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Abstract. This study develops an optimal control model to analyze the spatial and temporal spread of COVID-19

using an interacting fluid flow approach. Susceptible and infected populations are treated as interacting inviscid

fluids governed by Euler’s equations, allowing for the spatial dynamics of disease transmission to be captured effec-

tively. Control interventions, specifically vaccination (targeting susceptibility) and medical treatment (enhancing

recovery rates), are incorporated as key strategies to mitigate the spread of infection. The model’s spatio-temporal

dynamics are explored using high-order computational methods, namely the weighted essentially non-oscillatory

(WENO) scheme for spatial discretization and the fourth-order Runge-Kutta method for time integration. Numer-

ical simulations demonstrate the effectiveness of the proposed controls, emphasizing that a strategic combination

of vaccination and treatment significantly reduces disease prevalence, especially in densely populated regions.

∗Corresponding author

E-mail address: daniel.nnaji@unn.edu.ng

Received February 26, 2025
1



2 NNAJI, KIOGORA, MUNG’ATU, NNAJI

This modeling framework offers valuable insights for policymakers, emphasizing efficient resource allocation and

strategic intervention planning to manage COVID-19 or similar infectious diseases effectively.
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1. Introduction

Mathematical models play a pivotal role in understanding and predicting the dynamics of

infectious diseases such as COVID-19 [1, 2]. We present here a simple SIR model that describes

the COVID-19 spread within a short period of time, incorporating vital dynamics through

constant birth Λ, natural death (𝜇) rates, disease recovery (𝛾) rate and additional infection-

associated mortality (𝜑). As described by [3], the ordinary differential equation (ODE) of a

simple COVID-19 model is:

(1)

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆𝐼 − 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜑 + 𝜇)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅,

with force of infection (𝛽𝑆𝐼), describing the disease transmission dynamics, where 𝛽 is the

transmission rate. The basic reproduction number of equation (1) is simply:

(2) 𝑅0 =
𝛽Λ

𝜇(𝛾 + 𝜑 + 𝜇)

As we stated earlier, this model is tailored for short-term epidemic scenarios, making it well-

suited for analyzing the initial phase of COVID-19 outbreak where vital dynamics and rapid

disease progression are prominent factors [4].

While the ODE-based model (1) provides a basic understanding of epidemic dynamics, most

existing models offer little or no insight into the spatial dynamics of infectious disease spread.

As a result, there is a need for models that can better describe when, where, and how an epidemic

spreads. To this account, researchers [5, 6, 7] began to propose epidemic models that integrates

both space and time parameters, offering better accuracy in predicting localized outbreaks and

capturing the diffusion of infections across a heterogeneous landscape.
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Inspired by previous applications of (inviscid) fluid dynamics in modeling traffic flows, Cheng

and Wang [8] contributed to the study of COVID-19 spatial epidemic spread by proposing a

two-phase system that treats the susceptible and infected populations as a fluids with movement

patterns, while modeling COVID-19 disease transmission as fluid motion. It is worth noting

that both susceptible and infected populations are modeled as interacting fluids mirroring the

spread of COVID-19 across a spatial domain.

In this work, we contribute to the existing study by improving thework ofCheng and Wang and

presenting an optimal control model for the spatial spread of COVID-19, using a framework that

explores two primary control measures: (i) reducing susceptibility through vaccination and (ii)

enhancing recovery rates through effective treatment of the infected individuals. These controls

target different phases of the epidemic progression, aiming to curb the spread of COVID-19

by decreasing the number of susceptible individuals and boosting recovery among infected

individuals, respectively.

Our approach utilizes a spatial model based on the classic SIR compartment framework

[9, 10]. Here, populations over a given location of study interest are referred to as population

densities, while both susceptible and infected population densities are treated as inviscid fluids,

characterized by Euler’s equation to represent the velocity and direction of epidemic spread [11].

The spatio-temporal dynamics of our model are represented by a set of partial differential

equations (PDEs) that describes the evolution of the epidemic over space and time. At the

onset of the outbreak, the susceptible population typically occupies a vast spatial domain, while

infected populations are initially concentrated in specific hotspots of infection. As infected

and susceptible individuals come into contact, infection spreads, with susceptible individuals

converting into infected ones. This conversion process is central to the two-phase fluid model,

where susceptible "fluid" transforms into infected "fluid," continuously altering the densities

and spatial distribution of both populations throughout the epidemic [12].

Given the complex pattern of COVID-19 transmission, we assume a macroscopic approach to

the spread. Here, the macroscopic assumption treats the susceptible and infected populations as

continuous fluids rather than tracking individual movements and behaviors. By modeling these

populations as inviscid fluids, our study captures the large-scale dynamics of COVID-19 spread
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while ignoring individual-level variability. This approach provides us with the opportunity to

use fluid dynamics equations, such as the Euler equations, to describe themotion of these "fluids"

and their interaction over space and time. To achieve high-resolution spatial dynamics in our

simulations, we employ the high-order weighted essentially non-oscillatory (WENO) scheme,

a computational method from fluid dynamics known for its precision in resolving complex,

non-linear flow characteristics [13, 14]. Through this advanced computational approach, our

model provides valuable insights into the spatio-temporal progression of COVID-19, offering

tools for understanding and controlling epidemic spread in different spatial settings.

The remainder of this work is structured as follows: Section 2 presents the formulation

of the spatial model, detailing the governing equations and assumptions underlying the fluid

dynamics analogy. Section 3 conducts a thorough analysis of the model, including stability

assessments and the derivation of key mathematical properties, while Section 4 highlights the

spatial and temporal numerical discretization using theWENO-5 andRK4 schemes, respectively.

Section 5 introduces the optimal control strategies, outlining the implementation of vaccination

and treatment interventions to mitigate disease spread. Section 6 discusses the numerical

simulations, illustrating the model’s effectiveness through computational experiments. Finally,

Section 7 provides conclusions while restating the valuable contributions made.

2. Formulation of the Spatial Model

The COVID-19 spatial model is formulated based on the principles of conservation laws in

fluid dynamics [9]. To simplify and capture the complexities of its spatial behavior, several core

assumptions are introduced: both susceptible and infected populations are treated as continuous

densities across the study area. Interactions between these groups are modeled as if they

were inviscid, emphasizing a broad-scale perspective of how the disease spreads. The spatial

environment is assumed to be uniform, meaning its properties remain constant throughout the

domain. At the boundaries, no population movement occurs, reflecting zero-flow boundary

conditions. Furthermore, the model likens the behavior of these population groups to an

equation of state (the Ideal Gas Law), with temperature kept constant throughout the outbreak.

Together, these assumptions form a straightforward yet effective framework for analyzing how

the epidemic spreads over time and space [15].



OPTIMAL CONTROL MODEL FOR THE SPATIAL SPREAD OF COVID-19 5

The changes in the densities of the susceptible and infected/infectious populations aremodeled

using the continuity equation: 𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑉) = 𝜎, which ensures that population densities

remain consistent over time [16]. The spread of COVID-19 as a result of the movement of these

populations is determined by Euler’s equation of motion: 𝜕𝑉
𝜕𝑡

+ 𝑉 · ∇𝑉 = − 1
𝜌
∇𝑃, providing a

framework for understanding their velocity profiles.

The two dimensional spatial form of system (1) is therefore:

(3)

𝜕𝑆(𝑡, 𝑋)
𝜕𝑡

+ ∇ · (𝑆𝑞𝑠) = Λ − 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − 𝜇𝑆(𝑡, 𝑋)

𝜕𝐼 (𝑡, 𝑋)
𝜕𝑡

+ ∇ · (𝐼𝑞𝑖) = 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − (𝛾 + 𝜑 + 𝜇)𝐼 (𝑡, 𝑋)

𝜕𝑅(𝑡, 𝑋)
𝜕𝑡

= 𝛾𝐼 (𝑡, 𝑋) − 𝜇𝑅(𝑡, 𝑋)

Where 𝑋 = (𝑥, 𝑦), ∇ = 𝜕
𝜕𝑥

+ 𝜕
𝜕𝑦
, 𝑆(𝑡, 𝑋) is the susceptible population density, 𝐼 (𝑡, 𝑋) is

the infected/infectious population density, and 𝑅(𝑡, 𝑋) is the recovered population density. The

parameters𝜆, 𝛽, 𝛾, 𝜑, 𝜇 are as defined above in (1). The velocity fields 𝑞𝑠 and 𝑞𝑖 of the susceptible

and infected/infectious compartments are described by Euler’s equations and are given by:

(4)
𝑆
𝜕𝑞𝑠

𝜕𝑡
+ 𝑆𝑞𝑠 · ∇𝑞𝑠 = −∇𝑃𝑠,

𝐼
𝜕𝑞𝑖

𝜕𝑡
+ 𝐼𝑞𝑖 · ∇𝑞𝑖 = −∇𝑃𝑖,

Where 𝑞𝑠 = (𝑢𝑠, 𝑣𝑠) and 𝑞𝑖 = (𝑢𝑖, 𝑣𝑖). Applying the equation of state which characterizes the

fluid pressure 𝑃 in terms of density, we have from equation (4) that 𝑃𝑠 = 𝑘𝑠𝑆 and 𝑃𝑖 = 𝑘𝑖 𝐼,

where 𝑘𝑠, 𝑘𝑖 are constants. This straightforward analogy suggests that the movement of the fluid

is influenced by variations in its density gradient. Equations (3) and (4) are subject to the initial

and boundary conditions:

(5)


𝑆(0, 𝑋) > 0, 𝐼 (0, 𝑋) ≥ 0, 𝑅(0, 𝑋) ≥ 0 and 𝑞𝑠 (0, 𝑋) = 0, 𝑞𝑖 (0, 𝑋) = 0

𝜕𝑆
𝜕𝑛

��
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0, 𝜕𝐼
𝜕𝑛

��
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0, 𝜕𝑅
𝜕𝑛

��
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 0, 𝑞𝑠 |𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0, 𝑞𝑖 |𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0

Note: The recovered class will be neglected in the model analysis because the study focuses on

the early phase of the COVID-19, where infection spread is the dominant concern.
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3. Model Analysis

This section conducts the spatial analysis of equation (3) and (4). To proceed, we consider

the compartments with spatial terms, together with their velocity fields i.e.:

(6)




𝜕𝑆(𝑡,𝑋)
𝜕𝑡

+ ∇ · (𝑆𝑞𝑠) = Λ − 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − 𝜇𝑆(𝑡, 𝑋)
𝜕𝐼 (𝑡,𝑋)
𝜕𝑡

+ ∇ · (𝐼𝑞𝑖) = 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − (𝛾 + 𝜑 + 𝜇)𝐼 (𝑡, 𝑋)
𝑆
𝜕𝑞𝑠
𝜕𝑡

+ 𝑆𝑞𝑠 · ∇𝑞𝑠 = −𝑘𝑠∇𝑆,

𝐼
𝜕𝑞𝑖
𝜕𝑡

+ 𝐼𝑞𝑖 · ∇𝑞𝑖 = −𝑘𝑖∇𝐼

Let us refer to equation (6) as having two cases: Upper-case and Lower-case. Then, multiplying

the velocity vectors (𝑞𝑠, 𝑞𝑖) on both sides of the Upper-case of (6), and adding the results to the

corresponding Lower-case of (6), we obtain:

(7)


𝜕
𝜕𝑡
(𝑆𝑞𝑠) + ∇ · (𝑆𝑞𝑠𝑞𝑠) = −𝑘𝑠∇𝑆 + Λ𝑞𝑠 − 𝛽𝑆𝐼𝑞𝑠 − 𝜇𝑆𝑞𝑠

𝜕
𝜕𝑡
(𝐼𝑞𝑖) + ∇ · (𝐼𝑞𝑖𝑞𝑖) = −𝑘𝑖∇𝐼 + 𝛽𝑆𝐼𝑞𝑖 − (𝛾 + 𝜑 + 𝜇)𝐼𝑞𝑖

Expressing the Upper-case of equation (6), and (7) in their respective 𝑥- and 𝑦-direction, we

obtain:

(8)



𝜕𝑆
𝜕𝑡

+ 𝜕 (𝑆𝑢𝑠)
𝜕𝑥

+ 𝜕 (𝑆𝑣𝑠)
𝜕𝑦

= Λ − 𝛽𝑆𝐼 − 𝜇𝑆
𝜕 (𝑆𝑢𝑠)
𝜕𝑡

+ 𝜕 (𝑆𝑢2𝑠)
𝜕𝑥

+ 𝜕 (𝑆𝑢𝑠𝑣𝑠)
𝜕𝑦

= −𝑘𝑠 𝜕𝑆𝜕𝑥 + Λ𝑢𝑠 − 𝛽𝑆𝐼𝑢𝑠 − 𝜇𝑆𝑢𝑠
𝜕 (𝑆𝑣𝑠)
𝜕𝑡

+ 𝜕 (𝑆𝑢𝑠𝑣𝑠)
𝜕𝑥

+ 𝜕 (𝑆𝑣2𝑠)
𝜕𝑦

= −𝑘𝑠 𝜕𝑆𝜕𝑦 + Λ𝑣𝑠 − 𝛽𝑆𝐼𝑣𝑠 − 𝜇𝑆𝑣𝑠
𝜕𝐼
𝜕𝑡

+ 𝜕 (𝐼𝑢𝑖)
𝜕𝑥

+ 𝜕 (𝐼𝑣𝑖)
𝜕𝑦

= 𝛽𝑆𝐼 − (𝛾 + 𝜑 + 𝜇)𝐼
𝜕 (𝐼𝑢𝑖)
𝜕𝑡

+ 𝜕 (𝐼𝑢2
𝑖
)

𝜕𝑥
+ 𝜕 (𝐼𝑢𝑖𝑣𝑖)

𝜕𝑦
= −𝑘𝑖 𝜕𝐼𝜕𝑥 + 𝛽𝑆𝐼𝑢𝑖 − (𝛾 + 𝜑 + 𝜇)𝐼𝑢𝑖

𝜕 (𝐼𝑣𝑖)
𝜕𝑡

+ 𝜕 (𝐼𝑢𝑖𝑣𝑖)
𝜕𝑥

+ 𝜕 (𝐼𝑣2
𝑖
)

𝜕𝑦
= −𝑘𝑖 𝜕𝑆𝜕𝑦 + 𝛽𝑆𝐼𝑣𝑖 − (𝛾 + 𝜑 + 𝜇)𝐼𝑣𝑖

In its compact form, system (8) can be written as:

𝜕𝑈

𝜕𝑡
+ 𝜕𝑀 (𝑈)

𝜕𝑥
+ 𝜕𝑁 (𝑈)

𝜕𝑦
= 𝑄(𝑈)(9a)

In its explicit form, equation (9a) becomes

𝜕𝑈

𝜕𝑡
+ 𝜕𝑀
𝜕𝑈

· 𝜕𝑈
𝜕𝑥

+ 𝜕𝑁
𝜕𝑈

· 𝜕𝑈
𝜕𝑦

= 𝑄(𝑈)(9b)
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Where

𝑈 =

©«

𝑆

𝑆𝑢𝑠

𝑆𝑣𝑠

𝐼

𝐼𝑢𝑖

𝐼𝑣𝑖

ª®®®®®®®®®®®®®®¬
, 𝑀 (𝑈) =

©«

𝑆𝑢𝑠

𝑆𝑢2𝑠 + 𝑘𝑠𝑆

𝑆𝑢𝑠𝑣𝑠

𝐼𝑢𝑖

𝐼𝑢2
𝑖
+ 𝑘𝑖 𝐼

𝐼𝑢𝑖𝑣𝑖

ª®®®®®®®®®®®®®®¬
, 𝑀 (𝑈) =

©«

𝑆𝑣𝑠

𝑆𝑢𝑠𝑣𝑠

𝑆𝑣2𝑠 + 𝑘𝑠𝑆

𝐼𝑣𝑖

𝐼𝑢𝑖𝑣𝑖

𝐼𝑣2
𝑖
+ 𝑘𝑖 𝐼

ª®®®®®®®®®®®®®®¬
, 𝑄(𝑈) =

©«

Λ − 𝛽𝑆𝐼 − 𝜇𝑆

Λ𝑢𝑠 − 𝛽𝑆𝐼𝑢𝑠 − 𝜇𝑆𝑢𝑠
Λ𝑣𝑠 − 𝛽𝑆𝐼𝑣𝑠 − 𝜇𝑆𝑣𝑠
𝛽𝑆𝐼 − (𝛾 + 𝜑 + 𝜇)𝐼

𝛽𝑆𝐼𝑢𝑖 − (𝛾 + 𝜑 + 𝜇)𝐼𝑢𝑖
𝛽𝑆𝐼𝑣𝑖 − (𝛾 + 𝜑 + 𝜇)𝐼𝑣𝑖

ª®®®®®®®®®®®®®®¬
.

We note that 𝜕𝑀
𝜕𝑈
and 𝜕𝑁

𝜕𝑈
are referred to as the Jacobian of 𝐹 and 𝐺 respectively. Thus,

the Jacobian matrices now becomes

(10) 𝐽𝑀 =
𝜕𝑀

𝜕𝑈
=

©«

0 1 0 0 0 0

𝑘𝑠 − 𝑢2𝑠 2𝑢𝑠 0 0 0 0

−𝑢𝑠𝑣𝑠 𝑣𝑠 𝑢𝑠 0 0 0

0 0 0 0 1 0

0 0 0 𝑘𝑖 − 𝑢2𝑖 2𝑢𝑖 0

0 0 0 −𝑢𝑖𝑣𝑖 𝑣𝑖 𝑢𝑖

ª®®®®®®®®®®®®®®¬
and

(11) 𝐽𝑁 =
𝜕𝑁

𝜕𝑈
=

©«

0 0 1 0 0 0

−𝑢𝑠𝑣𝑠 𝑣𝑠 𝑢𝑠 0 0 0

𝑘𝑠 − 𝑣2𝑠 0 2𝑣𝑠 0 0 0

0 0 0 0 0 1

0 0 0 −𝑢𝑖𝑣𝑖 𝑣𝑖 𝑢𝑖

0 0 0 𝑘𝑖 − 𝑣2𝑖 0 2𝑣𝑖

ª®®®®®®®®®®®®®®¬
It is clear to see that for any two numbers 𝑚, 𝑛 ∈ R, the resulting matrix
(12)

𝑚
𝜕𝑀

𝜕𝑈
+ 𝑛 𝜕𝑁

𝜕𝑈
=

©«

0 𝑚 𝑛 0 0 0

𝑚(𝑘𝑠 − 𝑢2𝑠) − 𝑛𝑢𝑠𝑣𝑠 2𝑚𝑢𝑠 + 𝑛𝑣𝑠 𝑛𝑢𝑠 0 0 0

−𝑚𝑢𝑠𝑣𝑠 + 𝑛(𝑘𝑠 − 𝑣2𝑠) 𝑚𝑣𝑠 𝑚𝑢𝑠 + 2𝑛𝑣𝑠 0 0 0

0 0 0 0 𝑚 𝑛

0 0 0 𝑚(𝑘𝑖 − 𝑢2𝑖 ) − 𝑛𝑢𝑖𝑣𝑖 2𝑚𝑢𝑖 + 𝑛𝑣𝑖 𝑛𝑢𝑖

0 0 0 −𝑚𝑢𝑖𝑣𝑖 + 𝑛(𝑘𝑖 − 𝑣2𝑖 ) 𝑚𝑣𝑖 𝑚𝑢𝑖 + 2𝑛𝑣𝑖

ª®®®®®®®®®®®®®®¬
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has the eigenvalues:

𝜆1 = 𝑚𝑢𝑠 + 𝑛𝑣𝑠 , 𝜆2,3 = 𝑚𝑢𝑠 + 𝑛𝑣𝑠 ±
√︁
𝑘𝑠 (𝑚2 + 𝑛2)

𝜆4 = 𝑚𝑢𝑖 + 𝑛𝑣𝑖 , 𝜆5,6 = 𝑚𝑢𝑖 + 𝑛𝑣𝑖 ±
√︁
𝑘𝑖 (𝑚2 + 𝑛2) .

Then, it suffices to say that by [13],[8] and [12], system (9a) is hyperbolic.

Analyzing system (9a) can often be challenging, so a linear approach is chosen instead. To

linearize the hyperbolic PDE (9a), we assume𝑈 is perturbed around a steady state𝑈0, such that

𝑈 = 𝑈0 + 𝛿𝑈, where 𝛿𝑈 represents a small perturbation. At steady state,

(13) 𝑈0 =
[
𝑆0 𝑆0𝑢

0
𝑠 𝑆0𝑣

0
𝑠 𝐼0 𝐼0𝑢

0
𝑖 𝐼0𝑣

0
𝑖

]𝑇
=

[
Λ

𝜇
0 0 0 0 0

]𝑇
But the steady state (13) is likened to the disease-free-equilibrium of the system. To proceed

with the linear analysis, we expand 𝑀 (𝑈) and 𝑁 (𝑈) about 𝑈0 using Taylor series neglecting

higher order terms (𝛿𝑈2, 𝛿𝑈3, · · · ):

(14) 𝑀 (𝑈) ≈ 𝑀 (𝑈0) +
𝜕𝑀

𝜕𝑈

����
𝑈0

· 𝛿𝑈0 , and 𝑁 (𝑈) ≈ 𝑁 (𝑈0) +
𝜕𝑁

𝜕𝑈

����
𝑈0

· 𝛿𝑈0

Substituting𝑈 = 𝑈0 + 𝛿𝑈 into system (9a) leads to:

(15)
𝜕 (𝑈0 + 𝛿𝑈)

𝛿𝑡
+ 𝜕𝑀

𝜕𝑈

����
𝑈0

· 𝜕 (𝑈0 + 𝛿𝑈)
𝛿𝑥

+ 𝜕𝑁

𝜕𝑈

����
𝑈0

· 𝜕 (𝑈0 + 𝛿𝑈)
𝛿𝑦

= 𝑄(𝑈0) +
𝜕𝑄

𝜕𝑈

����
𝑈0

· 𝛿𝑈

Simplifying equation (15), noting that𝑈0 satisfies the steady-state equation and 𝑄(𝑈0) is a zero

matrix, we have that the linearized equation becomes:

(16)
𝜕 (𝛿𝑈)
𝛿𝑡

+ 𝜕𝑀

𝜕𝑈

����
𝑈0

· 𝜕 (𝛿𝑈)
𝛿𝑥

+ 𝜕𝑁

𝜕𝑈

����
𝑈0

· 𝜕 (𝛿𝑈)
𝛿𝑦

=
𝜕𝑄

𝜕𝑈

����
𝑈0

· 𝛿𝑈

Then, making a variable transformation 𝛿𝑈 → 𝑈, we have that equation (16) becomes

(17)
𝜕𝑈

𝛿𝑡
+ 𝜕𝑀

𝜕𝑈

����
𝑈0

· 𝜕𝑈
𝛿𝑥

+ 𝜕𝑁

𝑈

����
𝑈0

· 𝜕𝑈
𝛿𝑦

=
𝜕𝑄

𝜕𝑈

����
𝑈0

·𝑈

Where

(18)
𝜕𝑀

𝜕𝑈

����
𝑈0

=

©«

0 1 0 0 0 0

𝑘𝑠 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 𝑘𝑖 0 0

0 0 0 0 0 0

ª®®®®®®®®®®®®®®¬
,

𝜕𝑁

𝜕𝑈

����
𝑈0

=



0 0 1 0 0 0

0 0 0 0 0 0

𝑘𝑠 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 𝑘𝑖 0 0
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and

(19)

𝜕𝑄

𝜕𝑈
=

©«

−𝛽𝐼 − 𝜇 0 0 −𝛽𝑆 0 0

−Λ𝑢𝑠
𝑆

Λ
𝑆
− 𝛽𝐼 − 𝜇 0 −𝛽𝑆𝑢𝑠 0 0

−Λ𝑣𝑠
𝑆

0 Λ
𝑆
− 𝛽𝐼 − 𝜇 −𝛽𝑆𝑣𝑠 0 0

𝛽𝐼 0 0 𝛽𝑆 − (𝛾 + 𝜇 + 𝜑) 0 0

𝛽𝐼𝑢𝑖 0 0 0 𝛽𝑆 − (𝛾 + 𝜇 + 𝜑) 0

𝛽𝐼𝑣𝑖 0 0 0 0 𝛽𝑆 − (𝛾 + 𝜇 + 𝜑)

ª®®®®®®®®®®®®®®¬
At steady state

(20)
𝜕𝑄

𝜕𝑈

����
𝑈0

=

©«

−𝜇 0 0 −Λ𝛽

𝜇
0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜑) 0 0

0 0 0 0 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜑) 0

0 0 0 0 0 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜑)

ª®®®®®®®®®®®®®®¬
.

We introduce an initial guess

(21) 𝑈 = �̄�𝑒𝜂𝑡𝑒𝚤(𝑎𝑥+𝑏𝑦+𝜙)

where 𝚤 defines the imaginary unit which satisfies 𝚤2 = −1, with 𝑎 and 𝑏 representing the wave

numbers corresponding to vertical and horizontal distribution of COVID-19 in the location of

interest respectively, while 𝜙 represents the phase shift. Differentiating (21) and substituting the

results into (17), we have that since 𝑒𝜂𝑡𝑒𝚤(𝑎𝑥+𝑏𝑦+𝜙) ≠ 0, then

(22)

[
𝜂I −

(
𝜕𝑄

𝜕𝑈

����
𝑈0

− 𝚤𝑎 𝜕𝑀
𝜕𝑈

����
𝑈0

− 𝚤𝑏 𝜕𝑁
𝜕𝑈

����
𝑈0

)]
�̄� = 0

Where I represents the identity matrix. For a nontrivial solution of �̄�, the term 𝜂 must be an

eigenvalue of the resulting matrix: 𝑍∗ = 𝜕𝑄

𝜕𝑈

���
𝑈0

− 𝚤𝑎 𝜕𝑀
𝜕𝑈

��
𝑈0

− 𝚤𝑏 𝜕𝑁
𝜕𝑈

��
𝑈0
. Therefore, from equation

(18) and (20), 𝑍∗ becomes:
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(23) 𝑍∗ =

©«

−𝜇 −𝚤𝑎 −𝚤𝑏 −Λ𝛽

𝜇
0 0

−𝚤𝑎𝑘𝑠 0 0 0 0 0

−𝚤𝑏𝑘𝑠 0 0 0 0 0

0 0 0 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜙) −𝚤𝑎 −𝚤𝑏

0 0 0 −𝚤𝑎𝑘𝑖 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜙) 0

0 0 0 −𝚤𝑏𝑘𝑖 0 Λ𝛽

𝜇
− (𝛾 + 𝜇 + 𝜙)

ª®®®®®®®®®®®®®®¬
The eigenvalues of matrix (23) are

𝜂1 = 0 𝜂2,3 = − 𝜇

2 ± 𝚤
√︃
𝑘𝑠 (𝑎2 + 𝑏2) + 𝜇2

4

𝜂4 =
Λ𝛽

𝜇
− (𝛾 + 𝜑 + 𝜇) 𝜂5,6 =

Λ𝛽

𝜇
− (𝛾 + 𝜑 + 𝜇) ± 𝚤

√︁
(𝑎2 + 𝑏2)𝑘𝑖

Then, it suffices to say that the first three eigenvalues (𝜂1, 𝜂2, 𝜂3) describe the wavefront of the

susceptible fluid. Since 𝜂2 and 𝜂3 have negative real parts, the zero eigenvalue indicates that

the system is at a critical turning point, where even small changes in parameters could lead to

significant shifts in disease behavior, such as transitioning from eradication to an outbreak or

vice versa. At this point, the system exhibits neutral behavior near the equilibrium point in the

direction of the susceptible fluid. This condition is known as marginal stability, which suggests

that while the system will neither move away from equilibrium nor return to it if disturbed along

this direction, it will remain in a balanced state.

On the other hand, observe that from eigenvalues (𝜂4, 𝜂5 and 𝜂6), the term Λ𝛽

𝜇
− (𝛾 + 𝜑 + 𝜇) =

(𝑅0 − 1) (𝛾 + 𝜑 + 𝜇). It therefore makes sense to say that the last three eigenvalues describes

the wave-front of the infected fluid, with a bi-directional propagation speed of
√
𝑘𝑖 towards the

direction determined by the unit vector:
(

𝑎√
𝑎2+𝑏2

, 𝑏√
𝑎2+𝑏2

)
.

Drawing conclusion from equation (2), if 𝑅0 < 1, then, the eigenvalues 𝜂4, 𝜂5, 𝜂6 will have

negative real-parts, and as a result, the system will be linearly stable around the equilibrium

point𝑈0. Otherwise, the system is unstable.

4. The WENO Scheme

Here, we propose to spatially discretize the flux terms of the given hyperbolic PDE (9a) using

the fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme, and the fourth-order

Runge-Kutta (RK4) time-stepping scheme for the temporal discretization.
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To proceed, we divide the spatial domain into a uniform grid. In 𝑥-direction, the cells are

indexed by 𝑗 and defined asN𝑗 = [𝑥 𝑗− 12 , 𝑥 𝑗+ 12 ], while in 𝑦-direction, the cells are indexed 𝑘 and

defined as N𝑘 = [𝑦𝑘− 12 , 𝑦𝑘+ 12 ], where 𝑗 = 1, 2, . . . ,N𝑥 and 𝑘 = 1, 2, . . . ,N𝑦. The cell centers

are located at (𝑥 𝑗 , 𝑦𝑘 ), with 𝑥 𝑗 =
𝑥
𝑗+ 12

+𝑥
𝑗− 12

2 and 𝑦𝑘 =
𝑦
𝑘+ 12

+𝑦
𝑘− 12

2 . The flux values at these points

are denoted by 𝑀 𝑗 = 𝑀 (𝑥 𝑗 ) and 𝑁𝑘 = 𝑁 (𝑦𝑘 ), respectively.

Nextwe approximate the flux derivatives 𝜕𝑀 (𝑈)
𝜕𝑥
and 𝜕𝑁 (𝑈)

𝜕𝑦
at cell center by: 1

Δ𝑥

(
𝑀 𝑗+ 12

− 𝑀 𝑗− 12

)
and 1

Δ𝑦

(
𝑁𝑘+ 12

− 𝑁𝑘− 12
)
respectively, where 𝑀 𝑗+ 12

and 𝑁𝑘+ 12 are the numerical fluxes at the cell

interface 𝑥 𝑗+ 12 and 𝑦𝑘+ 12 . To achieve fifth-order accuracy, the fluxes are reconstructed using the

stencil of 5-cells:

{𝑀 𝑗−2, 𝑀 𝑗−1, 𝑀 𝑗 , 𝑀 𝑗+1, 𝑀 𝑗+2} on the 𝑥-direction and {𝑁𝑘−2, 𝑁𝑘−1, 𝑁𝑘 , 𝑁𝑘+1, 𝑁𝑘+2} on the 𝑦-

direction. The WENO scheme combines three candidate third-order sub-stencils into a single

high-order sub-stencil using smoothness indicators and nonlinear weights. To calculate the

sub-stencils, we used

WENO steps: For a fixed 𝑦 𝑗 , we considered the following stencils:

Stencil 0: {𝑥 𝑗−2, 𝑥 𝑗−1, 𝑥 𝑗 }

Stencil 1: {𝑥 𝑗−1, 𝑥 𝑗 , 𝑥 𝑗+1}

Stencil 2: {𝑥 𝑗 , 𝑥 𝑗+1, 𝑥 𝑗+2}

(24)

For a fixed 𝑥𝑖,we also considered the following stencils:

Stencil 0: {𝑦𝑘−2, 𝑦𝑘−1, 𝑦𝑘 }

Stencil 1: {𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1}

Stencil 2: {𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2}

(25)

Again, we proceed to compute the smoothness indicator 𝛽𝑚 as described in [17, 18] defined

by:

(26) 𝛽𝑚 =

2∑︁
𝑙=0

∫ 𝑥
𝑗+ 12

𝑥
𝑗− 12

(
Δ𝑥𝑙−1

𝑑𝑙

𝑑𝑥𝑙
𝑝𝑚 (𝑥)

)2
where 𝑝𝑚 (𝑥) is the polynomial on stencil𝑚. Equation (26) must be repeated for 𝑝𝑛 (𝑦) on stencil

𝑛. Then the reconstructed value at a point (𝑥𝑖+1/2, 𝑦 𝑗+1/2) is given by the weighted sum of the
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polynomial reconstructions in each direction [see Appendix A]:

(27) 𝑃(𝑥𝑖+1/2, 𝑦 𝑗+1/2) =
2∑︁

𝑚=0

2∑︁
𝑛=0

𝜔𝑥𝑚𝜔
𝑦
𝑛𝑝

𝑥
𝑚 (𝑥 𝑗+1/2, 𝑦𝑘 )𝑝

𝑦
𝑛 (𝑥 𝑗 , 𝑦𝑘+1/2)

where:

• 𝜔𝑥𝑚 and 𝜔
𝑦
𝑛 are the nonlinear WENO weights in the 𝑥- and 𝑦-directions, respectively.

• 𝑝𝑥𝑚 (𝑥𝑖+1/2, 𝑦 𝑗 ) is the polynomial reconstructed in the 𝑥-direction evaluated at 𝑥𝑖+1/2.

• 𝑝
𝑦
𝑛 (𝑥𝑖, 𝑦 𝑗+1/2) is the polynomial reconstructed in the 𝑦-direction evaluated at 𝑦 𝑗+1/2.

(28) 𝜔𝑙 =
𝛼𝑙∑2
𝑟=0 𝛼𝑟

, where 𝛼𝑙 =
𝑑𝑙

(𝜖 + 𝛽𝑙)𝑝

Where 𝑙 = (𝑚, 𝑛) in 𝑥- or 𝑦-direction, 𝑑𝑙 are linear weights, 𝛽𝑙 are smoothness indicators, 𝜖 is a

small parameter to avoid division by zero, and 𝑝 = 2 determines the sharpness of the transition

between smooth and non-smooth regions.

For the final approximation, we combine the two spatially discretized form of the PDE to

update the solution𝑈 by:

(29)
𝜕𝑈 𝑗 ,𝑘

𝜕𝑡
= 𝐿 (𝑈 𝑗 ,𝑘 ) = −

𝑀 𝑗+ 12
− 𝑀 𝑗− 12
Δ𝑥

−
𝑁 𝑗+ 12

− 𝑁 𝑗− 12
Δ𝑦

+𝑄(𝑈 𝑗 ,𝑘 )

Temporal Discretization. Here, the fourth-order Runge-Kutta scheme was used for the time

discretization [19, 20]. The RK4 method approximates the solution 𝑈 𝑗 ,𝑘 (𝑡) at each time step.

Given the solution 𝑈𝑛
𝑗,𝑘
at time 𝑡𝑛, the solution 𝑈𝑛+1

𝑗 ,𝑘
at time 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡, is computed as

follows:

(30)

𝐾1 = 𝐿 (𝑈𝑛
𝑗,𝑘 )

𝐾2 = 𝐿 𝑗 ,𝑘

[
𝑈𝑛
𝑗,𝑘 +

Δ

2
𝐾1

]
𝐾3 = 𝐿 𝑗 ,𝑘

[
𝑈𝑛
𝑗,𝑘 +

Δ

2
𝐾2

]
𝐾4 = 𝐿 𝑗 ,𝑘

[
𝑈𝑛
𝑗,𝑘 + Δ𝑡𝐾3

]
To update𝑈 𝑗 ,𝑘 to the next time step𝑈𝑛+1, we use:

(31) 𝑈𝑛+1
𝑗 ,𝑘 = 𝑈𝑛

𝑗,𝑘 +
Δ𝑡

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)
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The RK4 integration method provides fourth-order accuracy in time, aligning well with the

fifth-order spatial accuracy achieved through theWENO scheme. Time-stepping continues until

𝑡 = 1, using a time increment of Δ𝑡 = 0.001 and a spatial grid defined by N𝑥 ,N𝑦.

5. Optimal Control Model

To develop an optimal control model for the given COVID-19 dynamics, we incorporate con-

trol functions representing interventions such as vaccination and treatment. These controls aim

to minimize both the number of infected individuals and the costs associated with implementing

them over time and across the spatial domain. We define:

• 𝑢1(𝑡, 𝑋): Control function for vaccination at location 𝑋 to reduce the number of suscep-

tible individuals who gets infected.

• 𝑢2(𝑡, 𝑋): Control function for treatment to increase the recovery rate of infected indi-

viduals at location 𝑋 .

Introducing these controls, the optimized form of system (3) becomes:

(32)

𝜕𝑆(𝑡, 𝑋)
𝜕𝑡

+ ∇ · (𝑆𝑞𝑠) = Λ − 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − 𝜇𝑆(𝑡, 𝑋) − 𝑢1𝑆(𝑡, 𝑋)

𝜕𝐼 (𝑡, 𝑋)
𝜕𝑡

+ ∇ · (𝐼𝑞𝑖) = 𝛽𝑆(𝑡, 𝑋)𝐼 (𝑡, 𝑋) − (𝛾 + 𝜑 + 𝜇)𝐼 (𝑡, 𝑋) − 𝑢2𝐼 (𝑡, 𝑋)

Each control function 𝑢 𝑗 (𝑡, 𝑋) is estimated to lie within the range 0 ≤ 𝑢 𝑗 (𝑡) ≤ 1, with:

• 𝑢 𝑗 = 0: indicating no control was applied, and

• 𝑢 𝑗 = 1: indicating maximum effort in control.

We have that the basic reproduction number 𝑅𝑐 of the control model (32) is:

(33) 𝑅𝑐 =
𝛽Λ

(𝑢1 + 𝜇) (𝛾 + 𝜑 + 𝜇 + 𝑢2)
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Figure 1. PRCC chart showing how sensitive the optimal control system (32) is

to changes in its parameters.

Figure 2. 3D contour plots illustrating the influence of some key parameters on

the control reproduction number 𝑅𝐶 .
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The figure 1 above shows that a higher transmission rate (𝛽) significantly increases the epidemic

size, while immigration through birth (if not properly handled) may contributes to wider COVID-

19 spread, but its influence is weaker than 𝛽. On the other hand, the control measures (𝑢1, 𝑢2)

has shown to be effective, with 𝑢1 having the strongest effect in controlling the COVID outcome.

Therefore, it suggests that more attention should be focused on vaccination and sensitizing

individuals on the need to be vaccinated. On the other hand, Figure 2 suggests that controlling

transmission (e.g., through non-pharmaceutical interventions like masking or distancing) is

critical for controlling COVID-19 spread. Hence, control parameter (𝑢1) is highly effective, but

its effect is most pronounced when combined with reductions in the contact rate 𝛽. The control

parameter 𝑢2 requires a strategic implementation to effectively reduce the COVID spread, when

𝛽 is high.

We construct an objective function to minimize the spread of COVID-19. Mathematically,

the minimization problem is given by the objective function:

(34) J (𝑢1, 𝑢2) =
∫ 𝑡 𝑓

0

∫
Ω1

[
𝐶1𝐼 (𝑡, 𝑋) + 𝐶2𝑢21(𝑡, 𝑋) + 𝐶3𝑢

2
2(𝑡, 𝑋)

]
𝑑𝑋 𝑑𝑡

Where Ω1 ⊆ Ω is a prioritized region, the constants 𝐶1, 𝐶2, 𝐶3 represents the weights reflecting

the relative importance of minimizing the infected population and the costs of controls, while 𝑡 𝑓

represents the final time. To address the potential nonlinear effects introduced by the controls, we

use quadratic functions to evaluate cost control effectively [21, 22, 23]. For readers interested in

the existence of a spatial optimal control problem, additional details can be found in the relevant

literature [24, 25, 26].

The goal of the spatial model is to find the optimal control (𝑢∗1, 𝑢
∗
2), such that

(35) J (𝑢∗1, 𝑢
∗
2) = min

𝑢1,𝑢2∈Ω1
J (𝑢1, 𝑢2)

The control set of our problem is constrained as:

(36)

Γ =
{
(𝑢1, 𝑢2) | 0 ≤ 𝑢1(𝑡, 𝑋) ≤ 𝑢1,max , 0 ≤ 𝑢2(𝑡, 𝑋) ≤ 𝑢2,max ,∀𝑡 ∈ [0, 𝑡 𝑓 ], 𝑋 ∈ Ω1 ⊆ Ω

}
Where 𝑢1,max and 𝑢2,max are the maximum possible levels of vaccination and treatment, de-

termined by resource limitations. To improve the robustness and stability of the optimization
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algorithm, and to keep the controls physically realistic to prevent sudden changes over time or

across space, we apply smoothness constraints:����𝜕𝑢1𝜕𝑡 ���� ≤ 𝜖1 , ����𝜕𝑢2𝜕𝑡 ���� ≤ 𝜖2(37a)

and

‖∇𝑢1‖ ≤ 𝜅1 , ‖∇𝑢2‖ ≤ 𝜅2(37b)

Where 𝜅1 and 𝜅2 aremaximum allowable gradients for spatial smoothness, while for the temporal

smoothness constraint, 𝜖1 and 𝜖2 limits the rate of change over time.

5.1. Theoretical Analysis of the Optimal Control. Pontryagin’s Maximum Principle (PMP)

is applied to identify the necessary conditions an optimal control must satisfy. Using this

approach, equations (32) and (34) are transformed into a task of minimizing the point-wise

Hamiltonian (𝐻) with respect to the control pair (𝑢1, 𝑢2). We express the Lagrangian and

Hamiltonian as:

(38)

L =

∫ 𝑡 𝑓

0

∫
Ω1

[
𝐶1𝐼 + 𝐶2𝑢21 + 𝐶3𝑢

2
2 + 𝜆𝑆

(
Λ − 𝛽𝑆𝐼 − 𝜇𝑆 − 𝑢1𝑆 − ∇ · (𝑆𝑞𝑠) −

𝜕𝑆

𝜕𝑡

)
+ 𝜆𝐼

(
𝛽𝑆𝐼 − (𝛾 + 𝜑 + 𝜇) − 𝑢2𝐼 − ∇ · (𝐼𝑞𝑖) −

𝜕𝐼

𝜕𝑡

)
+ 𝜆𝑅

(
𝛾𝐼 + 𝑢1𝑆 + 𝑢2𝐼 − 𝜇𝑅 − 𝜕𝑅

𝜕𝑡

)]
𝑑𝑋𝑑𝑡

The Hamiltonian (𝐻) is the integrand of the Lagrangian, excluding the spatial and temporal

integrals. For this problem, we have:

(39)

𝐻 =𝐶1𝐼 + 𝐶2𝑢21 + 𝐶3𝑢
2
2

+ 𝜆𝑆 (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 − 𝑢1𝑆 − ∇ · (𝑆𝑞𝑠))

+ 𝜆𝐼 (𝛽𝑆𝐼 − (𝛾 + 𝜑 + 𝜇) − 𝑢2𝐼 − ∇ · (𝐼𝑞𝑖))

+ 𝜆𝑅 (𝛾𝐼 + 𝑢1𝑆 + 𝑢2𝐼 − 𝜇𝑅)

Where𝜆𝑆,𝜆𝐼 and𝜆𝑅 are the adjoint (Lagrangemultiplier) variables associatedwith 𝑆(𝑡, 𝑋), 𝐼 (𝑡, 𝑋)

and 𝑅(𝑡, 𝑋) respectively.
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Given an optimal control (𝑢∗1, 𝑢
∗
2) and solutions 𝑆

∗, 𝐼∗, 𝑅∗ of the control system (32) that

minimizesJ (𝑢1, 𝑢2) over a certain prioritize regionΩ1, there exists adjoint variables (𝜆𝑆, 𝜆𝐼 , 𝜆𝑅)

satisfying

(40)
𝜕𝜆𝑆

𝜕𝑡
+ ∇ · (𝑞𝑠𝜆𝑆) = −𝜕𝐻

𝜕𝑆
,

𝜕𝜆𝐼

𝜕𝑡
+ ∇ · (𝑞𝑖𝜆𝐼) = −𝜕𝐻

𝜕𝐼
,

𝜕𝜆𝑅

𝜕𝑡
= −𝜕𝐻

𝜕𝑅

Where

𝜕𝐻

𝜕𝑆
= 𝜆𝑆 (−𝛽𝐼 − 𝜇 − 𝑢1) + 𝜆𝐼𝛽𝐼 + 𝑢1𝜆𝑅(41a)

𝜕𝐻

𝜕𝐼
= 𝐶1 + 𝜆𝑆 (−𝛽𝑆) + 𝜆𝐼 (𝛽𝑆 − (𝛾 + 𝜑 + 𝜇) − 𝑢2) + 𝜆𝑅 (𝛾 + 𝑢2)(41b)

𝜕𝐻

𝜕𝑅
= −𝜇𝜆𝑅(41c)

together with no-flux boundary conditions (5) 𝑞𝑠 · 𝑛𝜆𝑆 = 0, 𝑞𝑖 · 𝑛𝜆𝐼 = 0, ∇𝜆𝑅 · 𝑛 = 0 on 𝜕Ω1,

and the transversality conditions 𝜆𝑆 (𝑡 𝑓 , 𝑋) = 0, 𝜆𝐼 (𝑡 𝑓 , 𝑋) = 0, 𝜆𝑅 (𝑡 𝑓 , 𝑋) = 0. Where 𝑛 is the

outward unit normal vector on the boundary 𝜕Ω1.

The optimal controls 𝑢∗1 and 𝑢
∗
2 minimizes 𝐻 by taking the partial derivative of 𝐻 with respect

to 𝑢1 and 𝑢2, and must satisfy the optimal condition

(42)
𝜕𝐻

𝜕𝑢1
= 0 ,

𝜕𝐻

𝜕𝑢2
= 0 .

We therefore have

𝜕𝐻

𝜕𝑢1
= 2𝑢1𝐶2 − 𝜆𝑆𝑆 + 𝜆𝑅𝑆(43a)

𝜕𝐻

𝜕𝑢2
= 2𝑢2𝐶3 − 𝜆𝐼 𝐼 + 𝜆𝑅 𝐼(43b)

Observing condition (42), we have that the optimal control now becomes

(44)
𝑢∗1 = min

{
1,max

(
0,
𝜆𝑆𝑆 − 𝜆𝑅𝑆
2𝐶2

)}
𝑢∗2 = min

{
1,max

(
0,
𝜆𝐼 𝐼 − 𝜆𝑅 𝐼
2𝐶3

)}
The findings show that an optimal control (𝑢∗1, 𝑢

∗
2) exists, effectively reducing the spread of

COVID-19 while implementing a dual control intervention strategy at the minimum cost.
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5.2. Numerical Analysis of the Optimal Control. The numerical method outlined below

offers an optimal strategy to manage the spatial spread of COVID-19, carefully balancing

epidemiological needs with economic impacts. The necessary and sufficient condition for

applying a numerical scheme to the optimal control model is that: (i) the system of state

equation (3) must be solved forward in time, (ii) the adjoint equations must be solved backward

in time, using the transversality conditions at 𝑡 = 𝑡 𝑓 , (iii) the optimal controls 𝑢∗1(𝑡, 𝑋) and

𝑢∗2(𝑡, 𝑋) are updated iteratively until the solution converges to minimize the cost functional (34).

Hence, we use the finite difference method (FDM) to discretize both the time variable 𝑡, and

space variable 𝑋 = (𝑥, 𝑦). To proceed, we let Δ𝑡 be the time step, and Δ𝑥, Δ𝑦 be the spatial

steps for the domain Ω1 ∈ R2. We also define the grid: 𝑡 = 𝑛Δ𝑡 for 𝑛 = 0, 1, · · · ,N𝑡 , with the

uniform grid point (N𝑥 ,N𝑦) of the spatial domain 𝑥 𝑗 = 𝑗Δ𝑥, and 𝑦𝑘 = 𝑘Δ𝑦 for 𝑗 = 0, 1, · · · ,N𝑥

and 𝑘 = 0, 1, · · · ,N𝑦 respectively. Let 𝑆𝑛𝑗,𝑘 , 𝐼
𝑛
𝑗,𝑘
, and 𝑅𝑛

𝑗,𝑘
be the values of the state variables at

grid point ( 𝑗 , 𝑘) and at time step 𝑛.

We note henceforth that 𝑆𝑛
𝑗,𝑘

≈ 𝑆(𝑡𝑛, 𝑥 𝑗 , 𝑦𝑘 ), 𝐼𝑛𝑗,𝑘 ≈ 𝐼 (𝑡𝑛, 𝑥 𝑗 , 𝑦𝑘 ) and 𝑅𝑛𝑗,𝑘 ≈ 𝑅(𝑡𝑛, 𝑥 𝑗 , 𝑦𝑘 ),

while 𝛽𝑆𝐼 ≈ 𝛽𝑆 𝑗 ,𝑘 𝐼 𝑗 ,𝑘 and so on. For the temporal derivative, we use (a forward difference)

Euler discretization:

(45)
𝜕𝑆

𝜕𝑡
≈
𝑆𝑛+1
𝑗 ,𝑘

− 𝑆𝑛
𝑗,𝑘

Δ𝑡

Where 𝜕𝐼
𝜕𝑡
and 𝜕𝑅

𝜕𝑡
follows from (45). For the spatial derivatives, we employ the central difference

approximation:

(46)
𝜕𝑆

𝜕𝑥
≈
𝑆𝑛
𝑗+1,𝑘 − 𝑆

𝑛
𝑗−1,𝑘

2Δ𝑥
and

𝜕𝑆

𝜕𝑦
≈
𝑆𝑛
𝑗,𝑘+1 − 𝑆

𝑛
𝑗,𝑘−1

2Δ𝑦

in 𝑥- and 𝑦-directions respectively. Equation (46) is further replicated for 𝐼 (𝑡, 𝑋) and 𝑅(𝑡, 𝑋).

The flux terms ∇ · (𝑆𝑞𝑠) and ∇ · (𝐼𝑞𝑖) are handled using an upwind scheme:

(47) ∇ · (𝑆𝑞𝑠) ≈
𝑢𝑠 𝑗+1,𝑘𝑆

𝑛
𝑗+1,𝑘 − 𝑢𝑠 𝑗−1,𝑘𝑆

𝑛
𝑗−1,𝑘

Δ𝑥
+
𝑣𝑠 𝑗 ,𝑘+1𝑆

𝑛
𝑗,𝑘+1 − 𝑣𝑠 𝑗 ,𝑘−1𝑆

𝑛
𝑗,𝑘−1

Δ𝑦

Where 𝑞𝑠 = (𝑢𝑠, 𝑣𝑠) are evaluated at cell faces. In the same manner, ∇ · (𝐼𝑞𝑖) can also be formed

from (47) above.
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Combining the temporal (45) and spatial (47) discretization, the state equation is expressed

as:

(48)

𝑆𝑛+1𝑗 ,𝑘 = 𝑆𝑛𝑗,𝑘 + Δ𝑡

[
Λ − 𝛽𝑆𝑛𝑗,𝑘 𝐼

𝑛
𝑗,𝑘 − 𝜇𝑆

𝑛
𝑗,𝑘 − (𝑢1𝑆)𝑛𝑗,𝑘 − ∇ · (𝑆𝑞𝑠)𝑛𝑗,𝑘

]
𝐼𝑛+1𝑗 ,𝑘 = 𝐼𝑛𝑗,𝑘 + Δ𝑡

[
𝛽𝑆𝑛𝑗,𝑘 𝐼

𝑛
𝑗,𝑘 − (𝛾 + 𝜑 + 𝜇)𝐼𝑛𝑗,𝑘 − (𝑢2𝐼)𝑛𝑗,𝑘 − ∇ · (𝐼𝑞𝑖)𝑛𝑗,𝑘

]
𝑅𝑛+1𝑗 ,𝑘 = 𝑅𝑛𝑗,𝑘 + Δ𝑡

[
𝛾𝐼𝑛𝑗,𝑘 + (𝑢1𝑆)𝑛𝑗,𝑘 + (𝑢2𝐼)𝑛𝑗,𝑘 − 𝜇𝑅

𝑛
𝑗,𝑘

]
Next, we proceed to discretize the adjoint equations backward in time, using the backward

time-stepping. From equation (40), the temporal and spatial discretization are:

(49)
𝜕𝜆𝑆

𝜕𝑡
≈
𝜆𝑛
𝑆
− 𝜆𝑛+1

𝑆

Δ𝑡

and

(50)

∇ · (𝑞𝑠𝜆𝑆) ≈
𝑢𝑠

𝑗+ 12 ,𝑘
𝜆𝑛+1
𝑆

( 𝑗 + 1, 𝑘) − 𝑢𝑠
𝑗− 12 ,𝑘

𝜆𝑛+1
𝑆

( 𝑗 , 𝑘)

Δ𝑥
+
𝑢𝑠

𝑗 ,𝑘+ 12
𝜆𝑛+1
𝑆

( 𝑗 , 𝑘 + 1) − 𝑢𝑠
𝑗 ,𝑘− 12

𝜆𝑛+1
𝑆

( 𝑗 , 𝑘)

Δ𝑦

From equations (49) and (50), we have that the complete discretization of the adjoint equation

(41a)-(41c) satisfying the transversality condition becomes:

(51)
𝜆𝑛𝑆 = 𝜆𝑛+1𝑆 + Δ𝑡

[
−∇ · (𝑞𝑠𝜆𝑛+1𝑆 ) + 𝜆𝑛+1𝑆 (𝛽𝐼𝑛+1𝑗 ,𝑘 + 𝜇 + 𝑢𝑛+11 ) − 𝜆𝑛+1𝐼 𝛽𝐼𝑛+1𝑗 ,𝑘 − 𝜆𝑛+1𝑅 𝑢𝑛+11

]
𝜆𝑛𝐼 = 𝜆𝑛+1𝐼 + Δ𝑡

[
−∇ · (𝑞𝑖𝜆𝑛+1𝐼 ) − 𝐶1 + 𝜆𝑛+1𝑆 𝛽𝑆𝑛+1𝑗 ,𝑘 − 𝜆𝑛+1𝐼 (𝛽𝑆𝑛+1𝑗 ,𝑘 − (𝛾 + 𝜑 + 𝜇) − 𝑢𝑛+12 ) − 𝜆𝑛+1𝑅 (𝛾 + 𝑢𝑛+12 )

]
𝜆𝑛𝑅 = 𝜆𝑛+1𝑅 + Δ𝑡

[
−𝜇𝜆𝑛+1𝑅

]
Lastly, after completing the processes outlined in equations (48) and (51), the optimal controls

are updated and projected onto the feasible set:

(52)

𝑢𝑛+11 = min

{
1,max

(
0,
𝜆𝑛+1
𝑆
𝑆𝑛+1
𝑗 ,𝑘

− 𝜆𝑛+1
𝑅
𝑆𝑛+1
𝑗 ,𝑘

2𝐶2

)}
𝑢𝑛+12 = min

{
1,max

(
0,
𝜆𝑛+1
𝐼
𝐼𝑛+1
𝑗 ,𝑘

− 𝜆𝑛+1
𝑅
𝐼𝑛+1
𝑗 ,𝑘

2𝐶3

)}
The steps (45)- (52) above are repeated until the controls 𝑢1 and 𝑢2 converges, using the stopping

criterion

(53) ‖𝑢 𝚥+11 − 𝑢 𝚥1‖ < 𝜖 , ‖𝑢 𝚥+12 − 𝑢 𝚥2‖ < 𝜖
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Where 𝑢 𝚥1, 𝑢
𝚥

2 controls 𝑢1 and 𝑢2 at 𝚥
𝑡ℎ iteration, and 𝑢 𝚥+11 , 𝑢

𝚥+1
2 controls 𝑢1 and 𝑢2 at 𝚥 𝑡ℎ+1 iteration

(i.e. the most recent update). The norm is applied to quantify the difference between control

values across the domain, while 𝜖 is the convergence tolerance (10−6). However, convergence is

reached when the 𝑢1 and 𝑢2 updates are smaller than 𝜖 for all grid points.
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Figure 3. The 𝐿2- norm of the difference between successive controls.

Figure 3 displays the norm difference at lower cost 𝐶2 = 𝐶3 = 1. In this scenario, the controls

𝑢1 and 𝑢2 are less penalized, as they are easy to implement at lower cost. However, it was

observed that at higher cost, it is more difficult to implement a control, and as a result, the

penalty for using any of the controls (𝑢1, 𝑢2) becomes more significant. The 𝐿2-norm difference

of the controls defined by: ‖𝑢𝑘+11 − 𝑢𝑘1 ‖ =

√︂∑
𝑗 ,𝑘

(
𝑢𝑘+11 ( 𝑗 , 𝑘) − 𝑢𝑘1 ( 𝑗 , 𝑘)

)2
and ‖𝑢𝑘+12 − 𝑢𝑘2 ‖ =√︂∑

𝑗 ,𝑘

(
𝑢𝑘+12 ( 𝑗 , 𝑘) − 𝑢𝑘2 ( 𝑗 , 𝑘)

)2
, measures the difference between iterations in the controls.
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Figure 4. Convergence behavior of the control variables 𝑢1 and 𝑢2 at time step

(N𝑡 = 100), with a uniform grid (N𝑥 × N𝑦) = (100 × 100).

Figure 4 displays the behavior of the control convergence as iteration proceeds. First, the

norms for 𝑢1 and 𝑢2 show monotonic convergence, which means that the optimization technique

successfully stabilizes both controls. When compared to treatment options that interact with the

dynamics of infection and recovery, the norm of 𝑢1 is seen to convergemore quickly, which refers

to cost minimization of applying the control 𝑢1 to the susceptible population rather than waiting

till the infection explodes, to apply the control 𝑢2 on the infected population. Consequently, 𝑢1

can be optimized faster to mitigate the disease from spreading.

According to the convergence behavior, the control (𝑢2) needs more sophisticated, adaptable

tactics (such as: increasing healthcare resources or enhancing treatments) in order to stabilize.

On the other hand, optimizing this control necessitates more significant adjustments in order to

achieve its goal of reducing the spread of COVID-19.
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6. Model Simulation

The optimal control model presented above will be tested using the case of COVID-19 in

Lagos State, Nigeria. Early in 2020, the COVID-19 pandemic, caused by the novel coronavirus

SARS-CoV-2, became a major worldwide health emergency. On February 27, 2020, the first

confirmed case was recorded in Lagos State, Nigeria. Due to its high population density,

economic activity, and role as a hub for international travel, Lagos (one of Nigeria’s most

densely populated states and a commercial hub) became the focal point of the outbreak [27].

The population of Lagos City, a sizable metropolis in southwest Nigeria, is estimated to be

21 million, situated on an area of 1,292 square miles (≈ 3,345 𝑘𝑚2) with nearly a quarter of the

area dominated by water bodies that aid both local and international trade within the state and

the country at large [28].

With 162,593 confirmed infection cases and 2,048 associated deaths, Nigeria was the fifth

most affected country in Africa and the 77th most impacted country worldwide as of March 28,

2021. All 36 states and the Federal Capital Territory were affected by the pandemic, although

Lagos State remained the epicenter, accounting for 35.4% of all cases nationally [29]. As the

hardest-hit region, Lagos provides a vital case for analyzing COVID-19 dynamics and assessing

the effectiveness of control measures. It also serves as a benchmark for designing interventions

that can be adapted to other high-burden areas across the country [30].

Lagos State reported 27 new COVID-19 cases as of January 15, 2023, adding to Nigeria’s 42

new infections during that time. This increased the total number of confirmed cases in Lagos

State to 100,125 [31]. On June 25, 2022, Lagos reported a sharp increase in COVID-19 cases,

with 203 new infections out of Nigeria’s 247 cases recorded between June 21 and 24, 2022. By

then, the total number of confirmed cases in Lagos had reached 100,125, while recording more

than 754 fatalities and 79,775 confirmed cases as of December 12, 2021 [32, 33].

The cumulative plots below were further used to highlight COVID-19 cases in Lagos over a

period of nine months.
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Figure 5. Fitted plot for the cumulative data from March 01, 2020 to November

06, 2020.

Parameters Range Values Source

Λ - 10 Estimated

𝛽 (0,1) 0.5426 [34]

𝛾 (0,1) 0.0699 [34]

𝜑 (0,1) 7.62 × 10−3 [29], [35]

𝜇 (0,1) 0.7/1,000 [36]

𝑞𝑠 = (𝑢𝑠, 𝑣𝑠) 0 < 𝑞𝑠 < ∞ {0,1} Fitted

𝑞𝑖 = (𝑢𝑖, 𝑣𝑖) 0 < 𝑞𝑠 < ∞ {0,1} Fitted

Table 1. Parameter values and source used for our model simulation
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More CODID-19 data can be found at the Nigerian Center for Disease Control (NCDC) website

[37], while a cumulative plot for the confirmed, active, death and recovered cases are fitted

above.

The spatial domain for this research work is defined as follows:

• The set Ω represents the entire region of Nigeria.

• The subset Ω1 ⊆ Ω corresponds to Lagos State.

By factoring in spatial variations, our model offers valuable insights into managing and un-

derstanding the spread of COVID-19 in densely populated urban areas like Lagos, while also

addressing broader transmission patterns across the country. Based on data obtained from the

NCDC, the numerical simulation of our model will be presented, highlighting and discussing

cases ’with control’ and ’without control’.

As observed below, Figure 6 illustrates how the density of the susceptible population in

Lagos State changes when COVID-19 spreads in the absence of control measures. Over time,

the number of susceptible individuals decreases as more people are exposed to the virus.

This pattern demonstrates that as COVID-19 spreads unchecked across the region, the pool of

susceptible individuals shrinks, allowing the virus to continue spreading.
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Figure 6. Contour plot of 𝑆(𝑡, 𝑥, 𝑦) in Lagos state, in the absence of control.

The vertical and horizontal velocity plots, are displayed below:
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Figure 7. Contour plot of 𝑢𝑠 (𝑡, 𝑥, 𝑦) for COVID-19 spread in Lagos state, with no control.
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Figure 8. Contour plot of 𝑣𝑠 (𝑡, 𝑥, 𝑦) for COVID-19 spread in Lagos state, with no control.
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Figure 7 and Figure 8 has shown the spatial (horizontal and vertical) dynamics of the velocity

profile pattern of COVID-19 spread. A close observation has revealed that the spread propagates

more in the vertical direction (𝑣𝑠) than in the horizontal direction (𝑢𝑠) as time progresses. This

suggests that the control 𝑢1 on the susceptible population density, be appliedmore in the direction

of higher velocity spread.
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Figure 9. Contour plot of 𝑆(𝑡, 𝑥, 𝑦) with control in Lagos state.
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A look at Figure 9 shows an improved development in the susceptible population density,

when the vaccination control is applied. It is good to note that the control 𝑢1 plays much more

role in reducing the number of susceptible individuals who might be exposed to COVID-19

infection. When compared to Figure 6, the susceptible population in Figure 9 began to increase

as time progresses, which implies a successful implementation of the control on susceptible

population.
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Figure 10. Contour plot of 𝑢𝑠 (𝑡, 𝑥, 𝑦) with control for COVID-19 spread in Lagos state.
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Figure 11. Contour plot of 𝑣𝑠 (𝑡, 𝑥, 𝑦) with control for COVID-19 spread in Lagos state.

From Figure 10 and Figure 11, the velocity of spread for COVID-19 with control (𝑢1) was

measured in the susceptible class. It was deduced that there is an improvement in recovering

more susceptible individuals, and as a result, we recorded an increased velocity as compared to

Figure 7 and 8 respectively.
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Figure 12. Contour plot for infected population 𝐼 (𝑡, 𝑥, 𝑦) in Lagos state, in the

absence of control.

The velocity profile for the infected population density with no control at different time, is

displayed:
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Figure 13. Contour plot of 𝑢𝑖 (𝑡, 𝑥, 𝑦) for COVID-19 spread in Lagos state, with

no control.
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Figure 14. Contour plot of 𝑣𝑖 (𝑡, 𝑥, 𝑦) for COVID-19 spread in Lagos state, with

no control.
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Figure 15. Contour plot for the infected population 𝐼 (𝑡, 𝑥, 𝑦) in Lagos state, with

treatment control .
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Figure 16. Contour plot of 𝑢𝑖 (𝑡, 𝑥, 𝑦) with control for COVID-19 spread in Lagos state.
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Figure 17. Contour plot of 𝑣𝑖 (𝑡, 𝑥, 𝑦) with control for COVID-19 spread in Lagos state.
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Figure 12 shows the behavior of the infected population density, at zero control. It is observed

that the infected area continues to expand, showcasing the progressive spread and intensification

of the infection. On the other hand, Figure 13 and Figure 14 provide insight into how quickly and

in what directions the infection spreads spatially, with no control. A close observation shows

that there is a rapid increase in the directional velocity 𝑢𝑖 (𝑡, 𝑥, 𝑦), as compared to 𝑣𝑖 (𝑡, 𝑥, 𝑦).

This in essence shows the direction to which COVID-19 virus spreads more, and in such case,

it is easier to know the location that needs more control.

The optimal control strategies were applied to the infected population density. Figure 15

has shown that there is some positive response to the treatment strategy (𝑢2) on the infected

population density. Between 5-10 days, the treatment control recorded a 25% success in

controlling the spread of COVID-19. The velocity profiles in Figure 16 and Figure 17 above,

further opined the success of the treatment control.

6.1. General Discussion. The above graphical simulations provide a comprehensive visual-

ization of the spatio-temporal spread of COVID-19, demonstrating the efficacy of the proposed

fluid dynamics-based model. The simulations illustrate how susceptible and infected popula-

tions evolve over time, highlighting the diffusion patterns and the impact of control measures.

Key observations include the transition of susceptible individuals into the infected group and

the subsequent recovery process, influenced by vaccination and treatment strategies.

A significant focus is placed on the optimization parameters, which dictate the efficiency of

disease control. By adjusting these parameters, such as vaccination coverage rate and treatment

efficacy, the simulations reveal a marked reduction in infection peaks and an accelerated decline

in active cases. The results suggest that higher vaccination rates effectively suppress the spread,

while improved treatment enhances recovery, leading to a more stable system over time.

7. Conclusion

This study examines the interplay between susceptible and infected populations using a

unique fluid dynamics analogy to propose an optimal control model for the spatial spread of

COVID-19. Effectively capturing the spatiotemporal evolution of the epidemic, the model treats

disease transmission as a fluid-like process governed by fluid dynamic principles. Implementing
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treatment and vaccination as themain control strategies provides a flexible and dynamic approach

to reducing infection spread.

Through rigorous mathematical analysis and numerical simulations, the model demonstrates

its capability to optimize epidemic control strategies. The results highlight the effectiveness

of early and well-calibrated interventions in reducing peak infection rates and limiting overall

disease transmission. The sensitivity analyses further emphasize that even slightmodifications in

control parameters significantly influence the epidemic trajectory, underscoring the importance

of resource allocation in public health decision-making.

This framework provides a versatile approach for modeling and controlling infectious diseases

with spatial components, in addition to its direct applicability to COVID-19. By integrating

concepts from epidemiology and fluid dynamics, this research offers a powerful tool for policy-

makers and health authorities to develop data-driven, spatially focused intervention strategies.

Future research may tend to expand this model idea to account for diverse population com-

positions, environmental influences, and real-world migration patterns, further enhancing its

relevance for epidemic response and preparedness.

Appendix A. Appendix

Stencil Construction. The flux computation at the respective sub-stencils from Section 4 are:

In the 𝑥-direction.

𝑀
(1)
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𝑀 𝑗−2 −

7
6
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11
6
𝑀 𝑗 ,

𝑀
(2)
𝑗+ 12

= −1
6
𝑀 𝑗−1 +

5
6
𝑀 𝑗 +

1
3
𝑀 𝑗+1 ,

𝑀
(3)
𝑗+ 12

=
1
3
𝑀 𝑗 +

5
6
𝑀 𝑗+1 −

1
6
𝑀 𝑗+2 ,

(54)

While the polynomial reconstruction for each stencils becomes:

𝑝𝑥0 (𝑥, 𝑦𝑘) = 𝑀 𝑗−2
(𝑥 − 𝑥 𝑗−1) (𝑥 − 𝑥 𝑗)

(𝑥 𝑗−2 − 𝑥 𝑗−1) (𝑥 𝑗−2 − 𝑥 𝑗)
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(𝑥 − 𝑥 𝑗−2) (𝑥 − 𝑥 𝑗)
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(𝑥 𝑗 − 𝑥 𝑗−2) (𝑥 𝑗 − 𝑥 𝑗−1)

𝑝𝑥1 (𝑥, 𝑦𝑘) = 𝑀 𝑗−1
(𝑥 − 𝑥 𝑗) (𝑥 − 𝑥 𝑗+1)
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(𝑥 𝑗+2 − 𝑥 𝑗) (𝑥 𝑗+2 − 𝑥 𝑗+1)
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In the 𝑦-direction.
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6
𝑁𝑘+2 ,

(55)

The polynomial reconstruction for each stencils becomes:

𝑝
𝑦

0 (𝑥 𝑗 , 𝑦) = 𝑁𝑘−2
(𝑦 − 𝑦𝑘−1) (𝑦 − 𝑦𝑘 )

(𝑦𝑘−2 − 𝑦𝑘−1) (𝑦𝑘−2 − 𝑦𝑘 )
+ 𝑁𝑘−1

(𝑦 − 𝑦𝑘−2) (𝑦 − 𝑘 𝑗 )
(𝑦𝑘−1 − 𝑦𝑘−2) (𝑦𝑘−1 − 𝑦𝑘 )

+ 𝑁𝑘

(𝑦 − 𝑦𝑘−2) (𝑦 − 𝑦𝑘−1)
(𝑦𝑘 − 𝑦𝑘−2) (𝑦𝑘 − 𝑦𝑘−1)

𝑝
𝑦

1 (𝑥 𝑗 , 𝑦) = 𝑁𝑘−1
(𝑦 − 𝑦𝑘 ) (𝑦 − 𝑦𝑘+1)

(𝑦𝑘−1 − 𝑦𝑘 ) (𝑦𝑘−1 − 𝑦𝑘+1)
+ 𝑁𝑘

(𝑦 − 𝑦𝑘−1) (𝑦 − 𝑦𝑘+1)
(𝑦𝑘 − 𝑦𝑘−1) (𝑦𝑘 − 𝑦𝑘+1)

+ 𝑁𝑘+1
(𝑦 − 𝑦𝑘−1) (𝑦 − 𝑦𝑘 )

(𝑦𝑘+1 − 𝑦𝑘−1) (𝑦𝑘+1 − 𝑦𝑘 )

𝑝
𝑦

2 (𝑥 𝑗 , 𝑦) = 𝑁𝑘

(𝑦 − 𝑦𝑘+1) (𝑦 − 𝑦𝑘+2)
(𝑦𝑘 − 𝑦𝑘+1) (𝑦𝑘 − 𝑦𝑘+2)

+ 𝑁𝑘+1
(𝑦 − 𝑦𝑘 ) (𝑦 − 𝑦𝑘+2)

(𝑦𝑘+1 − 𝑦𝑘 ) (𝑦𝑘+1 − 𝑦𝑘+2)
+ 𝑁𝑘+2

(𝑦 − 𝑦𝑘 ) (𝑦 − 𝑦𝑘+1)
(𝑦𝑘+2 − 𝑦𝑘 ) (𝑦𝑘+2 − 𝑦𝑘+1)

Smoothness Indicators. The smoothness indicators are numerically computed by:

𝛽𝑥0 =
13
12

(𝑀 𝑗−2 − 2𝑀 𝑗−1 + 𝑀 𝑗 )2 +
1
4
(𝑀 𝑗−2 − 4𝑀 𝑗−1 + 3𝑀 𝑗 )2

𝛽𝑥1 =
13
12

(𝑀 𝑗−1 − 2𝑀 𝑗 + 𝐹𝑗+1)2 +
1
4
(𝐹𝑗−1 − 𝐹𝑗+1)2

𝛽𝑥2 =
13
12

(𝑀 𝑗 − 2𝑀 𝑗+1 + 𝑀 𝑗+2)2 +
1
4
(3𝑀 𝑗 − 4𝑀 𝑗+1 + 𝑀 𝑗+2)2

(56)

Similarly, for the 𝑦-direction, the smoothness indicators 𝛽𝑦
𝑗
are:

𝛽
𝑦

0 =
13
12

(𝑁𝑘−2 − 2𝑁𝑘−1 + 𝑁𝑘 )2 +
1
4
(𝑁𝑘−2 − 4𝑁𝑘−1 + 3𝑁𝑘 )2

𝛽
𝑦

1 =
13
12

(𝑁𝑘−1 − 2𝑁𝑘 + 𝑁𝑘+1)2 +
1
4
(𝑁𝑘−1 − 𝑁𝑘+1)2

𝛽
𝑦

2 =
13
12

(𝑁𝑘 − 2𝑁𝑘+1 + 𝑁𝑘+2)2 +
1
4
(3𝑁𝑘 − 4𝑁𝑘+1 + 𝑁𝑘+2)2

(57)
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