , Ω̆3
[4]

 ,
𝛾

𝜎𝛿+𝛾
Ω̆3

[4]
 )

𝑇

  where  Ω̆3
[4]

≠ 0  is any real number.  

Now, consider   
𝜕𝑓

𝜕𝑑
= 𝑓𝑑(𝑋 , 𝑑) = (

𝜕𝑓1

𝜕𝑑
,
𝜕𝑓2

𝜕𝑑
,
𝜕𝑓3

𝜕𝑑
,
𝜕𝑓4

𝜕𝑑
)
𝑇

= (0 ,0 , −𝐿3, 0)𝑇 . 

So,  𝑓𝑑(𝑃4 , �̆�) = (0 , 0 , 0, 0)𝑇 and hence (Ω̆[4])
𝑇
𝑓𝑑(𝑃4 , �̆�) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

𝐷𝑓𝑑(𝑋 , 𝑑) =  

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0]
 
 
 
 

, 

where 𝐷𝑓𝑑(𝑋 , 𝑑) is the derivative of 𝑓𝑑(𝑋 , 𝑑)  with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓d(𝑃4 , �̆�)�̆�[4] =

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0]
 
 
 
 

[
 
 
 
 
 
 
 
 −�̆�1�̆�3

[4]

−�̆�2�̆�3
[4]

�̆�3
[4]

0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0

0

−�̆�3
[4]

0 ]
 
 
 
 
 
 
 

 , so 

(Ω̆[4])
𝑇
[𝐷𝑓𝑑(𝑃4 , �̆�)�̆�[4]] = (0 ,0 , Ω̆3

[4]
,

𝛾

𝜎𝛿 + 𝛾
Ω̆3

[4]
) (0 ,0 , −�̆�3

[4]
 ,0)

𝑇

= −Ω̆3
[4]

�̆�3
[4]

≠ 0. 

Moreover, by substituting �̆�[4] in (3)  we get  𝐷2𝑓𝑑(𝑃4 , �̆�)(�̆�[4] , �̆�[4]) = [�̆�𝑖1]4𝑥1. 

   �̆�11 = 2 [−𝑏1�̆�1
2
+ (𝑎1𝑓1 +

𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+�̆�1)2
 ) �̆�1 + 𝑎1𝑓1

2�̆�1] (�̆�3
[4]

)
2

 

   �̆�21 = −2 [𝑏2�̆�2
2
− (𝑎2𝑓2 + 𝜌)�̆�2 + (ℎ − 𝑎1𝑓2

2)�̆�2] (�̆�3
[4]

)
2

 

   �̆�31 = −2 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̆�1)2
�̆�1 + 𝐶2𝜌�̆�2 − (

𝐶2ℎ𝐾�̆�2−𝑎3

𝐾
)] (�̆�3

[4]
)
2

 

   �̆�41 = 0 

Hence, it obtains that 
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  (Ω̆[4])
𝑇
[𝐷2𝑓𝑑(𝑃4, �̆�)(�̆�[4], �̆�[4])] = −2 [

𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̆�1)2
�̆�1 + 𝐶2𝜌�̆�2 − (

𝐶2ℎ𝐾�̆�2−𝑎3

𝐾
)] Ω̆3

[4]
(�̆�3

[4]
)
2

≠ 0, 

under condition (99) which is given in [21], and condition (6). Thus, by using Sotomayor’s 

theorem 𝑃4 has a transcritical bifurcation at the parameter �̆�. 

While if condition (6) not holds then there is no a transcritical bifurcation and by substituting 

�̆�[4] in (4)  we get   𝐷3𝑓𝑑(𝑃4 , �̆�)(�̆�[4] , �̆�[4], �̆�[4]) = [�̆�𝑖1]4𝑥1. 

   �̆�11 = 6 [
𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+�̆�1)3
�̆�1

2
− 𝑎1𝑓1

2�̆�1 − 𝑎1𝑓1
3] (�̆�3

[4]
)
3

, 

   �̆�21 = −6[(𝑎2𝑓2
2 − ℎ)�̆�2 + 𝑎2𝑓2

3�̆�2] (�̆�3
[4]

)
3

, 

   �̆�31 = −6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̆�1)3
�̆�1

2
+ 𝐶2ℎ�̆�2] (�̆�3

[4]
)
3

, 

   �̆�41 = 0. 

Then 

(Ω̆[4])
𝑇
[𝐷3𝑓𝑑(𝑃4 , �̆�)(�̆�[4] , �̆�[4], �̆�[4])] = −6 [

𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̆�1)4
�̆�1

2
+ 𝐶2ℎ�̆�2] Ω̆3

[4]
(�̆�3

[4]
)
3

≠ 0, 

under condition (99) which is given in [21]. 

Hence again , by using Sotomayor’s theorem   system (1) at 𝑃4 has pitchfork bifurcation with the 

parameter �̆�. 

Theorem 3. Assume that conditions (3, 97, 98, 99), which are given in [21] and the following 

condition holds 

�̿��̿�2 ≠
𝛾

σ2 ,                                                                                     (7)  

where  

�̿�2 =
𝑐1̿1𝑐3̿4

(−𝑐3̿1𝑐1̿3+𝑐1̿1𝑐3̿3)
. 

Then system (1)  at the (EP) 𝑃5 = (�̿�1, 0, �̿�3, 0)  with the parameter �̿� =
𝛿𝜎+𝛾

𝜎�̿�3
 has 

(transcritical and pitchfork) bifurcation, while saddle-node bifurcation cannot be occur at �̿�. 

Proof. From the Jacobian matrix 𝐽5 which is given in Eq.(93) in [21], system (1) at the (EP) 

𝑃5 has eigenvalue say (𝜆5𝐿4
) equal to zero at 𝐵 = �̿� , then  𝐽5 with 𝐵 = �̿�  becomes   

𝐽5̿ = 𝐽5(𝑃5 , �̿�) = [𝑐�̿�𝑗]4×4
, where 𝑐�̿�𝑗 = 𝑐𝑖𝑗 , 𝑖, 𝑗 = 1,2,3,4 which is given in Eq.(93)  in [21] 

accept 𝑐3̿4 = −(
𝑎3

𝐾
�̿�3 + 𝛿) < 0 and  𝑐4̿4 = 0. 
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Now, let  �̿�[5] = (�̿�1
[5]

 , �̿�2
[5]

 , �̿�3
[5]

, �̿�4
[5]

)
𝑇

be the eigenvector corresponding to the 

eigenvalue (𝜆5𝐿4
) = 0. 

Thus (𝐽5̿ − 𝜆5𝐿4
𝐼)�̿�[5] = 0, that gives �̿�[5] = (�̿�1�̿�4

[5]
 ,0 , −�̿�2�̿�4

[5]
 , �̿�4

[5]
)
𝑇

 where 

�̿�1 =
𝑐1̿3𝑐3̿4

(−𝑐1̿3𝑐3̿1+𝑐1̿1𝑐3̿3)
, �̿�2 given in the state of theorem and �̿�4

[5]
≠ 0 is any real number. 

Let  Ω̿[5] = (Ω̿1
[5]

 , Ω̿2
[5]

 , Ω̿3
[5]

, Ω̿4
[5]

)
𝑇

 be the eigenvector of  𝐽5̿
𝑇  for 𝜆5𝐿4

= 0. 

Then we get (𝐽5̿
𝑇 − 𝜆5𝐿4

𝐼)Ω̿[5] = 0 then by solving this equation for  Ω̿[5] we get  

     Ω̿[5] = (0 , 0 , 0 , Ω̿4
[5]

)
𝑇

 where  Ω̿4
[5]

≠ 0  is any real number.  

Now, consider   
𝜕𝑓

𝜕𝐵
= 𝑓𝐵(𝑋 , 𝐵) = (

𝜕𝑓1

𝜕𝐵
,
𝜕𝑓2

𝜕𝐵
,
𝜕𝑓3

𝜕𝐵
,
𝜕𝑓4

𝜕𝐵
)
𝑇

= (0 ,0 , −𝐿3𝐿4 , 𝐿3𝐿4)
𝑇 . 

So,  𝑓𝐵(𝑃5 , �̿�) = (0 , 0 , 0 , 0)𝑇 and hence (Ω̿[5])
𝑇
𝑓B(𝑃5 , �̿�) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

𝐷𝑓𝐵(𝑋 , 𝐵) =  

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −𝐿4 −𝐿3

0 0 𝐿4 𝐿3 ]
 
 
 
 
 

 , 

where 𝐷𝑓𝐵(𝑋 , 𝐵) is the derivative of 𝑓𝐵(𝑋 , 𝐵) with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓𝐵(𝑃5 , �̿�)�̿�[5] =

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 0 −�̿�3

0 0 0 �̿�3 ]
 
 
 
 
 

[
 
 
 
 
 
 
 
 �̿�1�̿�4

[5]

0

−�̿�2�̿�4
[5]

�̿�4
[5]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0

0

�̿�2�̿�3�̿�4
[5]

�̿�3�̿�4
[5]

]
 
 
 
 
 
 
 
 

, so 

(Ω̿[5])
𝑇
[𝐷𝑓𝐵(𝑃5 , �̿�)�̿�[5]] = (0 , 0 , 0 , Ω̿4

[5]
) (0 ,0 , �̿�2�̿�3�̿�4

[5]
 , �̿�3�̿�4

[5]
 )

𝑇

= �̿�3Ω̿4
[5]

�̿�4
[5]

≠ 0. 

Moreover, by substituting �̿�[5] in (3) we get: 𝐷2𝑓B(𝑃5 , �̿�)(�̿�[5] , �̿�[5]) = [�̿�𝑖1]4𝑥1
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  �̿�11 = 2 [(−𝑏1 +
𝐵1(𝐶+𝛼𝜂𝐴)�̿�3

(𝐶+𝛼𝜂𝐴+�̿�1)
3) �̿�1

2
+ (

𝑎1𝑓1

(1+𝑓1�̿�3)
2 +

𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+�̿�1)
2) �̿�1�̿�2 +

𝑎1𝑓1
2�̿�1

(1+𝑓1�̿�3)
3 �̿�2] (�̿�4

[5]
)
2

 

  �̿�21 = 0 

  �̿�31 = −2 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))�̿�3

(𝐶+𝛼𝜂𝐴+�̿�1)
3 �̿�1

2
+

𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̿�1)
�̿�1�̿�2 +

𝑎3

𝐾
�̿�2

2
− (

𝑎3

𝐾
+ 𝐵)�̿�2 +

𝛾

σ2] (�̿�4
[5]

)
2

 

  �̿�41 = 2 [−�̿��̿�2 +
𝛾

σ2] (�̿�4
[5]

)
2

. 

Hence, it obtains that (Ω̿[5])
𝑇
[𝐷2𝑓B(𝑃5 , �̿�)(�̿�[5] , �̿�[5])] = 2 [−�̿��̿�2 +

𝛾

σ2] Ω̿4
[5]

(�̿�4
[5]

)
2

≠ 0, 

under condition (3, 97, 98,99)  which are given in [21],  and condition (7).  Thus, by using 

Sotomayor’s theorem 𝑃5 has a transcritical bifurcation at the parameter �̿�. 

While if conditions (7) not holds then there is no a transcritical bifurcation and by substituting 

�̿�[5] in (4) we get    𝐷3𝑓𝐵(𝑃5 , �̿�)(�̿�[5] , �̿�[5] , �̿�[5]) = [�̿�𝑖1]4𝑥1
. 

   �̿�11 = 6 [
−(𝐶+𝛼𝜂𝐴)𝐵1�̿�3

(𝐶+𝛼𝜂𝐴+�̿�1)
4 (�̿�1)

3
−

(𝐶+𝛼𝜂𝐴)𝐵1

(𝐶+𝛼𝜂𝐴+�̿�1)
3 (�̿�1)

2
�̿�2𝜓2 +

𝑎1𝑓1
2

(1+𝑓1�̿�3)
3 �̿�1(�̿�2)

2
−

        
𝑎1𝑓1

3

(1+𝑓1�̿�3)
4 (�̿�2)

3
] (�̿�4

[5]
)
3

, 

   �̿�21 = 0, 

   �̿�31 = 6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))𝐿3

(𝐶+𝛼𝜂𝐴+�̿�1)
4 (�̿�1)

3
+

𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴+�̿�1)
3 (�̿�1)

2
�̿�2 +

𝛾

σ3
(𝜓4)

3] (�̿�4
[5]

)
3

, 

   �̿�41 = −6
𝛾

σ3 (�̿�4
[5]

)
3

. 

Then 

(Ω̿[5])
𝑇
[𝐷3𝑓𝐵(𝑃5 , �̿�)(�̿�[5] , �̿�[5] , �̿�[5])] = −6

𝛾

σ3
Ω̿4

[5]
(�̿�4

[5]
)
3

≠ 0. 

Hence again , by using Sotomayor’s theorem system (1) at 𝑃5 has pitchfork bifurcation with the 

parameter 𝐵 = �̿�. 

Theorem 4. Assume that conditions (3, 99, 104, 105), which are given in [21] and the following 

conditions hold 

  
�̂�3

(𝐶+𝛼𝜂𝐴)
≤ �̂�2,                                                                          (8) 

   (𝑏1 +
�̂�1𝑓1�̂�2

(1+𝑓1�̂�3)2
) =

𝐵1

(𝐶+𝛼𝜂𝐴)
(

�̂�3

(𝐶+𝛼𝜂𝐴)
− �̂�2),                                     (9) 

   1 <
𝑓1�̂�2

(1+𝑓1�̂�3)
                                                                  (10) 
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where 

 �̂�2 =
�̂�22�̂�31

�̂�23�̂�32−�̂�22�̂�33
. 

Then system (1)  at the (EP) 𝑃6 = (0, �̂�2, �̂�3, 0)  with the parameter �̂�1 =
(1+𝑓1�̂�3)𝐵1�̂�3 

(𝐶+𝛼𝜂𝐴)
 has 

(transcritical and pitchfork) bifurcation, while saddle-node bifurcation cannot be occur at �̂�1. 

Proof. From the Jacobian matrix 𝐽6 which is given in Eq.(100) in [21] , system (1) at the (EP) 

𝑃6, has eigenvalue say (𝜆6𝐿1
) equal to zero at 𝑎1 = �̂�1 , then 𝐽6 with 𝑎1 = �̂�1  becomes 𝐽6 =

𝐽6 (𝑃6 , �̂�1) = [�̂�𝑖𝑗]4×4
, where  �̂�𝑖𝑗 = 𝑑𝑖𝑗  ;  𝑖, 𝑗 = 1,2,3,4  which are given in Eq.(100) in [21] 

accept �̂�11 = 0. 

Now, let  �̂�[6] = (�̂�1
[6]

 , �̂�2
[6]

 , �̂�3
[6]

, �̂�4
[6]

)
𝑇

be the eigenvector corresponding to the 

eigenvalue (𝜆6𝐿1
) = 0. 

Thus  (𝐽6 − 𝜆6𝐿1
𝐼)�̂�[6] = 0 , that gives �̂�[6] = (�̂�1

[6]
, −�̂�1�̂�1

[6]
, �̂�2�̂�1

[6]
, 0)

𝑇

 where �̂�1
[6]

≠ 0  is 

any real number, �̂�1 =
�̂�23�̂�31

�̂�23�̂�32−�̂�22�̂�33
 and �̂�2 given in the state of theorem. 

Let  Ω̂[6] = (Ω̂1
[6]

 , Ω̂2
[6]

 , Ω̂3
[6]

, Ω̂4
[6]

)
𝑇

 be the eigenvector of  𝐽6
𝑇  for (𝜆6𝐿1

) = 0 . 

Then we get (𝐽6
𝑇 − 𝜆6𝐿1

𝐼)Ω̂[6] = 0 then by solving this equation for Ω̂[6] we get  

   Ω̂[6] = (Ω̂1
[6]

 , 0 , 0 , 0)
𝑇

, where  Ω̂1
[6]

≠ 0  is any real number.  

Now, consider 
𝜕𝑓

𝜕𝑎1
= 𝑓𝑎1

(𝑋 , 𝑎1) = (
𝜕𝑓1

𝜕𝑎1
,
𝜕𝑓2

𝜕𝑎1
,
𝜕𝑓3

𝜕𝑎1
,
𝜕𝑓4

𝜕𝑎1
)
𝑇

= (
𝐿1

1+𝑓1𝐿3
 ,0 ,0 , 0)

𝑇

. 

So,  𝑓𝑎1
(𝑃6 , �̂�1) = (0 , 0 , 0 , 0)𝑇 and hence (Ω̂[6])

𝑇
𝑓𝑎1

(𝑃6 , �̂�1) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

 𝐷𝑓𝑎1
(𝑋 , 𝑎1) =  

[
 
 
 
 
 

1

1+𝑓1𝐿3
0

−𝑓1𝐿1

(1+𝑓1𝐿3)2
0

0 0 0 0

0 0 0 0

0 0 0 0]
 
 
 
 
 

, 
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where 𝐷𝑓𝑎1
(𝑋 , 𝑎1) is the derivative of 𝑓𝑎1

(𝑋 , 𝑎1)  with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓𝑎1
(𝑃6, �̂�1)�̂�

[6] =

[
 
 
 
 
 

1

1+𝑓1�̂�3
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0]
 
 
 
 
 

[
 
 
 
 
 
 
 
 �̂�1

[6]

−�̂�1�̂�1
[6]

�̂�2�̂�1
[6]

0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1

1+𝑓1�̂�3
�̂�1

[6]

0

0

0 ]
 
 
 
 
 
 
 
 

, so 

 (Ω̂[6])
𝑇
[𝐷𝑓𝑎1

(𝑃6 , �̂�1)�̂�
[6]] = (Ω̂1

[6]
 , 0 , 0 , 0) (

1

1+𝑓1�̂�3
�̂�1

[6]
, 0 ,0 ,0)

𝑇

=
1

1+𝑓1�̂�3
Ω̂1

[6]
�̂�1

[6]
≠ 0 

Moreover, by substituting �̂�[6] in (3) we get:  𝐷2𝑓𝑎1
(𝑃6 , �̂�1)(�̂�

[6]  , �̂�[6]) = [�̂�𝑖1]4𝑥1 

   �̂�11 = 2 [−(𝑏1 +
�̂�1𝑓1�̂�2

(1+𝑓1�̂�3)2
) +

𝐵1

(𝐶+𝛼𝜂𝐴)
(

�̂�3

(𝐶+𝛼𝜂𝐴)
− �̂�2)] (�̂�1

[6]
)
2

 

   �̂�21 = −2 [𝑏2�̂�1
2
− (

𝑎2𝑓2

(1+𝑓2�̂�3)2
+ (𝜌 + 2ℎ�̂�3)) �̂�1�̂�2 + (ℎ −

𝑎2𝑓2
2

(1+𝑓2�̂�3)3
) �̂�2�̂�2

2
] (�̂�1

[6]
)
2

 

   �̂�31 = 2 [
−𝐶1(𝐶+𝜂𝐴(𝛼−1))�̂�3

(𝐶+𝛼𝜂𝐴)3
+

𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴)2
�̂�2 − 𝐶2(𝜌 + ℎ�̂�3)�̂�1�̂�2 + (𝐶2ℎ�̂�2 −

         
𝑎3

𝐾
) �̂�2

2
] (�̂�1

[6]
)
2

 

   �̂�41 = 0. 

Hence, it obtains that (Ω̂[6])
𝑇
[𝐷2𝑓𝑎1

(𝑃6 , �̂�1)(�̂�
[6] , �̂�[6])] = 2 [−(𝑏1 +

�̂�1𝑓1�̂�2

(1+𝑓1�̂�3)2
) +

𝐵1

(𝐶+𝛼𝜂𝐴)
(

�̂�3

(𝐶+𝛼𝜂𝐴)
− �̂�2)] Ω̂1

[6]
(�̂�1

[6]
)
2

≠ 0, under conditions (3, 99, 104, 105),  which are given 

in [21], and condition (8). Thus, by using Sotomayor’s theorem 𝑃6 has a transcritical bifurcation 

at the parameter �̂�1. 

While if condition (8) not holds and according to condition (9), then there is no a transcritical 

bifurcation and by substituting �̂�[6] in (4) we get   𝐷3𝑓𝑎1
(𝑃6 , �̂�1)(�̂�

[6] , �̂�[6], �̂�[6]) = [�̂�𝑖1]4𝑥1. 

   �̂�11 = 6 [
𝐵1

(𝐶+𝛼𝜂𝐴)2
(�̂�2 −

�̂�3

(𝐶+𝛼𝜂𝐴)
) +

�̂�1𝑓1
2�̂�2

2

(1+𝑓1�̂�3)3
(1 −

𝑓1�̂�2

(1+𝑓1�̂�3)
)] (�̂�1

[6]
)
3

 

   �̂�21 = −6 [
𝑎2𝑓2

2�̂�2

(1+𝑓2�̂�3)3
(�̂�1�̂�2 +

𝑓2�̂�2

(1+𝑓2�̂�3)
) + ℎ�̂�1�̂�2

2
] (�̂�1

[6]
)
3

 

   �̂�31 = 6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴)3
(

�̂�3

(𝐶+𝛼𝜂𝐴)
− �̂�2) − 𝐶2ℎ�̂�1�̂�2

2
] (�̂�1

[6]
)
3

 

   �̂�41 = 0 
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Then 

   (Ω̂[6])
𝑇
[𝐷3𝑓𝑎1

(𝑃6, �̂�1)(�̂�
[6], �̂�[6], �̂�[6])] = 6 [

𝐵1

(𝐶+𝛼𝜂𝐴)2
(�̂�2 −

�̂�3

(𝐶+𝛼𝜂𝐴)
) +

�̂�1𝑓1
2�̂�2

2

(1+𝑓1�̂�3)3
(1 −

         
𝑓1�̂�2

(1+𝑓1�̂�3)
)] Ω̂[6] (�̂�1

[6]
)
3

≠ 0,  

under conditions (3, 99, 104, 105), which are given in [21], and condition (10). Hence again , 

by using Sotomayor’s theorem system (1) at 𝑃6 has pitchfork bifurcation with the parameter �̂�1. 

Theorem 5. Assume that conditions (3, 22, 110, 111), which are given in [21], then system (1) 

at the (EP) 𝑃7 = (0, 0, �̌�3, �̌�4)  with the parameter �̌�2 = (1 + 𝑓1�̌�3)(𝜌 + ℎ�̌�3)�̌�3  has a 

transcritical bifurcation, while neither (saddle– node or pitchfork) bifurcation can be occur at 

�̌�2. 

Proof. From the Jacobian matrix 𝐽7 which is given in Eq.(106) in [21] , system (1)  at the (EP) 

𝑃7 has eigenvalue say (𝜆7𝐿2
) equal to zero at 𝑎2 = �̌�2,  then 𝐽7 with 𝑎2 = �̌�2 becomes   𝐽7 =

𝐽7(𝑃7 , �̌�2) = [�̌�𝑖𝑗]4×4
,  where �̌�𝑖𝑗 = 𝑒𝑖𝑗 ;  𝑖, 𝑗 = 1,2,3,4  which are given in Eq. (106)  in [21] 

accept �̌�22 = 0. 

Now, let �̌�[7] = (�̌�1
[7]

 , �̌�2
[7]

 , �̌�3
[7]

, �̌�4
[7]

)
𝑇

be the eigenvector corresponding to the eigenvalue 

(𝜆7𝐿2
) = 0. 

Thus (𝐽7 − 𝜆7𝐿2
𝐼)�̌�[7] = 0, that gives �̌�[7] = (0 , �̌�2

[7]
 , −�̌�1�̌�2

[7]
 , �̌�2�̌�2

[7]
)
𝑇

 where �̌�2
[7]

≠ 0 is 

any real number , �̌�1 =
�̌�32�̌�44

�̌�33�̌�44−�̌�34�̌�43
 and �̌�2 =

�̌�32�̌�43

�̌�33�̌�44−�̌�34�̌�43
. 

Let Ω̌[7] = (Ω̌1
[7]

 , Ω̌2
[7]

 , Ω̌3
[7]

, Ω̌4
[7]

)
𝑇

 be the eigenvector of  𝐽7
𝑇  for (𝜆7𝐿2

) = 0 . 

Then we get (𝐽7
𝑇 − 𝜆7𝐿2

𝐼)Ω̌[7] = 0  then by solving this equation for  Ω̌[7] we get  

     Ω̌[7] = (0 , Ω̌2
[7]

 , 0 , 0)
𝑇

, where  Ω̌2
[7]

≠ 0  is any real number.  

Now, consider  
𝜕𝑓

𝜕𝑎2
= 𝑓𝑎2

(𝑋 , 𝑎2) = (
𝜕𝑓1

𝜕𝑎2
,
𝜕𝑓2

𝜕𝑎2
,
𝜕𝑓3

𝜕𝑎2
,
𝜕𝑓4

𝜕𝑎2
)
𝑇

= (0 ,
𝐿2

1+𝑓2𝐿3
 ,0 , 0)

𝑇

. 

So,  𝑓𝑎2
(𝑃7 , �̌�2) = (0 , 0 , 0, 0)𝑇 and hence (Ω̌[7])

𝑇
𝑓𝑎2

(𝑃7 , �̌�2) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 
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 𝐷𝑓𝑎2
(𝑋 , 𝑎2) =  

[
 
 
 
 
0 0 0 0

0
1

1+𝑓2𝐿3
−

𝑓2𝐿2

(1+𝑓2𝐿3)2
0 0

0 0 0 0

0 0 0 0]
 
 
 
 

, 

where 𝐷𝑓𝑎2
(𝑋 , 𝑎2) is the derivative of 𝑓𝑎2

(𝑋 , 𝑎2)  with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓𝑎2
(𝑃7, �̌�2)�̌�

[7] =

[
 
 
 
 
0 0 0 0

0
1

1+𝑓2�̌�3
0 0

0 0 0 0

0 0 0 0]
 
 
 
 

[
 
 
 
 
 
 
 
 

0

�̌�2
[7]

−�̌�1�̌�2
[7]

�̌�2�̌�2
[7]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0

1

1+𝑓2�̌�3
�̌�2

[7]

0

0 ]
 
 
 
 
 
 
 

, so 

 (Ω̌[7])
𝑇
[𝐷𝑓𝑎2

(𝑃7 , �̌�2)�̌�
[7]] = (0 , Ω̌2

[7]
 , 0 , 0) (0 ,

1

1+𝑓2�̌�3
�̌�2

[7]
 ,0 ,0)

𝑇

=
1

1+𝑓2�̌�3
Ω̌2

[7]
�̌�2

[7]
≠ 0 

Moreover, by substituting �̌�[7] in (3) we get:  𝐷2𝑓𝑎2
(𝑃7 , �̌�2)(�̌�

[7] , �̌�[7]) = [�̌�𝑖1]4𝑥1 

   �̌�11 = 0, 

   �̌�21 = −2 [𝑏2 − (
�̌�2𝑓2

(1+𝑓2�̌�3)3
+ (𝜌 + 2ℎ�̌�3)) �̌�1] (�̌�2

[7]
)
2

, 

   �̌�31 = −2 [𝐶2(𝜌 + 2ℎ�̌�3)�̌�1 +
𝑎3

𝐾
�̌�1

2
− (

𝑎3

𝐾
+ 𝐵)�̌�1�̌�2 +

𝛾𝜎

(𝜎+�̌�4)3
�̌�2

2
] (�̌�2

[7]
)
2

, 

   �̌�41 = 2 [−𝐵�̌�1 +
𝛾𝜎

(𝜎+�̌�4)3
�̌�2] �̌�2 (�̌�2

[7]
)
2

. 

Hence, it obtains that 

(Ω̌[7])
𝑇
[𝐷2𝑓𝑎2

(𝑃7, �̌�2)(�̌�
[7], �̌�[7])] = −2 [𝑏2 − (

�̌�2𝑓2

(1+𝑓2�̌�3)3
+ (𝜌 + 2ℎ�̌�3)) �̌�1] Ω̌2

[7]
(�̌�2

[7]
)
2

≠ 0, 

under conditions (3, 22, 110, 111),which is given in [21]. Thus, by using Sotomayor’s theorem 

 𝑃7 has a transcritical bifurcation at the parameter �̌�2. 

Theorem 6. Assume that conditions (3, 99, 115, 116, 117) , which are given in [21] and the 

following condition holds 

       −�̃��̃�3 ≠
𝛾

σ2 ,                                                                         (11) 

where  
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�̃�3 =
�̃�11�̃�22�̃�34

(�̃�22�̃�13�̃�31+�̃�11(�̃�23�̃�32−�̃�22�̃�33))
. 

Then system (1)  at the (EP) 𝑃8 = (�̃�1, �̃�2, �̃�3, 0)  with the parameter �̃� =
𝛿𝜎+𝛾

𝜎�̃�3
 has 

(transcritical and pitchfork) bifurcation, while saddel-node bifurcation cannot be occurs at �̃�. 

Proof. From the Jacobian matrix 𝐽8 which is given in Eq.(112) in [21] , system (1)  at the (EP) 

𝑃8 has eigenvalue say (𝜆8𝐿4
) equal to zero at 𝐵 = �̃� , then 𝐽8 with 𝐵 = �̃� becomes 

 𝐽8 = 𝐽8(𝑃8 , �̃�) = [𝑓𝑖𝑗]4×4
, where 𝑓𝑖𝑗 = 𝑓𝑖𝑗  ;   𝑖, 𝑗 = 1,2,3,4  which are given in Eq.(112)  in 

[21] accept 𝑓34 = −(
𝑎3

𝐾
�̃�3 + 𝛿)  and  𝑓44 = 0. 

Now, let �̃�[8] = (�̃�1
[8]

 , �̃�2
[8]

 , �̃�3
[8]

, �̃�4
[8]

)
𝑇

be the eigenvector corresponding to the eigenvalue 

(𝜆8𝐿4
) = 0. 

Thus (𝐽8 − 𝜆8𝐿4
𝐼)�̃�[8] = 0, that gives  �̃�[8] = (−�̃�1�̃�4

[8]
 , −�̃�2�̃�4

[8]
 , �̃�3�̃�4

[8]
 , �̃�4

[8]
)
𝑇

 where   

 �̃�1 =
�̃�13�̃�22�̃�34

(�̃�22�̃�13�̃�31+�̃�11(�̃�23�̃�32−�̃�22�̃�33))
, �̃�2 =

�̃�11�̃�23�̃�34

(�̃�22�̃�13�̃�31+�̃�11(�̃�23�̃�32−�̃�22�̃�33))
, �̃�3  given in the state of 

theorem, and  �̅�4
[3]

≠ 0 is any real number. 

Let  Ω̃[8] = (Ω̃1
[8]

 , Ω̃2
[8]

 , Ω̃3
[8]

, Ω̃4
[8]

)
𝑇

 be the eigenvector of  𝐽8
𝑇  for (𝜆8𝐿4

) = 0. 

Then we get (𝐽8
𝑇 − 𝜆8𝐿4

𝐼)Ω̃[8] = 0  then by solving this equation for  Ω̃[8] we get  

   Ω̃[8] = (0 , 0 , 0 , Ω̃4
[8]

)
𝑇

,  where  Ω̃4
[8]

≠ 0  is any real number.  

Now, consider   
𝜕𝑓

𝜕𝐵
= 𝑓𝐵(𝑋 , 𝐵) = (

𝜕𝑓1

𝜕𝐵
,
𝜕𝑓2

𝜕𝐵
,
𝜕𝑓3

𝜕𝐵
,
𝜕𝑓4

𝜕𝐵
)
𝑇

= (0 ,0 , −𝐿3𝐿4 , 𝐿3𝐿4)
𝑇  . 

So,  𝑓B(𝑃8 , �̃�) = (0 , 0 , 0, 0)𝑇 and hence (Ω̃[8])
𝑇
𝑓B(𝑃8 , �̃�) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

 𝐷𝑓𝐵(𝑋 , 𝐵) =  

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −𝐿4 −𝐿3

0 0 𝐿4 𝐿3 ]
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where 𝐷𝑓𝐵(𝑋 , 𝐵) is the derivative of 𝑓𝐵(𝑋 , 𝐵)  with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓B(𝑃8 , �̃�)�̃�[8] =

[
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 0 −�̃�3

0 0 0 �̃�3 ]
 
 
 
 
 

[
 
 
 
 
 
 
 
 −�̃�1�̃�4

[8]

−�̃�2�̃�4
[8]

�̃�3�̃�4
[8]

�̃�4
[8]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0

0

−�̃�3�̃�3�̃�4
[8]

�̃�3�̃�4
[8]

]
 
 
 
 
 
 
 
 

, so 

(Ω̃[8])
𝑇
[𝐷𝑓B(𝑃8 , �̃�)�̃�[8]] = (0 , 0 , 0 , Ω̃4

[8]
) (0 ,0 , −�̃�3�̃�3�̃�4

[8]
 , �̃�3�̃�4

[8]
)
𝑇

= �̃�3Ω̃4
[8]

�̃�4
[8]

≠ 0. 

Moreover, by substituting �̃�[8] in (3) we get 𝐷2𝑓B(𝑃8 , �̃�)(�̃�[8] , �̃�[8]) = [�̃�𝑖1]4𝑥1 

 �̃�11 = 2 [(−𝑏1 +
𝐵1(𝐶+𝛼𝜂𝐴)�̃�3

(𝐶+𝛼𝜂𝐴+�̃�1)3
) �̃�1

2
+ (

𝑎1𝑓1

(1+𝑓1�̃�3)2
+

𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+�̃�1)2
) �̃�1�̃�3 +

𝑎1𝑓1
2�̃�1

(1+𝑓1�̃�3)3
�̃�3

2
] (�̃�4

[8]
)
2

, 

 �̃�21 = −2 [𝑏2�̃�2
2
− (

𝑎2𝑓2

(1+𝑓2�̃�3)2
+ (𝜌 + 2ℎ�̃�3)) �̃�2�̃�3 + (ℎ −

𝑎2𝑓2
2

(1+𝑓2�̃�3)3
) �̃�2�̃�3

2
] (�̃�4

[8]
)
2

, 

  �̃�31 = −2 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))�̃�1

(𝐶+𝛼𝜂𝐴+�̃�1)2
(�̃�3 +

�̃�3�̃�1

(𝐶+𝛼𝜂𝐴+�̃�1)
) + 𝐶2(𝜌 + 2ℎ�̃�3)�̃�2�̃�3 − (𝐶2ℎ�̃�2 −

𝑎3

𝐾
) �̃�3

2
+

         (
𝑎3

𝐾
+ �̃�) �̃�3 +

𝛾

𝜎2] (�̃�4
[8]

)
2

, 

 �̃�41 = 2 [�̃��̃�3 +
𝛾

𝜎2] (�̃�4
[8]

)
2

. 

Hence, it obtains that (Ω̃[8])
𝑇
[𝐷2𝑓B(𝑃8 , �̃�)(�̃�[8] , �̃�[8])] = 2 [�̃��̃�3 +

𝛾

𝜎2] Ω̃[8] (�̃�4
[8]

)
2

≠ 0, 

under conditions (3, 99,115,116,117) which are given in [21], and condition (11). Thus, by 

using Sotomayor’s theorem 𝑃8 has a transcritical bifurcation at the parameter �̃�. 

While if condition (11) not holds then there is no a transcritical bifurcation and by substituting 

�̃�[8] in (4) we get   𝐷3𝑓𝐵(𝑃8 , �̃�)(�̃�[8] , �̃�[8], �̃�[8]) = [�̃�𝑖1]4𝑥1. 

    �̃�11 = 6 [
𝐵1(𝐶+𝛼𝜂𝐴)�̃�3�̃�1

2

(𝐶+𝛼𝜂𝐴+�̃�1)3
(�̃�3 +

�̃�3�̃�1

(𝐶+𝛼𝜂𝐴+�̃�1)
) −

𝑎1𝑓1
2�̃�3

2

(1+𝑓1�̃�3)3
(�̃�1 +

𝑓1�̃�3

(1+𝑓1�̃�3)
)] (�̃�4

[8]
)
3

, 

    �̃�21 = −6 [(
𝑎2𝑓2

2

(1+𝑓1�̃�3)3
− ℎ) �̃�2�̃�3

2
+

𝑎2𝑓2
3

(1+𝑓1�̃�3)4
�̃�3

3
] (�̃�4

[8]
)
3

, 

    �̃�31 = −6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))�̃�1

(𝐶+𝛼𝜂𝐴+�̃�1)4
(

�̃�1
2

(𝐶+𝛼𝜂𝐴+�̃�1)
+ �̃�3

2
) + 𝐶2ℎ�̃�2�̃�3

2
−

𝛾

𝜎3
] (�̃�4

[8]
)
3

, 

    �̃�41 = −6 [
𝛾

𝜎3] (�̃�4
[8]

)
3

. 

Then 
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   (Ω̃[8])
𝑇
[𝐷3𝑓B(𝑃8 , �̃�)(�̃�[8] , �̃�[8], �̃�[8])] = −6

𝛾

σ3 Ω̃[8] (�̃�4
[8]

)
3

≠ 0. 

Hence again , by using Sotomayor’s theorem system (1) at 𝑃8 has pitchfork bifurcation with the 

parameter �̃�. 

Theorem 7. Assume that conditions (3, 99, 121, 122, 123), which are given in [21], then system 

(1)  at the (EP) 𝑃9 = (�̃̃�1, 0, �̃̃�3, �̃̃�4)  with the parameter �̃̃�2 = (1 + 𝑓1�̃̃�3) (𝜌 + ℎ�̃̃�3) �̃̃�3  has a 

transcritical bifurcation, while neither (saddle– node or pitchfork) bifurcation can be occur. 

Proof. From the Jacobian matrix 𝐽9 which is given in Eq.(118) in [21] , system (1)  at the (EP) 

𝑃9  has eigenvalue say (𝜆9𝐿2
) equal to zero at 𝑎2 = �̃̃�2 , then 𝐽9  with 𝑎2 = �̃̃�2  becomes 𝐽9 =

𝐽9 (𝑃9 , �̃̃�2) = [�̃̃�𝑖𝑗]4×4
, where  �̃̃�𝑖𝑗 = 𝑔𝑖𝑗  ;  𝑖, 𝑗 = 1,2,3,4  which are given in Eq.(118) in [21] 

accept �̃̃�22 = 0. 

Now, let �̃̃�[9] = (�̃̃�1
[9]

 , �̃̃�2
[9]

 , �̃̃�3
[9]

 , �̃̃�4
[9]

)
𝑇

be the eigenvector corresponding to the eigenvalue 

(𝜆9𝐿2
) = 0. 

Thus (𝐽9 − 𝜆9𝐿2
𝐼)�̃̃�[9] = 0, that gives �̃̃�[9] = (−�̃̃�1�̃̃�2

[9]
 , �̃̃�2

[9]
 , �̃̃�2�̃̃�2

[9]
 , −�̃̃�3�̃̃�2

[9]
)
𝑇

 where 

   �̃̃�1 =
�̃̃�13�̃̃�32�̃̃�44

(�̃̃�13�̃̃�31�̃̃�44−�̃̃�11(�̃̃�33�̃̃�44−�̃̃�34�̃̃�43))
, �̃̃�2 =

�̃̃�11�̃̃�32�̃̃�44

(�̃̃�13�̃̃�31�̃̃�44−�̃̃�11(�̃̃�33�̃̃�44−�̃̃�34�̃̃�43))
, 

  �̃̃�3 =
�̃̃�11�̃̃�32�̃̃�43

(�̃̃�13�̃̃�31�̃̃�44−�̃̃�11(�̃̃�33�̃̃�44−�̃̃�34�̃̃�43))
,  and �̃̃�2

[9]
≠ 0 is any real number. 

Let Ω̃̃[9] = (Ω̃̃1
[9]

 , Ω̃̃2
[9]

 , Ω̃̃3
[9]

, Ω̃̃4
[9]

)
𝑇

 be the eigenvector of  𝐽9
𝑇 for (𝜆9𝐿2

) = 0. 

Then we get (𝐽9
𝑇 − 𝜆9𝐿2

𝐼)Ω̃̃[9] = 0 then by solving this equation for Ω̃̃[9] we get  

     Ω̃̃[9] = (0 , Ω̃̃2
[9]

 , 0 , 0)
𝑇

, where  Ω̃̃2
[9]

≠ 0  is any real number.  

Now, consider  
𝜕𝑓

𝜕𝑎2
= 𝑓𝑎2

(𝑋 , 𝑎2) = (
𝜕𝑓1

𝜕𝑎2
,
𝜕𝑓2

𝜕𝑎2
,
𝜕𝑓3

𝜕𝑎2
,
𝜕𝑓4

𝜕𝑎2
)
𝑇

= (0 ,
𝐿2

1+𝑓2𝐿3
 ,0 , 0)

𝑇

. 

So,  𝑓𝑎2
(𝑃9 , �̃̃�2) = (0 , 0 , 0, 0)𝑇 and hence (Ω̃̃2

[9]
)
𝑇

𝑓𝑎2
(𝑃9 , �̃̃�2) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 
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 𝐷𝑓𝑎2
(𝑋 , 𝑎2) =  

[
 
 
 
 
0 0 0 0

0
1

1+𝑓2𝐿3
−

𝑓2𝐿2

(1+𝑓2𝐿3)2
0 0

0 0 0 0

0 0 0 0]
 
 
 
 

, 

where 𝐷𝑓𝑎2
(𝑋 , 𝑎2) is the derivative of 𝑓𝑎2

(𝑋 , 𝑎2)  with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that 𝐷𝑓𝑎2
(𝑃9, �̃̃�2)�̃̃�

[9] =

[
 
 
 
 
0 0 0 0

0
1

1+𝑓2�̃̃�3 
0 0

0 0 0 0

0 0 0 0]
 
 
 
 

[
 
 
 
 
 
 
 
 −�̃̃�1�̃̃�2

[9]

�̃̃�2
[9]

�̃̃�2�̃̃�2
[9]

−�̃̃�3�̃̃�2
[9]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0

1

1+𝑓2�̃̃�3 
�̃̃�2

[9]

0

0 ]
 
 
 
 
 
 
 

, 

then  

 (Ω̃̃[9])
𝑇

[𝐷𝑓𝑎2
(𝑃9, �̃̃�2)�̃̃�

[9]] = (0 , Ω̃̃2
[9]

 , 0 , 0) (0 ,
1

1+𝑓2�̃̃�3 
�̃̃�2

[9]
 ,0 ,0)

𝑇

=
1

1+𝑓2�̃̃�3 
Ω̃̃2

[9]
�̃̃�2

[9]
≠ 0 

Moreover, by substituting �̃̃�[9] in (3) we get  𝐷2𝑓𝑎2
(𝑃9 , �̃̃�2) (�̃̃�[9] , �̃̃�[9]) = [�̃̃�𝑖1]4𝑥1

. 

 �̃̃�11 = 2 [(−𝑏1 +
𝐵1(𝐶+𝛼𝜂𝐴)�̃̃�3

(𝐶+𝛼𝜂𝐴+�̃̃�1)
3) �̃̃�1

2
+ (

𝑎1𝑓1

(1+𝑓1�̃̃�3)
2 +

𝐵1(𝐶+𝛼𝜂𝐴)

(𝐶+𝛼𝜂𝐴+�̃̃�1)
2) �̃̃�1�̃̃�2 +

𝑎1𝑓1
2�̃̃�1

(1+𝑓1�̃̃�3)
3 �̃̃�2

2
] (�̃̃�2

[9]
)

2

, 

 �̃̃�21 = −2 [𝑏2 + (
�̃̃�2𝑓2

(1+𝑓2�̃̃�3)
3 + (𝜌 + 2ℎ�̃̃�3)) �̃̃�2] (�̃̃�2

[9]
)
2

, 

  �̃̃�31 = 2 [
−𝐶1(𝐶+𝜂𝐴(𝛼−1))�̃̃�1

(𝐶+𝛼𝜂𝐴+�̃̃�1)
2 (�̃̃�2 +

�̃̃�3�̃̃�1

(𝐶+𝛼𝜂𝐴+�̃̃�1)
) + 𝐶2 (𝜌 + 2ℎ�̃̃�3) �̃̃�2 −

𝑎3

𝐾
�̃̃�2

2
+

       (
𝑎3

𝐾
+ 𝐵) �̃̃�2�̃̃�3 +

𝛾𝜎

(𝜎+�̃̃�4)
3 �̃̃�3

2
] (�̃̃�2

[9]
)
2

, 

  �̃̃�41 = −2 [𝐵�̃̃�2 −
𝛾𝜎

(𝜎+�̃̃�4)
3 �̃̃�3] �̃̃�3 (�̃̃�2

[9]
)
2

. 

Hence, it obtains that  

(Ω̃̃[9])
𝑇

[𝐷2𝑓𝑎2
(𝑃9, �̃̃�2) (�̃̃�[9], �̃̃�[9])] = −2 [𝑏2 + (

�̃̃�2𝑓2

(1+𝑓2�̃̃�3)
3 + 𝜌 + 2ℎ�̃̃�3) �̃̃�2] Ω̃̃2

[9]
(�̃̃�2

[9]
)
2

≠ 0, 

under conditions (3, 99, 121, 122, 123), which are given in [21]. Thus, by using Sotomayor’s 

theorem 𝑃9 has a transcritical bifurcation at the parameter �̃̃�2. 
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Similarly for (EP) 𝑃10 = (�̃̃�
̃
1, 0, �̃̃�

̃
3, �̃̃�

̃
4). 

Theorem 8. Assume that conditions (3, 99, 127, 128 ,129) , which is given in [21] and the 

following conditions hold 

   
𝐿3̇

(𝐶+𝛼𝜂𝐴)
≤ �̇�2,                                                                              (12) 

   (𝑏1 +
�̇�1𝑓1�̇�2

(1+𝑓1𝐿3̇)2
) =

𝐵1

(𝐶+𝛼𝜂𝐴)
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2),                                        (13) 

   1 <
𝑓1�̇�2

(1+𝑓1𝐿3̇)
,                                                                     (14)     

where 

 �̇�2 =
�̇�22�̇�31�̇�44

�̇�23�̇�32�̇�44+�̇�22(�̇�34�̇�43−�̇�33�̇�44)
. 

Then system (1) at the (EP) 𝑃11 = (0, �̇�2, 𝐿3̇, �̇�4) with the parameter �̇�1 =
(1+𝑓1𝐿3̇)𝐵1𝐿3̇ 

(𝐶+𝛼𝜂𝐴)
 has 

(transcritical and pitchfork) bifurcation, while saddel-node bifurcation cannot be occur at �̇�1. 

Proof. From the Jacobian matrix 𝐽11 which is given in Eq.(124) in [21], system (1) at the (EP) 

𝑃11  has eigenvalue say (𝜆11𝐿1
)  equal to zero at 𝑎1 = �̇�1 , then 𝐽11  with 𝑎1 = �̇�1   becomes 

𝐽1̇1 = 𝐽11(𝑃11 , �̇�1) = [�̇�𝑖𝑗]4×4
, where  �̇�𝑖𝑗 = 𝑛𝑖𝑗  ;   𝑖, 𝑗 = 1,2,3,4  which are given in Eq.(124) 

in [21] accept �̇�11 = 0. 

Now, let �̇�[11] = (�̇�1
[11]

 , �̇�2
[11]

 , �̇�3
[11]

, �̇�4
[11]

)
𝑇

be the eigenvector corresponding to the 

eigenvalue (𝜆11𝐿1
) = 0. 

Thus  (𝐽1̇1 − 𝜆11𝐿1
𝐼)�̇�[11] = 0 , that gives �̇�[11] = (�̇�1

[11]
, −�̇�1�̇�1

[11]
, �̇�2�̇�1

[11]
, −�̇�3�̇�1

[11]
)
𝑇

 

where   �̇�1 =
�̇�23�̇�31�̇�44

�̇�23�̇�32�̇�44+�̇�22(�̇�34�̇�43−�̇�33�̇�44)
, �̇�3 =

�̇�22�̇�31�̇�43

�̇�23�̇�32�̇�44+�̇�22(�̇�34�̇�43−�̇�33�̇�44)
, �̇�2  given in the 

state of theorem, and  �̇�1
[11]

≠ 0 is any real number.   

Let  Ω̇[11] = (Ω̇1
[11]

 , Ω̇2
[11]

 , Ω̇3
[11]

, Ω̇4
[11]

)
𝑇

 be the eigenvector of  𝐽1̇1
𝑇  for (𝜆11𝐿1

) = 0. 

Then we get (𝐽1̇1
𝑇 − 𝜆11𝐿1

𝐼)Ω̇[11] = 0  then by solving this equation for Ω̇[11] we get  

   Ω̇[11] = (Ω̇1
[11]

 , 0 , 0 , 0)
𝑇

, where  Ω̇1
[11]

≠ 0  is any real number.  
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Now, consider  
𝜕𝑓

𝜕𝑎1
= 𝑓𝑎1

(𝑋 , 𝑎1) = (
𝜕𝑓1

𝜕𝑎1
,
𝜕𝑓2

𝜕𝑎1
,
𝜕𝑓3

𝜕𝑎1
,
𝜕𝑓4

𝜕𝑎1
)
𝑇

= (
𝐿1

1+𝑓1𝐿3
 ,0 ,0 , 0)

𝑇

. 

So,  𝑓𝑎1
(𝑃11 , �̇�1) = (0 , 0 , 0 , 0)𝑇 and hence (Ω̇[11])

𝑇
𝑓𝑎1

(𝑃11 , �̇�1) = 0. 

Therefore, using Sotomayor’s theorem we get that the saddle-node bifurcation's conditions 

cannot be satisfied. 

While the transcritical bifurcation's first condition is satisfied. Now, since 

 𝐷𝑓𝑎1
(𝑋 , 𝑎1) =  

[
 
 
 
 
 

1

1+𝑓1𝐿3
0

−𝑓1𝐿1

(1+𝑓1𝐿3)2
0

0 0 0 0

0 0 0 0

0 0 0 0]
 
 
 
 
 

, 

where 𝐷𝑓𝑎1
(𝑋 , 𝑎1) is the derivative of 𝑓𝑎1

(𝑋 , 𝑎1) with respect to 𝑋 = (𝐿1 , 𝐿2 , 𝐿3 , 𝐿4)
𝑇. 

Further, it is observed that𝐷𝑓𝑎1
(𝑃11, �̇�1)�̇�

[11] =

[
 
 
 
 
 

1

1+𝑓1𝐿3̇
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0]
 
 
 
 
 

[
 
 
 
 
 
 
 
 �̇�1

[11]
 

−�̇�1�̇�1
[11]

 

�̇�2�̇�1
[11]

 

−�̇�3�̇�1
[11]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1

1+𝑓1𝐿3̇
�̇�1

[11]

0

0

0 ]
 
 
 
 
 
 
 
 

, so 

  (Ω̇[11])
𝑇
[𝐷𝑓𝑎1

(𝑃11, �̇�1)�̇�
[11]] = (Ω̇1

[11]
, 0 , 0 , 0) (

1

1+𝑓1𝐿3̇
�̇�1

[11]
, 0 ,0 ,0)

𝑇

=
1

1+𝑓1𝐿3̇
Ω̇1

[11]
�̇�1

[11]
≠ 0 

Moreover, by substituting �̇�1
[11]

 in (3) we get 𝐷2𝑓𝑎1
(𝑃11 , �̇�1)(�̇�

[11], �̇�[11]) = [�̇�𝑖1]4𝑥1. 

   �̇�11 = 2 [−(𝑏1 +
�̇�1𝑓1�̇�2

(1+𝑓1𝐿3̇)2
) +

𝐵1

(𝐶+𝛼𝜂𝐴)
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2)] (�̇�1

[11]
)
2

, 

   �̇�21 = −2 [𝑏2�̇�1
2
− (

𝑎2𝑓2

(1+𝑓2𝐿3̇)2
+ (𝜌 + 2ℎ𝐿3̇)) �̇�1�̇�2 + (ℎ −

𝑎2𝑓2
2

(1+𝑓2𝐿3̇)3
) 𝐿2̇�̇�2] (�̇�1

[11]
)
2

, 

   �̇�31 = −2 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴)2
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2) + 𝐶2(𝜌 + 2ℎ𝐿3̇)�̇�1�̇�2 − (𝐶2ℎ𝐿2̇ −

𝑎3

𝐾
) �̇�2

2
−

          (
𝑎3

𝐾
+ 𝐵)�̇�2�̇�3 +

𝛾𝜎

(𝜎+𝐿4̇)3
�̇�3] (�̇�1

[11]
)
2

, 

   �̇�41 = 2 [−𝐵�̇�2 +
𝛾𝜎

(𝜎+𝐿4̇)3
�̇�3] �̇�3 (�̇�1

[11]
)
2

. 

Hence, it obtains that (Ω̇[11])
𝑇
[𝐷2𝑓𝑎1

(𝑃11, �̇�1)(�̇�
[11] , �̇�[11])] 
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 = 2 [−(𝑏1 +
�̇�1𝑓1�̇�2

(1+𝑓1𝐿3̇)2
) +

𝐵1

(𝐶+𝛼𝜂𝐴)
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2)] Ω̇1

[11]
(�̇�1

[11]
)
2

≠ 0, 

under conditions (3, 99, 127, 128 ,129), which are given in [21] and condition (12). Thus, by 

using Sotomayor’s theorem 𝑃11 has a transcritical bifurcation at the parameter �̇�1. 

While if condition (12) not holds and according to condition (13) then there is no a transcritical 

bifurcation and by substituting �̇�[11]  in (4)  we get    𝐷3𝑓𝑎1
(𝑃11, �̇�1)(�̇�

[11], �̇�[11], �̇�[11]) =

[�̇�𝑖1]4𝑥1. 

   �̇�11 = 6 [
�̇�1𝑓1

2�̇�2
2

(1+𝑓1𝐿3̇)3
(1 −

𝑓1�̇�2

(1+𝑓1𝐿3̇)
) −

𝐵1

(𝐶+𝛼𝜂𝐴)2
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2)] (�̇�1

[11]
)
3

, 

   �̇�21 = 6 [
𝑎2𝑓2

2�̇�2
2

(1+𝑓2𝐿3̇)3
(

𝑓2𝐿2̇

(1+𝑓2𝐿3̇)
− �̇�1) + ℎ�̇�1] (�̇�1

[11]
)
3

, 

   �̇�31 = 6 [
𝐶1(𝐶+𝜂𝐴(𝛼−1))

(𝐶+𝛼𝜂𝐴)3
(

�̇�3

(𝐶+𝛼𝜂𝐴)
− �̇�2) − 𝐶2ℎ�̇�1�̇�2

2
−

𝛾𝜎

(𝜎+𝐿4̇)3
�̇�3

3
] (�̇�1

[11]
)
3

, 

   �̇�41 = 6
𝛾𝜎

(𝜎+𝐿4̇)3
�̇�3

3
(�̇�1

[11]
)
3

. 

Then (Ω̇[11])
𝑇
[𝐷3𝑓𝑎1

(𝑃11, �̇�1)(�̇�
[11], �̇�[11], �̇�[11])] 

               = 6 [
�̇�1𝑓1

2�̇�2
2

(1+𝑓1𝐿3̇)3
(1 −

𝑓1�̇�2

(1+𝑓1𝐿3̇)
) −

𝐵1

(𝐶+𝛼𝜂𝐴)2
(

𝐿3̇

(𝐶+𝛼𝜂𝐴)
− �̇�2)] Ω̇[11] (�̇�1

[11]
)
3

≠ 0,  

under conditions (3, 99, 127, 128 ,129) , which is given in [21] and condition (14).  Hence 

again , by using Sotomayor’s theorem system  (1) at 𝑃11  has pitchfork bifurcation with the 

parameter �̇�1. 

Similarly for (EP) 𝑃12 = (0, �̈�2, �̈�3, �̈�4). 

Theorem 9. Assume that conditions (99, 132, 133, 135), which are given in [21] and the 

following conditions hold 

 𝑎3 +
𝐶1(𝐿1

∗ +𝜂𝐴)

(C+α𝜂𝐴+𝐿1
∗ )

+ 𝐶2(𝜌 + 2ℎ𝐿3
∗ )𝐿2

∗ > 2
𝑎3

𝐾
𝐿3
∗ +

𝑎3

𝐾
𝐿4
∗ + 𝐵𝐿4

∗ +

                                      
𝜒44

∗ (𝜒11
∗ 𝜒23

∗ 𝜒32
∗ +𝜒22

∗ 𝜒13
∗ 𝜒31

∗ )+𝜒11
∗ 𝜒22

∗ 𝜒34
∗ 𝜒43

∗

𝜒11
∗ 𝜒22

∗ 𝜒44
∗ ,                                                             (15) 

   𝑊7
∗ ≠ 𝑊8

∗.                                                                                             (16) 

Where 

  𝑊7
∗ = ([

(𝐶+𝛼𝜂𝐴)𝐵1𝐿3
∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )3

𝑊1
∗2 + (

𝑎1𝑓1

(1+𝑓1𝐿3
∗ )

2 +
(𝐶+𝛼𝜂𝐴)𝐵1

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

)𝑊1
∗ + (

𝑎1𝑓1
2𝐿1

∗

(1+𝑓1𝐿3
∗ )

3)]𝑊4
∗ +

      [(
𝑎2𝑓2

(1+𝑓2𝐿3
∗ )

2 + (𝜌 + 2ℎ𝐿3
∗ ))𝑊2

∗ +
𝑎2𝑓2

2𝐿2
∗

(1+𝑓2𝐿3
∗ )

3]𝑊5
∗ − [𝐶2ℎ𝐿2

∗ + (
𝑎3

𝐾
+ 𝐵)𝑊3

∗] + [𝐵𝑊3
∗]𝑊6

∗), 
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  𝑊8
∗ = ([𝑏1𝑊1

∗2]𝑊4
∗ + [𝑏2𝑊2

∗2 + ℎ𝐿2
∗ ]𝑊5

∗ − [
𝐶1(𝐶+𝜂𝐴(𝛼−1))𝑊1

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

(1 +
𝐿3
∗ 𝑊1

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )
) +

       𝐶2(𝜌 + 2ℎ𝐿3
∗ )𝑊2

∗ +
𝑎3

𝐾
+ (

𝜎𝛾

(𝜎+𝐿4
∗ )3

)𝑊3
∗2] + [

𝜎𝛾

(𝜎+𝐿4)3
𝑊3

∗2]𝑊6
∗). 

With 

   𝑊1
∗ =

𝜒13
∗

𝜒11
∗ ,   𝑊2

∗ =
𝜒23

∗

𝜒22
∗ ,   𝑊3

∗ =
𝜒43

∗

𝜒44
∗ ,   𝑊4

∗ =
𝜒31

∗

𝜒11
∗ ,   𝑊5

∗ =
𝜒32

∗

𝜒22
∗ ,   𝑊6

∗ =
𝜒34

∗

𝜒44
∗ .   

Then system (1)  at the (EP) 𝑃13 = (𝐿1
∗ , 𝐿2

∗ , 𝐿3
∗ , 𝐿4

∗ )  with the parameter 𝑑∗ = 𝑎3 − 2
𝑎3

𝐾
𝐿3
∗ −

𝑎3

𝐾
𝐿4
∗ +

𝐶1(𝐿1
∗ +𝜂𝐴)

(C+α𝜂𝐴+𝐿1
∗ )

+ 𝐶2(𝜌 + 2ℎ𝐿3
∗ )𝐿2

∗ − 𝐵𝐿4
∗ −

𝜒44
∗ (𝜒11

∗ 𝜒23
∗ 𝜒32

∗ +𝜒22
∗ 𝜒13

∗ 𝜒31
∗ )+𝜒11

∗ 𝜒22
∗ 𝜒34

∗ 𝜒43
∗

𝜒11
∗ 𝜒22

∗ 𝜒44
∗  has a 

saddle-node bifurcation, while neither a transcritical nor pitchfork bifurcation can be occur at 𝑑 =

𝑑∗. 

Proof. From the characteristic equation 𝜆4 + 𝐸1𝜆
3 + 𝐸2𝜆

2 + 𝐸3𝜆 + 𝐸4 = 0 of Jacobian matrix 𝐽13 

which is given in Eq.(131) in [21], system (1) at the (EP) 𝑃13 has eigenvalue equal to zero say 

(𝜆13𝐿3
= 0) if and only if 𝐸4 = 0 then 𝑃13 will be non-hyperbolic equilibrium point then 𝐽13 

with 𝑑 = 𝑑∗ becomes 𝐽13
∗ = 𝐽13(𝑃13 , 𝑑

∗) = [𝜒𝑖𝑗
∗ ]

4×4
, where 𝜒𝑖𝑗

∗ = 𝜒𝑖𝑗  ;  𝑖, 𝑗 = 1,2,3,4 which are 

given in  Eq.(130) in [21]  accept 𝜒33
∗ =

𝜒44
∗ (𝜒11

∗ 𝜒23
∗ 𝜒32

∗ +𝜒22
∗ 𝜒13

∗ 𝜒31
∗ )+𝜒11

∗ 𝜒22
∗ 𝜒34

∗ 𝜒43
∗

𝜒11
∗ 𝜒22

∗ 𝜒44
∗ . 

Now, let 𝜓[13] = (𝜓1
[13]

 , 𝜓2
[13]

 , 𝜓3
[13]

, 𝜓4
[13]

)
𝑇

be the eigenvector corresponding to the 

eigenvalue (𝜆13𝐿3
) = 0. 

Thus  (𝐽13
∗ − 𝜆13𝐿3

𝐼)𝜓[13] = 0 , that gives  𝜓[13] = (−𝑊1
∗𝜓3

[13]
, −𝑊2

∗𝜓3
[13]

, 𝜓3
[13]

, −𝑊3
∗𝜓3

[13]
)
𝑇

 

where 𝑊1
∗, 𝑊2

∗, 𝑊3
∗ given in the state of theorem, and 𝜓3

[13]
≠ 0 is any real number.  

Let Ω[13] = (Ω1
[13]

 , Ω2
[13]

 , Ω3
[13]

, Ω4
[13]

)
𝑇

 be the eigenvector of  𝐽13
∗𝑇 for 𝜆13𝐿3

= 0 . 

Then we get (𝐽13
∗𝑇 − 𝜆13𝐿3

𝐼)Ω[13] = 0 then by solving this equation for Ω[13] we get  

Ω[13] = (−𝑊4
∗Ω3

[13]
 , −𝑊5

∗Ω3
[13]

 , Ω3
[13]

 , −𝑊6
∗Ω3

[13]
)
𝑇

, where 𝑊4
∗, 𝑊5

∗, 𝑊6
∗ given in the state of 

theorem, and Ω1
[13]

≠ 0 is any real number. 

Now, consider   
𝜕𝑓

𝜕𝑑
= 𝑓𝑑(𝑋 , 𝑑) = (

𝜕𝑓1

𝜕𝑑
,
𝜕𝑓2

𝜕𝑑
,
𝜕𝑓3

𝜕𝑑
,
𝜕𝑓4

𝜕𝑑
)
𝑇

= (0 ,0 , −𝐿3 , 0)𝑇 . 
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So,  𝑓𝑑(𝑃13 , 𝑑
∗) = (0 , 0 , −𝐿3

∗ , 0)𝑇 and hence (Ω[13])
𝑇
𝑓𝑑(𝑃13 , 𝑑

∗) = −𝐿3
∗ Ω3

[13]
≠ 0. 

Moreover, by substituting 𝜓[13] in (3) we get 𝐷2𝑓(𝑃13 , 𝑑
∗)(𝜓[13], 𝜓[13]) = [𝐴𝑖1

∗ ]4×1. 

   𝐴11
∗ = 2 [(−𝑏1 +

(𝐶+𝛼𝜂𝐴)𝐵1𝐿3
∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )3

)𝑊1
∗2 + (

𝑎1𝑓1

(1+𝑓1𝐿3
∗ )

2 +
(𝐶+𝛼𝜂𝐴)𝐵1

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

)𝑊1
∗ + (

𝑎1𝑓1
2𝐿1

∗

(1+𝑓1𝐿3
∗ )

3)] (𝜓3
[13]

)
2

, 

   𝐴21
∗ = −2 [𝑏2𝑊2

∗2 − (
𝑎2𝑓2

(1+𝑓2𝐿3
∗ )

2 + (𝜌 + 2ℎ𝐿3
∗ ))𝑊2

∗ + (ℎ −
𝑎2𝑓2

2

(1+𝑓2𝐿3
∗ )

3) 𝐿2
∗ ] (𝜓3

[13]
)
2

, 

   𝐴31
∗ = 2 [

−𝐶1(𝐶+𝜂𝐴(𝛼−1))𝑊1
∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

(1 +
𝐿3
∗ 𝑊1

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )
) − 𝐶2(𝜌 + 2ℎ𝐿3

∗ )𝑊2
∗ + (𝐶2ℎ𝐿2

∗ −
𝑎3

𝐾
) +

          (
𝑎3

𝐾
+ 𝐵)𝑊3

∗ − (
𝜎𝛾

(𝜎+𝐿4
∗ )3

)𝑊3
∗2] (𝜓3

[13]
)
2

, 

   𝐴41
∗ = −2 [𝐵 −

𝜎𝛾

(𝜎+𝐿4)3
𝑊3

∗]𝑊3
∗ (𝜓3

[13]
)
2

. 

Hence, it obtains that  

 (Ω[13])
𝑇
[𝐷2𝑓(𝑃13 , 𝑑

∗)(𝜓[13], 𝜓[13])] = 2 [−([
(𝐶+𝛼𝜂𝐴)𝐵1𝐿3

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )3

𝑊1
∗2 + (

𝑎1𝑓1

(1+𝑓1𝐿3
∗ )2

+

       
(𝐶+𝛼𝜂𝐴)𝐵1

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

)𝑊1
∗ + (

𝑎1𝑓1
2𝐿1

∗

(1+𝑓1𝐿3
∗ )3

)]𝑊4
∗ + [(

𝑎2𝑓2

(1+𝑓2𝐿3
∗ )2

+ (𝜌 + 2ℎ𝐿3
∗ ))𝑊2

∗ +
𝑎2𝑓2

2𝐿2
∗

(1+𝑓2𝐿3
∗ )3

]𝑊5
∗ −

       [𝐶2ℎ𝐿2
∗ + (

𝑎3

𝐾
+ 𝐵)𝑊3

∗] + [𝐵𝑊3
∗]𝑊6

∗) + ([𝑏1𝑊1
∗2]𝑊4

∗ + [𝑏2𝑊2
∗2 + ℎ𝐿2

∗ ]𝑊5
∗ −

      [
𝐶1(𝐶+𝜂𝐴(𝛼−1))𝑊1

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )2

(1 +
𝐿3
∗ 𝑊1

∗

(𝐶+𝛼𝜂𝐴+𝐿1
∗ )
) + 𝐶2(𝜌 + 2ℎ𝐿3

∗ )𝑊2
∗ +

𝑎3

𝐾
+ (

𝜎𝛾

(𝜎+𝐿4
∗ )3

)𝑊3
∗2] +

      [
𝜎𝛾

(𝜎+𝐿4)3
𝑊3

∗2]𝑊6
∗)] 𝛺3

[13]
(𝜓3

[13]
)
2
 

     (Ω[13])
𝑇
[𝐷2𝑓(𝑃13 , 𝑑

∗)(𝜓[13], 𝜓[13])] = 2[−𝑊7
∗ + 𝑊8

∗]𝛺3
[13]

(𝜓3
[13]

)
2

≠ 0, 

under conditions ( 99, 132, 133 ,135), which are given in [21] and condition (15, 16) are hold. 

Thus, by using Sotomayor’s theorem 𝑃13 has a saddle-node bifurcation at the parameter 𝑑∗ but a 

transcritical and pitchfork bifurcation cannot be occur. 

Similarly for (EP) 𝑃14 = (𝐿1
∗∗, 𝐿2

∗∗, 𝐿3
∗∗, 𝐿4

∗∗). 

4.HOPF BIFURCATION ANALYSIS 

 In this section, the following theorem shows that when the possibility of a Hopf bifurcation 

(HB) happening near the positive (EP) 𝑃13  of the system (1), an application to the Hopf 

bifurcation [23] for local bifurcation is appropriate. 

Theorem 10. Assume that conditions (99, 132 − 135)  which are given in [21]  and the 

following conditions hold: 
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   ∆1<
𝐸1

3

4
                                                                (17) 

 𝜒22𝜒44 + 𝜒11(𝜒22 + 𝜒44) > 1                                              (18) 

   𝑎3 +
𝐶1(𝐿1

∗ +𝜂𝐴)

(C+α𝜂𝐴+𝐿1
∗ )

+ 𝐶2(𝜌 + 2ℎ𝐿3
∗ )𝐿2

∗ > (2
𝑎3

𝐾
𝐿3
∗ + (

𝑎3

𝐾
+ 𝐵)𝐿4

∗ )                    (19) 

   
𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
(−(𝜒11 + 𝜒22 + 𝜒44) + 𝜒11𝜒22 + 𝜒44(𝜒11 + 𝜒22) + 2𝐸3(𝑑

⋆)) ≠

   (𝜒11𝜒22𝜒33 +)𝐸3(𝑑
⋆) − (

𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
)
2

(2(𝜒11𝜒22 + 𝜒44(𝜒11 + 𝜒22) + 𝐸3(𝑑
⋆)))                        (20) 

then at the parameter value  𝑑 = 𝑑⋆ system (1)  has a (HB) near the positive point 𝑃13.  

Proof. Consider the characteristic equation which is given in Eq.(131) in [21] of system (1) at 

𝑃13, we must choose a parameter let's say (𝑑⋆) using the (HB) theorem for 𝑛 = 4, to confirm 

that the required and sufficient conditions for (HB) to occur satisfy that 

𝐸i(𝑑
⋆) > 0 ;  і = 1,3,4,   ∆1(𝑑

⋆) = 𝐸1𝐸2 − 𝐸3 > 0,   𝐸1
3 − 4∆1> 0 and 

∆2(𝑑
⋆) = (𝐸1𝐸2 − 𝐸3)𝐸3 − 𝐸2

2𝐸4 = 0. 

Then 𝐸i(𝑑
⋆) > 0 ;  і = 1,3,4, ∆1(𝑑

⋆) > 0 and 𝐸1
3 − 4∆1> 0 under conditions (99, 132 − 135) 

which are given in [21], with condition (17) are holds. 

On the other hand, it is observed that  ∆2 = 0 gives  

   −ℛ1𝑑
⋆3 + ℛ2𝑑

⋆2 − ℛ3𝑑
⋆ + ℛ4 = 0,                                                      (21) 

where  

   ℛ1 = [(𝜒11 + 𝜒22 + 𝜒44)(−1 + 𝜒22𝜒44 + 𝜒11(𝜒22 + 𝜒44))], 

   ℛ2 = 3ℛ1ℋ4 + ℋ1, 

   ℛ3 = (3ℛ1ℋ4 + 2ℋ1)ℋ4 + ℋ2, 

   ℛ4 = (ℛ1ℋ4
2 + ℋ1ℋ4 + ℋ2)ℋ4 + ℋ3. 

With 

   ℋ1 = 𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34 + 𝜒22
3𝜒44 − (2 + 𝜒13𝜒31 + 𝜒23𝜒32)𝜒44

2 + 𝜒11
3(𝜒22 +

        𝜒44) − 𝜒22
2(2 + 𝜒13𝜒31 + 𝜒43𝜒34 − 2𝜒44

2) + 𝜒22𝜒44(−5 − 3𝜒13𝜒31 − 2𝜒23𝜒32 −

        2𝜒43𝜒34 + 𝜒44
2) + 𝜒11(𝜒22

3 + 6𝜒22
2𝜒44 − (5 + 2𝜒13𝜒31 + 3𝜒23𝜒32 +

        2𝜒43𝜒34)𝜒44 + 𝜒44
3 − 𝜒22(5 + 2(𝜒13𝜒31 + 𝜒23𝜒32) + 3𝜒43𝜒34 − 6𝜒44

2)) +

        𝜒11
2(−2 − 𝜒23𝜒32 − 𝜒43𝜒34 + 2(𝜒22

2 + 3𝜒22𝜒44 + 𝜒44
2)), 
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   ℋ2 = [𝜒22(2 + 𝜒13𝜒31 + 𝜒43𝜒34)(𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34) + (2 + 𝜒13𝜒31 +

 𝜒23𝜒32)(𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34)𝜒44 − 𝜒22(5 + 3𝜒13𝜒31 + 2𝜒23𝜒32 +  2𝜒43𝜒34)𝜒44
2 − (1 +

𝜒13𝜒31 + 𝜒23𝜒32)𝜒44
3 − 𝜒22

3(1 + 𝜒13𝜒31 + 𝜒43𝜒34 −  𝜒44
2) + 𝜒22

2𝜒44(−5 − 3𝜒13𝜒31 −

2𝜒23𝜒32 − 2𝜒43𝜒34 + 𝜒44
2) + 𝜒11

3(−1 + 𝜒22
2 −  𝜒23𝜒32 − 𝜒43𝜒34 + 3𝜒22𝜒44 + 𝜒44

2) +

𝜒11
2(𝜒22

3 + 6𝜒22
2𝜒44 − (5 + 2𝜒13𝜒31 +  3𝜒23𝜒32 + 2𝜒43𝜒34)𝜒44 + 𝜒44

3 − 𝜒22(5 + 2𝜒13𝜒31 +

2𝜒23𝜒32 + 3𝜒43𝜒34 −  6𝜒44
2)) + 𝜒11((2 + 𝜒23𝜒32 + 𝜒43𝜒34)(𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34) +

3𝜒22
3𝜒44 − (5 + 2𝜒13𝜒31 + 3𝜒23𝜒32 + 2𝜒43𝜒34)𝜒44

2 − 𝜒22
2(5 + 2𝜒13𝜒31 + 2𝜒23𝜒32 +

 3𝜒43𝜒34 − 6𝜒44
2) + 3𝜒22𝜒44(−2(2 + 𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34) + 𝜒44

2))], 

 ℋ3 = [𝜒22
2(𝜒13(𝜒31 + 𝜒23𝜒31𝜒32) + 𝜒43𝜒34 + 𝜒23(𝜒32 + 𝜒32𝜒43𝜒34)) + 𝜒22(𝜒23𝜒32(2 + 𝜒23𝜒32)

+ 𝜒43𝜒34(2 + 𝜒43𝜒34) − 𝜒22
2(1 + 𝜒13𝜒31 + 𝜒43𝜒34) + 𝜒13𝜒31(2 +  𝜒23𝜒32

+ 𝜒43𝜒34))𝜒44 + (𝜒13𝜒31 + 𝜒23𝜒32 + (1 + 𝜒13𝜒31 + 𝜒23𝜒32)𝜒43𝜒34 − 𝜒22
2(2

+ 2𝜒13𝜒31 + 𝜒23𝜒32 + 𝜒43𝜒34))𝜒44
2 − 𝜒22(1 + 𝜒13𝜒31 + 𝜒23𝜒32)𝜒44

3 +  𝜒11
3(𝜒22

+ 𝜒44)(−1 − 𝜒23𝜒32 − 𝜒43𝜒34 + 𝜒22𝜒44) + 𝜒11(𝜒22(𝜒13
2𝜒31

2 +  𝜒13𝜒31(2

+ 𝜒43𝜒34) − 𝜒22
2(1 + 𝜒13𝜒31 + 𝜒43𝜒34) + (2 + 𝜒23𝜒32)(𝜒23𝜒32 + 𝜒43𝜒34))

+ (𝜒13
2𝜒31

2 + 𝜒13𝜒31(2 + 𝜒23𝜒32) + (2 + 𝜒43𝜒34)(𝜒23𝜒32 + 𝜒43𝜒34) −  𝜒22
2(5

+ 3𝜒13𝜒31 + 3𝜒23𝜒32 + 3𝜒43𝜒34))𝜒44 + 𝜒22(−5 + 𝜒22
2 − 3𝜒13𝜒31 −  3𝜒23𝜒32

− 3𝜒43𝜒34)𝜒44
2 + (−1 + 𝜒22

2 − 𝜒13𝜒31 − 𝜒23𝜒32)𝜒44
3) + 𝜒11

2(𝜒13𝜒31 +  𝜒23𝜒32

+ 𝜒23𝜒32𝜒13𝜒31 + 𝜒43𝜒34 + 𝜒13𝜒31𝜒43𝜒34 + 𝜒22
3𝜒44 − (2 + 𝜒13𝜒31 +  2𝜒23𝜒32

+ 𝜒43𝜒34)𝜒44
2 − 𝜒22

2(2 + 𝜒13𝜒31 + 𝜒23𝜒32 + 2𝜒43𝜒34 − 2𝜒44
2) +  𝜒22𝜒44(−5

− 3𝜒13𝜒31 − 3𝜒23𝜒32 − 3𝜒43𝜒34 + 𝜒44
2))], 

   ℋ4 = 𝑎3 +
𝐶1(𝐿1

∗ +𝜂𝐴)

(C+α𝜂𝐴+𝐿1
∗ )

+ 𝐶2(𝜌 + 2ℎ𝐿3
∗ )𝐿2

∗ − (2
𝑎3

𝐾
𝐿3
∗ + (

𝑎3

𝐾
+ 𝐵)𝐿4

∗ ).  

Then by using Descartes rule of sign, Eq.(21) has a unique positive root (𝑑⋆) if in addition to 

conditions (99, 132 − 135) which are given in [21] with conditions (18, 19) and one of the 

following sets of conditions hold 

   ℛ2 < 0,ℛ3 < 0,ℛ4 < 0          𝑂𝑅       ℛ2 < 0,ℛ3 > 0,ℛ4 < 0   𝑂𝑅  

   ℛ2 > 0,ℛ3 < 0,ℛ4 < 0          𝑂𝑅       ℛ2 > 0,ℛ3 > 0,ℛ4 < 0  

Now, at  𝑑 = 𝑑⋆ the characteristic Eq.(131) which is given in [21]  can be written as  

(𝜆13
2 +

𝐸3

𝐸1
) (𝜆13

2 + 𝐸1𝜆13 +
∆1

𝐸1
) = 0, 

which has four roots 𝜆13𝐿1,𝐿2
= ±і√

𝐸3

𝐸1
 and 𝜆13𝐿3,𝐿4

=
1

2
(−𝐸1 ± √𝐸1

2 − 4
∆1

𝐸1
). 
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Clearly, at  𝑑 = 𝑑⋆ there are two eigenvalues (𝜆13𝐿1
 and 𝜆13𝐿2

) are pure imaginary and the other 

two eigenvalues are real and negative (𝜆13𝐿3
 and 𝜆13𝐿4

).  Now for all values of 𝑑   in the 

neighborhood of 𝑑⋆ the roots in general of the following form 

 𝜆13𝐿1,𝐿2
= 

1
± 𝑖

2
,   𝜆13𝐿3,𝐿4

=
1

2
(−𝐸1 ± √𝐸1

2 − 4
∆1

 𝐸1
). 

Clearly,  𝑅𝑒 (𝜆13𝐿1,𝐿2
(𝑑))⃒𝑑=𝑑⋆ = 

1
(𝑑⋆) = 0, this indicates that at 𝑑 = 𝑑⋆, the first of the 

necessary and sufficient requirements for Hopf bifurcation is met. 

In order to confirm the transversality criterion, we need to demonstrate that 

Θ⋆(𝑑⋆) Ψ⋆(𝑑⋆) + Γ⋆(𝑑⋆)Φ⋆(𝑑⋆) ≠ 0, 

Note that for  𝑑 = 𝑑⋆  we have 
1

= 0  and 
2

= √
𝐸3

𝐸1
 , substituting the value of 

2
 gives the 

following simplifications: 

Ψ⋆(𝑑⋆) = −2 𝐸3(𝑑
⋆), 

 Φ⋆(𝑑⋆) = 2
2(𝑑⋆)

𝐸1(𝑑⋆)
(𝐸1(𝑑

⋆)𝐸2(𝑑
⋆) − 2𝐸3(𝑑

⋆)), 

 𝛩⋆(𝑑⋆) = 𝐸4
′(𝑑⋆) − 𝐸2

′(𝑑⋆)
𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
, 

 Γ⋆(𝑑⋆) = √
E3

 𝐸1
(𝑑⋆) (𝐸3

′(𝑑⋆) − 𝐸1
′(𝑑⋆)

𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
), 

where 

 𝐸1
′ =

𝜕𝐸1

𝜕𝑑
⃒𝑑=𝑑⋆ = 1, 

 𝐸2
′ =

𝜕𝐸2

𝜕𝑑
⃒𝑑=𝑑⋆ = −(𝜒11 + 𝜒22 + 𝜒44), 

 𝐸3
′ =

𝜕𝐸3

𝜕𝑑
⃒𝑑=𝑑⋆ = 𝜒11𝜒22 + 𝜒44(𝜒11 + 𝜒22), 

 𝐸4
′ =

𝜕𝐸4

𝜕𝑑
⃒𝑑=𝑑⋆ = −𝜒11𝜒22𝜒33. 

  Θ⋆(𝑑⋆)Ψ⋆(𝑑⋆) + Γ⋆(𝑑⋆)Φ⋆(𝑑⋆) = 2 [
𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
(−(𝜒11 + 𝜒22 + 𝜒44) + 𝜒11𝜒22 + 𝜒44(𝜒11 + 𝜒22) +

        2𝐸3(𝑑
⋆) −

𝐸3(𝑑⋆)

 𝐸1(𝑑⋆)
(2(𝜒11𝜒22 + 𝜒44(𝜒11 + 𝜒22) + 𝐸3(𝑑

⋆)))) + (𝜒11𝜒22𝜒33)𝐸3(𝑑
⋆)] ≠ 0,  

under conditions (99, 132 − 135) which are given in [21] and condition (20), so we obtain 

that the (HB) happens at the parameter 𝑑 = 𝑑⋆ around the (EP) 𝑃13. 

Similarly for (EP) 𝑃14 = (𝐿1
∗∗, 𝐿2

∗∗, 𝐿3
∗∗, 𝐿4

∗∗). 
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5. NUMERICAL ANALYSES 

 In order to confirm our analytical findings and investigate the effects of varying the values of 

each parameter on the dynamic behaviour of the system, the dynamic behaviour of system (1) is 

investigated numerically using the Mathematica program. As shown in Figure (1), system (1) has 

a (GAS) positive equilibrium point, with the following hypothetical parameter setup that meets the 

stability conditions for the positive equilibrium point. 

 𝑎1 = 0.05,  𝑎2 = 0.08,  𝑎3 = 0.07,  𝑓1 = 0.05,  𝑓2 = 0.06,  𝑏1 = 0.01,  𝑏2 = 0.015,  

 𝐵1 = 0.07, 𝐶 = 1, 𝛼 = 1.9, 𝜂 = 0.06, 𝐴 = 0.05, 𝜌 = 0.05, ℎ = 0.03, 𝐾 = 3,                 (22) 

 𝐶1 = 0.06, 𝐶2 = 0.02, 𝑑 = 0.04, 𝐵 = 0.04, 𝛾 = 0.008, 𝜎 = 0.009, 𝛿 = 0.005 

 

  

  

Figure -1 The time series of system (1) that started from three different initial points 

(0.9, 0.8, 0.8, 0.5), (0.7 ,0.3 , 0.6, 0.4) and (0.4, 0.5, 0.4, 0.9)  for the data given in (22) . (a) 

the trajectory of 𝐿1  as a function of time, (b)  trajectory of 𝐿2  as a function of time, (c) 

trajectory of  𝐿3  as a function of time, (d)  the trajectory of 𝐿4  as a function of time, 

approaches to 𝑃13 = (4.647, 4.355, 0.237, 1.774). 

 

 Now, to examine how the values of the parameters affect the system's dynamic behavior, we 

varied one parameter at each time with the rest parameters given in (22), and the result is displayed 

in Table 2. 
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Table 2:  System (1)'s Dynamical Behavior 

Range of Parameter Stable Point Bifurcation Persistence 

0.001 ≤ 𝑎1 < 0.01985 

0.01985 ≤ 𝑎1 ≤ 1 

𝑃11 

𝑃13 

 

0.01985  

Not Persists 

Persists 

0.001 ≤ 𝑎2 < 0.0143 

0.0143 ≤ 𝑎2 ≤ 1 

𝑃9 

𝑃13 

 

0.0143 

Not Persists 

Persists 

0.001 ≤ 𝑎3 ≤ 5 𝑃13  Persists 

0.001 ≤ 𝑓1 < 4.5657 

4.5657 ≤ 𝑓1 ≤ 10 

𝑃13 

𝑃11 

 

4.5657 

Persists 

Not Persists 

0.001 ≤ 𝑓2 < 20.13 

20.13 ≤ 𝑓2 < 30 

𝑃13 

𝑃9 

 

20.13 

Persists 

Not Persists 

0.001 ≤ 𝑏1 < 2.12 

2.12 ≤ 𝑏1 ≤ 5 

𝑃13 

𝑃11 

 

2.12 

Persists 

Not Persists 

0.001 ≤ 𝑏2 < 6.45 

6.45 ≤ 𝑏2 < 10 

𝑃13 

𝑃9 

 

6.45 

Persists 

Not Persists 

0.061 ≤ 𝐵1 < 0.162 

0.162 ≤ 𝐵1 ≤ 1 

𝑃13 

𝑃11 

 

0.162 

Persists 

Not Persists 

0.01 ≤ 𝛼 ≤ 10 𝑃13  Persists 

0.001 ≤ 𝜂 ≤ 3 𝑃13  Persists 

0.001 ≤ 𝐴 ≤ 10 𝑃13  Persists 

0.001 ≤ 𝐾 < 0.015 

0.015 ≤ 𝐾 < 0.895 

0.895 ≤ 𝐾 < 0.91207 

0.91207 ≤ 𝐾 ≤ 10 

𝑃4 

𝑃8 

𝑃5 

𝑃13 

 

0.015 

0.895 

0.91207 

Not Persists 

Not Persists 

Not Persists 

Persists 

0.001 ≤ ℎ <0.7696 𝑃13  Persists 

1 ≤ 𝐶 ≤ 10 𝑃13  Persists 

0.001 ≤ 𝐶1 ≤ 0.069 𝑃13  Persists 

0.0001 ≤ 𝐶2 < 1 𝑃13  Persists 

0.001 ≤ 𝜌 < 0.31 

0.31 ≤ 𝜌 ≤ 5 

𝑃13 

𝑃9 

 

0.31 

Persists 

Not Persists 

0.001 ≤ 𝑑 < 0.09301 

0.09301 ≤ 𝑑 < 0.255 

0.255 ≤ 𝑑 < 1 

𝑃13 

𝑃8 

𝑃4 

 

0.09301 

0.255 

Persists 

Not Persists 

Not Persists 

0.0001 ≤ 𝐵 < 0.0187321 

0.0187321 ≤ 𝐵 ≤ 1 

𝑃3 

𝑃13 

 

0.0187321 

Not Persists 

Persists 

0.001 ≤ 𝛿 < 0.0266248 

0.0266248 ≤ 𝛿 < 1 

𝑃13 

𝑃3 

 

0.0266248 

Persists 

Not Persists 

0.0001 ≤ 𝛾 < 0.0217155 

0.0217155 ≤ 𝛾 ≤ 1 

𝑃13 

𝑃3 

 

0.0217155 

Persists 

Not Persists 

0.01 ≤ 𝜎 ≤ 1 𝑃13  Persists 
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The effect of varying the intrinsic growth rate of the first prey in the range 0.001 ≤ 𝑎1 < 0.01985 

was studied, it is observed that the solution of system (1) approach to 𝑃11 , however increasing 

this parameter further 0.01985 ≤ 𝑎1 ≤ 1 the solution approach to 𝑃13 as shown in Figure (2). 

 

  

Figure -2 The trajectories of system (1) using data given in (22) with different values of 𝑎1. (𝑎) 

the trajectory approaches to 𝑃11 = (0 , 3.515 , 0.407,0.698) when 𝑎1= 0.01, (𝑏) the trajectory 

approaches to 𝑃13 = (1.852, 4.289 , 0.251 , 1.573) when 𝑎1 = 0.025. 

 

The effect of varying the intrinsic growth rate of the second prey in the range  0.001 ≤ 𝑎2 <

0.0143 was studied, it is observed that the solution of system (1) approach to  𝑃9 , however 

increasing this parameter further 0.0143 ≤ 𝑎2 ≤ 1  the solution approach to 𝑃13 as shown in 

Figure (3). 

 

  

Figure -3 The trajectories of system (1) using data given in (22) with different values of 𝑎2. (𝑎) 

the trajectory approaches to 𝑃9 = (4.637 , 0 , 0.243, 1.679) when 𝑎2= 0.01, (𝑏) the trajectory 

approaches to 𝑃13 = (4.640, 1.048 , 0.241 , 1.702) when 𝑎2 = 0.03. 

 

The effect of varying the fear rate of the first prey from susceptible predator in the range  0.001 ≤

𝑓1 < 4.5657 was studied, it is observed that the solution of system (1) still approaches to 𝑃13, 

however increasing this parameter further 4.5657 ≤ 𝑓1 ≤ 10 the solution approaches to 𝑃11 as 

shown in Figure (4). 
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Figure -4 The trajectories of system (1) using data given in (22) with different values of 𝑓1. (𝑎) 

the trajectory approaches to 𝑃13 = (4.673 , 4.343 , 0.239, 1.732)  when 𝑓1 = 1, (𝑏)  the 

trajectory approaches to 𝑃11 = (0, 3.515 , 0.407 , 0.698) when 𝑓1 = 5. 

 

The effect of varying the fear rate of the second prey from susceptible predator in the range  

0.001 ≤ 𝑓2 < 20.13 was studied, it is observed that the solution of system (1) still approaches 

to  𝑃13 , however increasing this parameter further 20.13 ≤ 𝑓2 < 30  the solution approach to 

𝑃9 as shown in Figure (5). 

  

Figure -5 The trajectories of system (1) using data given in (22) with different values of 𝑓2. (𝑎) 

the trajectory approaches to 𝑃13 = (4.643 , 2.693 , 0.239, 1.738)  when 𝑓2 = 2, (𝑏)  the 

trajectory approaches to 𝑃9 = (4.637, 0 , 0.243 , 1.679) when 𝑓2 = 21. 

 

The effect of varying the internal competition rate of first prey in the range  0.001 ≤ 𝑏1 < 2.12 

was studied, it is observed that system (1)  still approach to  𝑃13 , however increasing this 

parameter further 2.12 ≤ 𝑏1 ≤ 5 the system approach to 𝑃11 as shown in Figure (6). 

   

Figure -6 The trajectories of system (1) using data given in (22) with different values of 𝑏1. (𝑎) 

the trajectory approaches to 𝑃13 = (0.329, 4.012, 0.309, 1.074)  when 𝑏1 = 0.1, (𝑏)  the 

trajectory approaches to 𝑃11 = (0, 3.537, 0.403, 0.709) when 𝑏1 = 3.5. 
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The effect of varying the internal competition rate of second prey in the range 0.001 ≤ 𝑏2 < 6.45 

was studied, it is observed that the solution of system (1)  still approach to  𝑃13 , however 

increasing this parameter further 6.45 ≤ 𝑏2 < 10 the solution approach to 𝑃9 as shown in Figure 

(7). 

 

  

Figure -7 The trajectories of system (1) using data given in (22) with different values of 𝑏2. (𝑎) 

the trajectory approaches to 𝑃13 = (4.637, 0.129, 0.243, 1.682)  when 𝑏2 = 0.5 , (𝑏)  the 

trajectory approaches to 𝑃9 = (4.637, 0, 0.243, 1.679) when 𝑏2 = 8. 

 

The effect of varying the maximum rate of predation in the range  0.061 ≤ 𝐵1 < 0.162 was 

studied, it is observed that the solution of system (1) still approach to 𝑃13, however increasing 

this parameter further 0.162 ≤ 𝐵1 ≤ 1 the solution approach to 𝑃11 as shown in Figure (8). 

 

  

Figure -8 The trajectories of system (1) using data given in (22) with different values of 𝐵1. (𝑎) 

the trajectory approaches to 𝑃13 = (4.262, 4.351, 0.238, 1.759)  when 𝐵1 = 0.15, (𝑏)  the 

trajectory approaches to 𝑃11 = (0, 3.515, 0.407, 0.698) when 𝐵1 = 0.2. 

 

The effect of varying the maximum rate of predation in the range 0.001 ≤ 𝜌 < 0.31 was studied, 

it is observed that the solution of system (1)  still approach to  𝑃9 , however increasing this 

parameter further 0.31 ≤ 𝜌 ≤ 5 the solution approach to 𝑃13 as shown in Figure (9). 
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Figure -9 The trajectories of system (1) using data given in (22) with different values of 𝜌. (𝑎) 

the trajectory approaches to 𝑃9 = (4.637, 0, 0.243, 1.679)  when 𝜌 = 0.32, (𝑏)  the trajectory 

approaches to 𝑃13 = (4.652, 3.589, 0.234, 1.825) when 𝜌 = 0.1. 

 

The effect of varying the carrying capacity of the susceptible predator in the range 0.001 ≤ 𝐾 <

0.015  was studied, it is observed that system (1)  approach to  𝑃4 , however increasing this 

parameter further 0.015 ≤ 𝐾 < 0.895  the system approach to 𝑃8,  moreover increasing this 

parameter in the range 0.895 ≤ 𝐾 < 0.91207 the system approach to 𝑃5, again increasing this 

parameter further 0.91207 ≤ 𝐾 ≤ 10 the system approach to 𝑃13 as shown in Figure (10). 

 

 

  

Figure -10 The trajectories of system (1) using data given in (22) with different values of 𝐾. (𝑎) 

the trajectory approaches to 𝑃4 = (4.998, 5.328, 0, 0)  when 𝐾 = 0.001, (𝑏)  the trajectory 

approaches to 𝑃8 = ( 4.051, 2.533, 0.582, 0 ) when𝐾 = 0.5 , (𝑐)  the trajectory approaches to                

𝑃5 = (3.121, 0, 0.970, 0)  when 𝐾 = 0.9 , (𝑑)  the trajectory approaches to                        

𝑃13 = (4.332, 3.401, 0.429, 0.649) when  𝐾 = 1. 

 

The effect of varying the natural death rate of susceptible predator in the range 0.001 ≤ 𝑑 <

0.09301 was studied, it is observed that the solution of system (1) still approach to 𝑃13 , however 
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increasing this parameter further 0.09301 ≤ 𝑑 < 0.255 the solution approach to 𝑃8, moreover 

increasing this parameter in the range 0.255 ≤ 𝑑 < 1 the solution approach to 𝑃4 as shown in 

Figure (11). 

   

 

Figure -11 The trajectories of system (1) using data given in (22) with different values of 𝑑. (𝑎) 

the trajectory approaches to 𝑃13 = (4.626, 4.292, 0.250, 1.581)  when 𝑑 = 0.05, (𝑏)  the 

trajectory approaches to 𝑃8 = (3.590, 1.152, 0.798, 0)  when  𝑑 = 0.1  , (𝑐)  the trajectory 

approaches to 𝑃4 = (5, 5.333, 0, 0) when 𝑑 = 0.3. 

 

The effect of varying the disease transmission rate in the range  0.0001 ≤ 𝐵 < 0.0187321 was 

studied, it is observed that the solution of system (1) approach to 𝑃3,  however increasing this 

parameter further 0.0187321 ≤ 𝐵 ≤ 1 the solution approach to 𝑃13 as shown in Figure (12). 

 

Figure -12 The trajectories of system (1) using data given in (22) with different values of 𝐵. (𝑎) 

the trajectory approaches to 𝑃3 = (0, 0, 1.286,0)  when 𝐵 = 0.0187, (𝑏)  the trajectory 

approaches to 𝑃13 = (4.312, 3.341, 0.440, 2.094) when  𝐵 = 0.02. 

 

The effect of varying the death rates of infected predator in the range 0.001 ≤ 𝛿 < 0.0266248 

was studied, it is observed that the solution of system (1)  still approach to  𝑃13 , however 

increasing this parameter further 0.174 ≤ 𝛿 < 1 the solution approach to 𝑃3 as shown in Figure 

(13). 
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Figure -13 The trajectories of system (1) using data given in (22) with different values of 𝛿. (𝑎) 

the trajectory approaches to  𝑃13 = (3.890, 2.039, 0.663, 1.2171)  when 𝛿 = 0.02, (𝑏)  the 

trajectory approaches to 𝑃3 = (0, 0, 1.286,0) when  𝛿 = 0.03. 

 

The effect of varying the maximum medical resource supplied for treatment in the range  

0.0001 ≤ 𝛾 < 0.0217155  was studied, it is observed that the solution of system (1)  still 

approach to  𝑃13 , however increasing this parameter further 0.0217155 ≤ 𝛾 ≤ 1  the solution 

approach to 𝑃3 as shown in Figure (14). 

  

Figure -14 The trajectories of system (1) using data given in (22) with different values of 𝛾. (𝑎) 

the trajectory approaches to  𝑃13 = (4.432, 3.710, 0.370, 2.031)  when 𝛾 = 0.02, (𝑏)  the 

trajectory approaches to 𝑃3 = (0, 0, 1.286,0) when   𝛾 = 0.03. 

 

The effect of varying the carrying capacity and the medical resource for treatment rate was studied, 

it is found that solution of system (1) will approach to the (EP) 𝑃6 = (0, 0.541, 0.886, 0) as 

it shows in Figure (15). 

 

Figure -15 The trajectory of system (1) using data given in (22) approaches to 𝑃6 =

(0, 0.541, 0.886, 0) when 𝐾 = 2, 𝛾 = 0.08. 
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The effect of varying the intrinsic growth rates of the first and the second prey was studied, it is 

found that solution of system (1) will approach to the (EP) 𝑃7 = (0, 0, 0.473, 0.564) as it 

shows in Figure (16). 

 

Figure -16 The trajectory of system (1) using data given in (22) approaches to 𝑃7 = (0, 0, 0.473, 0.564) 

when 𝑎1 = 0.02 and 𝑎2 = 0.01. 

 

6. THE CONCLUSIONS AND DISCUSSIONS 

In this paper, the conditions of the local bifurcation have been established for a food web eco-

epidemiological model with fear and internal competition effects in the first and second prey 

populations, the susceptible predator feeds on preys using two different types of functional 

responses, as well as with additional food and hunting cooperation, on the other hand treatment is 

presumed to be being administered to the infected predator, and it is observed that near the 

equilibrium points: 

➢ At 𝑃7 , 𝑃9 and 𝑃10 system (1) possesses a transcritical bifurcation only at the intrinsic 

growth rate of the second prey (�̌�2, �̃̃�2) respectively while  𝑃3 , 𝑃4 , 𝑃5 , 𝑃6 , 𝑃8 , 𝑃11 and 

𝑃12 have a transcritical and pitchfork bifurcations at the disease transmission rate (�̅�), 

the natural death rate of susceptible predator (�̆�), the disease transmission rate (�̿�), the 

intrinsic growth rate of the first prey (�̂�1), the disease transmission rate (�̃�), and the 

intrinsic growth rate of the first prey (�̇�1) respectively. 

➢ At 𝑃13 and 𝑃14 system (1) possesses a saddle-node bifurcation at the natural death rate 

of susceptible predator (𝑑∗). 

Furthermore, investigations for (HB) at the natural death rate of susceptible predator (𝑑⋆) near 

𝑃13 and 𝑃14 are carried out. On the other hand, numerical simulations were conducted using the 

Mathematica program for three distinct initial points and one hypothetical set of data given in (22). 

The results showed that: 
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1. The parameters that are most efficient in managing the stability of system (1) are 𝑎𝑖, 𝑓𝑖,

𝑏𝑖, 𝐵1, 𝜌, 𝐾, 𝑑, 𝐵, 𝛾, and 𝛿 ; 𝑖 = 1,2. 

2. The stability of system (1), where the solutions are still approaching the positive 

equilibrium point, is not affected by the parameters 𝑎3, 𝐶, 𝛼, 𝜂, 𝐴, ℎ, 𝐶𝑗 and 𝜎; 𝑗 = 1,2. 
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