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Abstract. Mathematical modeling plays a crucial role in understanding and controlling infectious diseases. Tradi-

tional SIR models, including both demographic (incorporating births and deaths) and non-demographic variations,

have been extensively used to develop control strategies. However, the transfer of control strategies derived from

simpler non-demographic models to more realistic demographic models remains challenging. This research ad-

dresses this gap by exploring the concept of τ-equivalence, aiming to transfer control strategies derived from non-

demographic SIR models to demographic ones. Employing numerical simulations and parameter optimization, we

demonstrated that appropriately calibrated non-demographic models closely mirrored demographic model dynam-

ics, particularly under moderate control intensities. Nevertheless, our approach faced limitations under scenarios

requiring rapid and significant infection reduction, revealing potential stability challenges. Our findings highlight

the practical value of the τ-equivalence calibration method, while acknowledging that its broader applicability

across diverse epidemiological models warrants further investigation.
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1. INTRODUCTION

Mathematical modeling plays a vital role in epidemiology by offering insights into the spread

and control of infectious diseases [1, 2]. Among these models, the traditional Susceptible-

Infected-Removed (SIR) framework, established by Kermack and McKendrick [3], is well

known for its ease of use and capacity to monitor disease dynamics by examining an indi-

vidual’s movement between health states. Nevertheless, for chronic diseases or those requiring

vital dynamics, it is essential to incorporate demographic elements [2, 4], including births and

deaths, into these models to capture the impact of population changes across time as demon-

strated in several studies [5, 6, 7, 8]. This results in what we refer to as demographic SIR

models. Nonetheless, while this model has been extensively examined over the years, this pa-

per employs it to demonstrate the efficacy of our method within a simplistic framework. This

serves as a precursor to its application in more complex models.

Controllability is the capacity to use an acceptable control function to steer a system from

any beginning state to a desired state. Since most infectious diseases require a mix of isolation,

quarantine, vaccination, and treatment to be eradicated, one may refer to this as control in

mathematical epidemiology [9]. Reducing the number of infected people over time or making

sure the infection curve flattens within a given time period are common control goals [10, 11].

Optimal control theory has emerged as a highly effective tool for managing and mitigat-

ing a variety of diseases, with successful applications across multiple domains. It has been

used extensively in the control of diseases such as tuberculosis [12, 13, 14, 15, 16], malaria

[17, 18], human immunodeficiency viruses (HIV) [19, 20, 21, 22, 23, 24, 25, 26, 27], hepatitis

[28, 29], and viral outbreaks such as influenza, severe acute respiratory syndromes (SARS),

and coronavirus disease 2019 (COVID-19) [30, 31, 32, 33]. Its application in general SIR

models has been particularly noteworthy, with several studies demonstrating how optimal con-

trol techniques can effectively guide interventions, minimizing infection rates while balancing

associated costs [34, 35, 36, 37, 38]. As demonstrated in most of the previously cited litera-

ture, the Pontryagin Minimum Principle (PMP) [39] is widely employed to determine optimal

control strategies that minimize intervention costs while reducing the size of the infected popu-

lation [37, 40, 41, 42]. However, sometimes real-world scenarios demand not only minimizing
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infections but also achieving specific outcomes—such as reducing the number of infected indi-

viduals—within a predefined timeframe that PMP does not always guarantee. This paper adopts

such an approach.

In line with this objective, a control formula developed for non-demographic SIR models, as

demonstrated in the work of Zakary et al. [43], provides a promising foundation by steering a

basic SIR model (1), as in [3], toward a desirable infection state Id within a given time limit T .

(1)



dS
dt

=−β

N
SI,

dI
dt

=
β

N
SI− γI,

dR
dt

= γI,

where S, I, and R represent the susceptible, infected, and removed populations, respectively, β

is the transmission rate, and γ is the recovery rate.

The proposed control function, denoted here as uz(t) is defined as:

(2) uz =
βS0

N
QQ1

2 +Q3− γ,

where:

a =
Id exp((ε + γ)T )− I0

I0− Id

Q1 =
β I0(1+a)
aN (ε + γ)

Q2 =
a+ exp(t (ε + γ))

(1+a)exp(t (ε + γ))

Q3 =
(ε + γ)exp((ε + γ) t)

exp((ε + γ) t)+a
.(3)

The control (2) employs two key parameters, ε and a, to manage infection dynamics effec-

tively. The parameter ε ensures that the control function u(t) stays within the admissible range

0 < u(t)< 1 for all t > 0. For this to hold, it is sufficient for ε to satisfy the condition :

(4) γa− βS0

N
< ε < 1− βS0

N

Moreover, a is calibrated to guide the infection count toward a target threshold Id at time T .
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Nevertheless, of course, applying this strategy directly to demographic models would not be

appropriate due to the lack of vital dynamics. To bridge this gap, we propose a novel adaptation:

calibrating the control parameters of a non-demographic SIR model to align with those of a

demographic one.

In epidemiology, epidemics might share some similarities when it comes to their dynamics

[44]. As will be discussed soon, the approach we are adopting makes use of the idea of model

equivalencies, where two epidemics are considered equivalent if they exhibit similar dynamics,

regardless of differences in timescales.

In this paper, we specifically address the question: can a control law derived for a non-

demographic SIR model, once calibrated for demographic parameters, effectively guide infec-

tion trajectories to a predetermined level within a fixed time horizon? We explore this for a

range of ε values and desired outcomes (T, Id).

The remainder of this paper is organized as follows: Sect. 2 presents the mathematical for-

mulation of the demographic SIR model, including the adaptations required to apply a non-

demographic control strategy. This section also introduces the calibration process and de-

fines the concept of τ-equivalence, which ensures alignment between demographic and non-

demographic models. In Sect. 3, we detail the numerical simulation results, focusing on the

control function’s effectiveness across different scenarios and analyzing control admissibility

and delay errors. Finally, we end with Sect. 4 of conclusion.

2. METHODS

2.1. Model Formulation. We chose a similar SIR model to (1) but incorporating demo-

graphic information. It includes the following differential equations:

(5)



dS
dt

= µN− β

N
SI−µS,

dI
dt

=
β

N
SI− γI−µI,

dR
dt

= γI−µR,

By adjusting the temporal unit—shifting from days to weeks or months, for instance—we can effectively align

the two models.
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where µ is the birth-death rate. and this is the control system:

(6)



dS
dt

= µN− β

N
SI−µS,

dI
dt

=
β

N
SI− (γ +µ + ûz) I,

dR
dt

=−µR+(γ + ûz) I,

2.2. Calibration and τ-Equivalence. We have to ensure that the demographic and non-demographic

SIR models behave similarly over a specified time, enabling the transfer of control strategies

from one model to the other with minimal deviation. To achieve this, we defined the concept of

τ-equivalence:

Definition 1. Let (A) and (B) denote two distinct SIR model systems. For t ∈ [0, t f ], IA(t),SA(t),RA(t)

represent the infected, susceptible, and removed populations of system (A) at time t, while

IB(t),SB(t),RB(t) correspond to the same populations in system (B).

(A) and (B) are considered τ-equivalent if their solution trajectories align closely over time

within a predefined tolerance τ > 0, i.e.:

(7)
1

3t f

∫ t f

0
∆I(t)2 +∆S(t)2 +∆R(t)2 dt ≤ τ

2,

where ∆I(t) = |IA(t)− IB(t)|, ∆S(t) = |SA(t)−SB(t)|, and ∆R(t) = |RA(t)−RB(t)|.

Here, τ represents the maximum permissible deviation between systems, which guarantees

that their behaviors remain sufficiently aligned to enable effective control transfer. Small τ

means the two models are effectively capturing the same epidemic outcomes from the per-

spective of policymakers. The inequality (7) emphasizes the importance of penalizing large

discrepancies, achieved by adopting a continuous version of the Mean Squared Error (MSE) as

the error metric. Moreover, by defining τ in this squared form, we align our metric with the

squared differences within the continuous MSE integral, providing a logical consistency and a

practical measure of error.

To determine the calibrated parameters β̂ and γ̂ for the non-demographic model, we seek

values that satisfy the τ-equivalence condition as defined in equation (7). This is achieved

by employing MATLABTM’s fminsearch function to minimize the integral within the τ-

equivalence definition, ensuring it remains below the threshold of τ2.
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2.3. Control Implementation. After extracting the calibrated parameters, we substituted them

into (2) to obtain the desired control function that has been implemented in the demographic SIR

model. Then we used the Runge-Kutta 4th-order approach (RK4) with a step size of h = 0.01 to

solve the controlled system. The system was then examined under four distinct scenarios, each

of which represented a particular combination of the desired time T and the intended infected

condition Id . To evaluate the control’s behavior and efficacy in reaching the intended infected

condition within the allotted time in each epsilon value, the control was computed for each case

using a range of acceptable ε values.

For each case, we focused on two aspects: the evolution of the infected population I(t)

and the behavior of the control function u(t). We plotted the trajectories of I(t) over time

and evaluated how well the infected state converged to Id . Simultaneously, we monitored the

control u(t) to parallel its trajectory with I(t) and to ensure it remained within the admissible

range [0,1]. These analyses allowed us to identify patterns in the system’s response to different

epsilon values and provided insights into the optimal control strategies for each scenario.

2.4. Delay. A delay error (8) was defined as the absolute difference between the target time

T and the actual time T ∗ at which the controlled demographic model achieved the intended

infected condition Id at the stated time T .

(8) Delay = |T −T ∗|.

We computed (8) for all conceivable values of T and Id , as well as for various values of

epsilon. This highlighted critical cases where this approach may encounter limitations.

3. NUMERICAL SIMULATION & RESULTS

In this section, we detail the simulation outcomes using parameters outlined in Table 1. The

time frame chosen for this study is 40 months. The tolerance threshold τ was selected iter-

atively to balance computational feasibility and alignment accuracy. This corresponds to an

average error of approximately 1.5% of the total population (10,000 individuals), a margin

deemed acceptable in epidemiological modeling where minor deviations are often tolerated to

prioritize practical control strategies over perfect numerical alignment. While public health
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tolerances for error may vary depending on disease severity, this threshold reflects a method-

ological compromise between precision and adaptability. Further sensitivity analyses could

refine τ for context-specific applications.

TABLE 1. Model Parameters and Initial Conditions

Parameter Description Value

β Transmission rate 0.4

γ Recovery rate 0.01

µ Mortality rate 0.01

S0 Initial susceptible population 9200

I0 Initial infected population 800

R0 Initial removed population 0

τ Maximum permissible deviation 150

3.1. Calibration & Equivalence. The results of calibration demonstrate a strong alignment

between the demographic and calibrated non-demographic SIR models, indicating effective cal-

ibration. In Fig. 1, the susceptible, infected, and removed population graphs show near-perfect

alignment between the two models for most of the 40-month interval. This is good evidence to

say that the calibrated model closely mirrors the behavior of the demographic model. Small dis-

crepancies begin to emerge beyond approximately 25 months. For the susceptible population,

the calibrated model estimates slightly fewer susceptibles than the demographic model, while

for the infected population, the calibrated estimates are marginally higher. The most noticeable

deviation occurs in the removed population, where the calibrated model projects around 1,000

additional individuals in the later months.

Despite these small deviations, the overall alignment remains well within acceptable limits,

supporting the models’ τ-equivalence for our study’s objectives. The calibrated parameters that

achieved this alignment are β̂ ≈ 0.3781 and γ̂ ≈ 0.0094. The square root of the MSE for the

resulting model, approximately 122.83, falls below the tolerance threshold τ , further validating

These graphs are plotted using the same RK4 approach as we explained in Section 2.3.
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the equivalence. Thus, the calibrated non-demographic model provides a good approximation

of the demographic SIR model, allowing us to confidently apply control strategies intended

for the non-demographic model in a demographic context. However, we first need to check

admissibility.
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FIGURE 1. Comparison of the demographic and calibrated non-demographic

SIR models over a period of 40 months. Each graph represents the population

dynamics for a specific compartment: (a) susceptible population, (b) infected

population, and (c) removed population

3.2. Control Dynamics and Infected States. The figures obtained from the four cases reveal

the interaction between the control parameter dynamics and the infected state trajectories under

varying epsilon values. Each case exhibits distinct patterns that illustrate the trade-off between

speed and stability, the effects of control intensity, and how dynamic adjustments in control

influence infection outcomes.

In Fig. 2, where T = 10 and Id = 100, the infected state decreases rapidly for larger epsilon

values, though the decline slows down after the desired state is reached. Smaller epsilon values,

such as ε = 0.15 and ε = 0.2, result in a steady and continuous decline in control, reflecting a

conservative intervention approach. As ε increases to ε = 0.4, the control develops an increas-

ing pattern, stabilizing around 0.7 toward the end. For the largest epsilon values (ε = 0.6 and
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FIGURE 2. Comparison of the infected population I dynamics (a) and control

values (b) over time for various epsilon values with Id = 100 and T = 10

ε = 0.8), the control reaches a plateau close to 1 shortly after t = 15, maintaining the maximum

intensity. This sustained high level of control ensures that the infected population remains low,

though it also explains the slow decline observed after the desired state is achieved. This case

highlights how higher epsilon values lead to faster reductions in infections but require continu-

ous high-intensity intervention to maintain the target state.
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FIGURE 3. Comparison of the infected population I dynamics (a) and control

values (b) over time for various epsilon values, with Id = 27 and T = 15

As we see in Fig. 3, where T = 15 and Id = 27, the behavior follows a similar pattern, though

with smoother transitions. For smaller epsilon values (ε = 0.15 and ε = 0.2), the control steadily

decreases, eventually stabilizing around 0.5. The infected state decreases smoothly throughout

the time period, reflecting the stability of the control intervention. For intermediate and larger
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epsilon values, such as ε = 0.4, ε = 0.6, and ε = 0.8, the control follows a dynamic increase-

decrease-increase pattern. After an initial dip around t = 5, the control increases sharply and

reaches a maximum plateau around t = 15, ensuring that the infected state remains stable once

the target is achieved. The faster reductions in infections for higher epsilon values reflect the

more intense control, while the dynamic adjustments in control ensure that the intervention

remains effective without overshooting.
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FIGURE 4. Comparison of the infected population I dynamics (a) and control

values (b) over time for various epsilon values, with Id = 27 and T = 27

However, in Fig. 4, with T = 27 and Id = 27, the control dynamics exhibit more fluctuations,

especially for higher epsilon values. For ε = 0.15, the control steadily decreases throughout

the time interval, while ε = 0.2 shows an initial decrease followed by an increase, reflecting

the system’s adaptive response to infections. As ε increases further to ε = 0.4, ε = 0.6, and

ε = 0.8, the control becomes more dynamic, with sharp increases occurring between t = 15 and

t = 20 before stabilizing near 1. These fluctuations explain the temporary rebound in infections

observed mid-way through the time period for larger epsilon values. The infected state ini-

tially decreases rapidly but experiences slight instability due to the changing control dynamics,

demonstrating how larger epsilon values can introduce fluctuations even while ensuring faster

convergence to the desired state.

Finally, in Fig. 5, with T = 35 and Id = 27, the interaction between control and infected states

becomes more complex. For smaller epsilon values, the control decreases steadily, maintaining

a linear pattern. However, for larger epsilon values (ε = 0.6 and ε = 0.8), the infected states
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FIGURE 5. Comparison of the infected population I dynamics (a) and control

values (b) over time for various epsilon values, with Id = 27 and T = 35

exhibit a noticeable bump between t = 20 and t = 30, where infections decrease temporarily

before increasing again. This behavior explains the brief resurgence in infections observed

for higher epsilon values before the infected state finally stabilizes. Toward the end of the

time period, the control reaches a plateau near 1, ensuring that the desired state is maintained

without further fluctuations. This case demonstrates how aggressive interventions with high

epsilon values can lead to temporary instabilities but are necessary for long-term stability in the

infected state.

These four cases together illustrate the importance of balancing control intensity and stability

when designing interventions. Higher epsilon values offer faster reductions in infections but

require careful tuning to avoid instabilities and fluctuations. Smaller epsilon values ensure

smoother control and more stable outcomes but may require longer time periods to achieve

the desired state. Intermediate epsilon values, such as ε = 0.4, often strike the best balance,

providing effective reductions in infections without large swings in control intensity. These

insights highlight the need for dynamic and context-specific control strategies, especially in

systems with varying time horizons and target states.

Although all epsilon values bring the infected population to the desired state at the desired

time, the dynamics of the intervention vary significantly. For higher epsilon values, the control

becomes more intense, increasing the risk of exceeding the admissible range ]0,1[. Early in

the intervention process, these values often exhibit a plateau, where infections decline slowly at
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first. However, the decline becomes more aggressive as the system approaches the desired state.

After reaching the target state, higher epsilon values ensure a faster reduction to zero infections,

though they risk instability and inadmissibility.

In contrast, smaller epsilon values produce smoother, more uniform control. This ensures

earlier recovery for some individuals, but the overall process takes longer to reach zero infec-

tions after hitting the desired state. The interventions with smaller epsilon values are more likely

to stay within the admissible range, maintaining stable control without aggressive intensity.

Intermediate epsilon values, such as ε = 0.4, offer a more balanced approach. These values

avoid extreme shifts or instability, achieving the desired state on time while keeping the control

admissible and effective throughout the process. This balanced performance makes moderate

epsilon values preferable in many scenarios.

It is evident that the error values are predominantly minimal and close to 0 across most cases.

However, errors start to increase notably when Id exceeds 180 and T surpasses 10. Interestingly,

for T = 40 and Id = 200, the error returns to approximately 3.

3.3. Error Behavior and Interpretation. Fig. 6 maps the alignment errors arising when

transferring control strategies from the non-demographic to the demographic model across tar-

get states Id and timeframes T . A critical finding is the emergence of the High-State, Short-Time

domain—scenarios where aggressive targets (Id > 500) under tight deadlines (T < 20) strain

the τ-equivalence between models, leading to larger errors. Outside this domain, errors remain

minimal, demonstrating the robustness of the calibration process.

The parameter ε , which governs control intensity, further modulates transfer reliability: smaller

values (ε ≈ 0.1–0.3) prioritize stability at the cost of frequent minor delays, while larger val-

ues (ε ≈ 0.7–0.9) reduce error frequency but risk severe misalignment if the system is over-

driven. This underscores the necessity of tuning ε to harmonize intensity with the fidelity of

τ-equivalence—a balance critical for replicating control objectives across models.

4. CONCLUSION

In this research, we addressed the problem of transferring control strategies from non-demographic

SIR models to demographic models by employing the concept of τ-equivalence. Our primary
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FIGURE 6. Error values calculated for every combination of desired time T

(range: 0-40 months) and desired infected state Id (range: 0 to I0 = 800). The

color bar spans error values from 0 months (blue) to 40 months (yellow). Er-

rors are computed for nine cases of ε ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

Black regions indicate inadmissible control cases where solutions are not achiev-

able

goal was to demonstrate that, with appropriate calibration, simple non-demographic models can

effectively guide infection control in more complex demographic scenarios involving births and

deaths.

Our findings confirmed that calibrated non-demographic models can reliably replicate de-

mographic model dynamics within acceptable error margins, validating the effectiveness of the

τ-equivalence approach. We observed that moderate control intensities (intermediate ε val-

ues) provided optimal performance by achieving a balance between timely infection control

and stability. Conversely, extreme ε values posed challenges, either causing overly aggressive

interventions or overly cautious responses.
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A key limitation of this study is the diminished performance observed under highly demand-

ing conditions—specifically scenarios requiring rapid, substantial infection reduction—highlighting

potential challenges in real-world applications where aggressive intervention timelines might be

necessary. Additionally, our method was tested exclusively on a relatively simple model (the

SIR model). Although successful in this context, the applicability of τ-equivalence for trans-

ferring control strategies between more complex or fundamentally different epidemiological

models remains an open question.

The results emphasize the practical implications of calibrating simpler models for controlling

complex epidemiological dynamics. Future research may address the identified limitations by

integrating additional factors such as spatial heterogeneity, age structure, or seasonal effects.

Exploring multi-objective optimization frameworks and testing τ-equivalence across different

classes of epidemiological models could further enhance the flexibility and practical effective-

ness of these control strategies.
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