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Abstract. Tuberculosis (TB) remains a major public health challenge, requiring precise mathematical modeling to

enhance understanding and inform control strategies. Analyzing the dynamics of TB involves studying key model

parameters to improve accuracy. This study evaluates six TB models using statistical criteria, including the Sum of

Squared Errors (SSE), Akaike Information Criterion (AIC), corrected AIC (AICc), Bayesian Information Criterion

(BIC), the difference in AIC (∆AIC), and Akaike weight. The results show that proposed model 2 outperforms

the others, achieving the lowest AIC, AICc, and BIC values while having the highest Akaike weight. These

findings underscore the importance of selecting an optimal model for TB dynamics to ensure reliable predictions

and effective policymaking.

Keywords: Akaike information criterion; Bayesian information criterion; ∆ Akaike information criterion; Akaike

weight.
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1. INTRODUCTION

Every year millions of people are infected with tuberculosis (TB), and TB remains one of the

leading infectious diseases in the world [1]. Mathematical models are widely used to understand

the transmission process of TB and suggest control steps for TB in reality. These models play a

crucial role in assessing important quantities, such as the basic reproduction number (R0), rates

of transmission, and the effectiveness of control measures like immunization and therapy [2].

By incorporating real-world data, these models can predict future outbreaks, evaluate public

health policies, and guide government in formulating effective TB control strategies. Determin-

istic and stochastic models help provide a detailed representation of TB dynamics, accounting

for both latent infection and active disease phases.

In real-world applications, TB models are tailored to specific populations by incorporating

demographic patterns, healthcare accessibility, and socioeconomic factors [2]. To address the

challenges of high TB-burden areas like South Asia and Sub-Saharan Africa, models integrate

HIV co-infection, drug resistance, and diagnostic delays [3]. The evaluation of intervention

strategies, including DOTS, preventive treatments, and vaccination efforts, heavily relies on

mathematical models. Bayesian inference and maximum likelihood estimation refine parameter

estimation by calibrating models to observed epidemiological data, leading to more precise and

trustworthy predictions. A major challenge in real-world TB modeling is ensuring sufficient and

reliable data availability [4]. Models may not predict correctly due to lack of comprehensive

and reliable health records in high TB-prevalence areas. Researchers can resolve this issue

with the help of sensitivity analysis. Sensitivity analysis tells us the impact of each parameter

on the model outcomes. In addition, TB models integrate seasonality, migration patterns, and

socioeconomic dynamics to better capture real-world transmission trends. Machine learning

and increased computational capacity improve TB modeling by integrating extensive data and

boosting prediction reliability. Ultimately, TB models serve as valuable decision-making tools

for governments and health organizations. By simulating different intervention scenarios, these

models help allocate resources effectively, prioritize high-risk groups, and develop targeted

policies. For example, models have shown that combining active case detection with preventive
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therapy can significantly reduce TB incidence over time. The emergence of new treatments and

vaccines will ensure that these models play a key role in advancing TB eradication efforts and

improving public health worldwide [5].

Model selection is not uphill task now one can use statistical techniques such as AIC, AICc,

BIC, ∆AIC, and Akaike weight. These techniques help us to identify the best model for fu-

ture predictions. Not only complexity of the model is considered for model selection but also

goodness of fit [6]. Using these measures, we can determine which model provides the best

explanation for the observed data without overfitting. We have examined six mathematical

models for TB. Each model is formulated using system of nonlinear ordinary differential equa-

tions. Every model reflects the real picture of TB transmission process. No only these models

give importance to role of proper treatment, rate of recovery, contact rate but also short and

long latent period. The variations among these models help us to understand the complexities

of TB transmission and progression. Therefore, it is necessary to compare the models to un-

derstand which model is most suitable for understanding the TB dynamics. One of the most

commonly used criteria for the best model selection is AIC. By considering the complexity of

the model, AIC tells us how well a model fits the data. AIC value indicates a better fit among

the different models. The model having lowest AIC is considered as the best among the other

models. However, if the sample size is small, then AIC may be biased and AICc should be

used. The term AICc indicates the correction for small sample sizes [7]. Information entropy

is the main principle for AIC whereas Bayesian probability is the main principle for BIC. The

term BIC is used when the number of parameters is fewer. The comparison between AIC and

BIC can provide insights into whether model complexity is justified by improvements in fit [8].

The term ∆AIC, calculated as the difference between a given model’s AIC and the lowest AIC

value among all models, helps in ranking models. Models with ∆AIC values close to zero are

considered the best-fitting models, while those with higher ∆AIC values are less supported by

the data [9]. This measure aids in understanding the relative performance of each TB model.

Akaike weight, derived from AIC values, quantifies the relative likelihood of each model being

the best among the set of models considered. It provides a probabilistic interpretation, indi-

cating how much confidence can be placed in a particular model relative to others [10]. By
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computing Akaike weights, researchers can objectively compare and interpret the effectiveness

of different TB models.

Our aim is to determine which model is best for forecasting TB dynamics. Therefore, six

models are selected in this paper. Each model is fitted using real clinical data of Pakistan from

WHO [3]. Furthermore AIC, AICc, BIC, ∆AIC, and Akaike weights will be computed for all

models. By employing a comparative approach, this study ensures that the selected model is

statistically reliable and epidemiologically significant. The results will contribute to refining

TB modeling strategies and informing better disease control measures.

2. MATERIAL AND METHODS

TB modeling generally employs a compartmental structure, dividing the population accord-

ing to disease stages. A widely used approach is the SEIR model, which is modified to reflect

the unique aspects of TB transmission and progression [11]. TB differs from many infectious

diseases due to its latent stage, during which infected individuals are not yet capable of spread-

ing the disease. Consequently, TB models typically feature compartments like susceptible (S),

latent (E), infectious (I), and recovered (R). Certain models also refine this structure by dis-

tinguishing between early and late latent stages or between drug-sensitive and drug-resistant

TB cases. The spread of TB is mathematically modeled using differential equations, which de-

scribe transitions between different disease states. These equations generally incorporate terms

representing infection, disease progression, recovery, and the impact of interventions. In TB

models, new infections are typically represented by the term βSI, with β as the transmission

rate. The latent-to-active progression is controlled by σ , and recovery via treatment occurs at a

rate γ . Moreover, TB models often account for reinfection, as individuals who have recovered

can become susceptible again. To enhance realism, birth and death rates are also included to

capture long-term population dynamics [12].

To incorporate control measures, TB models can be extended with the addition of vaccina-

tion, treatment and isolation. A classical example would be the case study for the introduction

of Bacillus Calmette-Guérin vaccine (BCG) that alters the susceptible compartment by intro-

ducing a population group at a lower susceptibility level. In TB models, treatment interventions

are included with compartments for treated individuals and consideration of the emergence of
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drug resistance [13]. TB models are often updated to more accurately reflect real world dy-

namics by including heterogeneity of transmission into the model to capture heterogeneity in

aspects such as age, demographics, comorbidities (for example HIV-TB co-infection), and spa-

tial effects. The emergence of new therapies and vaccines will drive the evolution of TB models,

incorporating genomic, behavioral, and environmental data to refine their predictions. With this

strategy, mathematical modeling continues to play a crucial role in the international effort to

combat and eradicate the TB [14]. In this study, a selection of six different models, proposed

for comprehension of TB dynamics, is made. The discussion of these models is presented

below:

Model 1 (M1): A TB model based upon six epidemiological compartments including sus-

ceptible S(t), vaccinated V (t), latent class L(t), active TB I(t), treated class T (t) and recovered

class R(t) is introduced in [15]. The model is represented by the following nonlinear system of

ordinary differential equations:

(1)

dS
dt

= φ +ρV −ξ SJ− (τ +µ)S,

dV
dt

= τS−ξ (1−β )V J− (ρ +µ)V,

dL
dt

= ξ SJ+ξ (1−β )V J+(1−θ)σT − (ε +µ)L,

dI
dt

= εL+θσT − (µ +δ +ω)I,

dT
dt

= ωI − (µ + γ +σ)T,

dR
dt

= γT −µR.

The biological parameters and their description are given in Table 1. Furthermore, parameters

fitted in the model are (1) are τ,ρ,ξ ,β ,δ ,ε,θ ,σ ,γ and ω .
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TABLE 1. Biological parameters and their descriptions for the model given in

(1).

Parameter Description

φ Recruitment rate of individuals into the susceptible population

τ Vaccination rate

ρ Vaccine waning rate

ξ Transmission rate

β Vaccine effectiveness

µ Natural mortality rate

δ Mortality rate due to disease

ε Progression rate from latent TB to active TB

θ Probability of treatment failure

σ Transfer rate of individuals into the treated class

γ Recovery rate of treated individuals

ω Treatment rate for individuals with active TB

Model 2 (M2): A nonlinear 5 by 5 system of ordinary differential equations is generated

with the help of transmission dynamics of TB in [16]. The number of compartments in which

the total population is classified are: susceptible S(t), vaccinated V (t), exposed E(t), infected

I(t), and recovered R(t). The model is shown below:

dS
dt

= Λ+θV −ζ S−βSI −µS,

dV
dt

= ζ S−ωβV I −θV −µV,

dE
dt

= βSI +ωβV I − pβEI − (k+µ)E +σβ IR,

dI
dt

= pβEI + kE − (µ + τ +δ )I,

dR
dt

= τI −σβ IR−µR.

(2)
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The biological parameters and their description are given in Table 2. Furthermore, parameters

fitted in the model are (2) are ω,θ ,ζ ,δ ,β ,σ ,κ,τ and p.

TABLE 2. Description of parameters used in the TB model (2).

Parameter Description

Λ Recruitment of individuals through birth or immigration

ω Reduction in infection risk due to vaccination

θ Rate at which vaccine immunity wanes

ζ Vaccination rate of susceptible individuals

µ Natural mortality rate

δ TB-induced mortality rate

β Transmission rate of infection

σ Rate of reinfection among treated individuals

κ Rate of progression from latent to active TB

τ Recovery rate from TB

p Rate of exogenous reinfection

Model 3 (M3): Another TB model has been proposed in [17] that captures the essential

dynamics of TB transmission, considering vaccination, progression, recovery, and reinfection.

The nonlinear system of ordinary differential equations is given by:

dS
dt

= Π−κ1
SI
N

−κ2
SW
N

− (µ +α)S+θV,

dV
dt

= αS−µV −θV,

dE
dt

= κ1
SI
N

+κ2
SW
N

− (µ +β + r1)E,

dI
dt

= βE +φR− (µ +d + τ + r2)I,

dT
dt

= τI − (r3 +d +µ)T,

dR
dt

= r1E + r2I + r3T − (φ +µ)R,

dW
dt

= ψI −bW.

(3)
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The biological parameters and their description are given in Table 3. Furthermore, parameters

fitted in the model are (3) are κ1, κ2, α , θ , β , r1, φ , d, τ , r2, r3, ψ and b.

TABLE 3. Description of parameters used in the TB model (3).

Parameter Description

Π Recruitment rate of individuals through birth or immigration
κ1 Infection rate due to direct contact with infected individuals
κ2 Infection rate due to indirect exposure from the environment
α Vaccination rate of susceptible individuals
θ Vaccine waning rate
µ Natural death rate
β Transmission rate of infection
r1 Recovery rate of exposed individuals
r2 Recovery rate of infected individuals
r3 Recovery rate of treated individuals
τ Treatment rate of infected individuals
d Disease-induced death rate
φ Reinfection rate of recovered individuals
ψ Shedding rate of the virus from infected individuals
b Clearance rate of pathogens in the environment

Model 4 (M4): Based on the compartmental model description and the assumptions, a TB

model has been proposed in [18] which is a system of six coupled nonlinear first-order ordinary

differential equations as shown below:

dS
dt

= Λ−βSI +θV + γR− (τ +µ)S,

dV
dt

= τS− (1−ω)βV I − (θ +µ)V,

dE
dt

= βSI + εβRI +(1−ω)βV I − (ρ +κ +µ)E,

dI
dt

= κE − (α +µ +δ )I

dT
dt

= ρE +αI − (r+µ)T,

dR
dt

= rT − εβRI − (γ +µ)R.

(4)
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The above system is a baseline model of TB transmission dynamics in the absence of targeted

intervention strategies. The biological parameters and their description are given in Table 4.

Furthermore, parameters fitted in the model (4) are β ,κ,r,γ,ε,δ ,θ ,τ,α,ω and ρ .

TABLE 4. Description of parameters in the TB model (4).

Parameter Description

µ−1 Average human lifespan
Λ Rate of new individuals entering the population
β Rate of TB transmission
κ Rate at which latent TB progresses to active TB
r Recovery rate from TB
γ Loss of immunity due to waning effects
ε Correction factor for reinfection probability
µ Natural death rate of individuals
δ Death rate due to TB infection
θ Rate of immunity loss due to vaccine waning
τ Vaccination rate of the population
α Rate at which active TB patients seek treatment
ω Effectiveness of the vaccine
ρ Rate at which latent TB patients seek treatment

Proposed Model 1 (PM1): To study TB transmission, we have proposed a mathematical

model for TB. The developed model has six compartments: Susceptible S(t), Slow Exposed

E1(t), Fast Exposed E2(t), Infected I(t), Treated T (t) and Recovered R(t). The resulting 6 by

6 system of nonlinear ordinary differential equations is formulated as follows:

dS
dt

= λ − cβ1SI
N

− cβ2SI
N

−µS,

dE1

dt
=

cβ1SI
N

+
1
2
(1−η3)δT − (k1 +µ)E1,

dE2

dt
=

cβ2SI
N

+
1
2
(1−η3)δT − (k2 +µ)E2,

dI
dt

= η1k1E1 +η2k2E2 +η3δT − (γ +µ +σ1)I,

dT
dt

= γI − (µ +δ +σ2 +α)T,

dR
dt

= αT +(1−η1)k1E1 +(1−η2)k2E2 −µR,

(5)
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with initial conditions S(0)> 0, E1(0)≥ 0, E2(0)≥ 0, I(0)≥ 0, T (0)≥ 0 and R(0)≥ 0. The

biological parameters and their description are given in Table 5. Furthermore, parameters fitted

in the model (5) are c,β1,β2,η1,η2,k1,k2,γ,δ and α .

TABLE 5. Biological interpretation of parameters in the proposed TB model (5).

Parameter Description

λ Recruitment rate

c Contact rate between susceptible and infected individuals

β1 The probability of leaving the compartment S and joining the slow exposed

compartment

β2 The probability of leaving the compartment S and joining the fast exposed

compartment

η1 The probability of leaving the compartment E1 and joining the I compart-

ment

η2 The probability of leaving the compartment E2 and joining the I compart-

ment

k1 The rate of transfer from E1 to I

k2 The rate of transfer from E2 to I

γ The rate of treatment

η3 The failure of treatment

δ The rate of transfer from T to I

α The rate of recovery

µ Natural death rate

σ1 TB induced death

σ2 Death during TB treatment

Proposed Model 2 (PM2): Last but not the least, another TB model has been proposed by

authors of this paper. It may be noted that the manuscript consisting of this model is under

consideration. In this model, there are four compartments in which total population is divided.

Each compartment is non-intersecting. The associated system of nonlinear ODEs is as follows:
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dS
dt

= λ − βSI
N

−µS,

dE
dt

=
βSI
N

− (µ + k)E,

dI
dt

= ηkE − (α + z)I − (µ +σ)I,

dR
dt

= (1−η)kE +(α + z)I − µR,

(6)

The biological parameters and their description are given in Table 6. Furthermore, parameters

fitted in the model (6) are β ,α,η ,k,σ and z.

TABLE 6. Parameters describing the biological mechanism in the model (6).

Parameter Description

λ Recruitment rate

β Contact rate between susceptible and infected

α Progression from I to R

η Probability that E will join I

k Progression from E to I

µ Natural death rate

σ Death rate in I due to TB

z Rate of therapy

3. MODEL SELECTION CRITERIA

In this section, our aim is to discuss the model selection criteria. There are six TB models

studied for the model selection using different statistical measures. These statistical techniques

are Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc), the

Bayesian Information Criterion (BIC), the difference in AIC (∆AIC), and Akaike weight. These

criteria assist in selecting the most suitable model by balancing goodness-of-fit with complexity,

preventing overfitting.
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3.1. Akaike Information Criterion. The Akaike Information Criterion (AIC) is a key statis-

tical measure used to compare models by considering both fit and complexity. It is mathemati-

cally defined as:

(7) AIC =−2lnL+2k,

where

• L is the likelihood function of the model, given the data,

• k is the number of estimated parameters in the model.

A smaller AIC value suggests a more suitable model, balancing fit and complexity. The penalty

term 2k mitigates over-fitting by imposing a cost on excessive parameters.

3.2. Corrected Akaike Information Criterion. When AIC is biased as sample size is small,

then corrected Akaike Information Criterion (AICc) is used. The AICc adjusts AIC by adding

a correction term. The associated formula is as follows:

(8) AICc = AIC+
2k(k+1)
n− k−1

,

where

• n is the sample size,

• k is the number of parameters.

As the sample size n increases, AICc approaches AIC. However, for smaller datasets, AICc

offers a more accurate estimate by applying a stricter penalty on models with numerous param-

eters.

3.3. Bayesian Information Criterion. Derived from Bayesian probability principles, the Bayesian

Information Criterion (BIC) provides a framework for model selection. It is expressed as:

(9) BIC =−2ln(L)+ k ln(n),

where

• L is the likelihood function,

• k is the number of parameters,

• n is the sample size.
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Unlike AIC, BIC imposes a stronger penalty on models with more parameters as it includes

the ln(n) term, making it more conservative in selecting complex models.

3.4. Difference in AIC. The relative performance of models is assessed using ∆AIC, which

is computed as:

(10) ∆i = AICi −AICmin,

where

• AICi is the AIC of model i,

• AICmin is the lowest AIC value among all models.

Models with ∆AIC ≤ 2 are considered highly competitive, while models with ∆AIC ≥ 10

have considerably less support.

3.5. Akaike Weight. To compare model probabilities, the Akaike weight for model i is given

by:

(11) wi =
e−∆i/2

∑
J
j=1 e−∆ j/2 ,

where

• wi is the Akaike weight for model i, representing its relative likelihood.

• e is the base of the natural logarithm (≈ 2.718).

• ∆i is the ∆AIC for model i.

• J is the total number of candidate models.

• ∑
J
j=1 e−∆ j/2 is the normalization factor ensuring that all Akaike weights sum to 1.

Akaike weight provides the probability that a given model is the best among a set of competing

models.

4. INTERPRETATION OF MODEL SELECTION CRITERIA

AIC and AICc favor models that balance goodness of fit and complexity, with AICc being

preferred for small sample sizes due to its additional correction. BIC, on the other hand, im-

poses a stronger penalty on model complexity, making it more conservative in selecting simpler

models as the sample size increases. The ∆AIC value helps assess how much worse a model
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is compared to the best model, providing a relative measure of model performance. Akaike

weights assign probabilities to each model and the model with the highest weight is considered

to be the best model and can be used for future prediction. It should be noted that the model

should have at least 90% weight to be considered for future prediction. Furthermore, if no

model has weight 90% then sum of models will be considered for model’s selection.

In this study, we compare the models based on these criteria to determine the most suitable

TB model for the data set. Table 7 presents the statistical comparison of six different models

based on various criteria, including the SSE, k, AIC, AICc, BIC, ∆AIC, and wi. These criteria

help to determine the model that best fits the data while balancing complexity and goodness

of fit. Lower values of AIC, AICc, and BIC indicate a better model, whereas Akaike weight

represents the probability of a model being the most appropriate among the compared models.

Analyzing the results, we notice that PM1, M1, M2 and PM2 have significantly lower SSE,

suggesting they provide a closer fit to the data. Furthermore, the proposed model (PM1) has

the lowest SSE compared to other models. SSE measures the difference between the observed

and predicted values, with a lower value indicating a better accuracy. While M3 has the highest

number of parameters (k = 14), its AIC (131.75) and BIC (341.75) values indicate that it is not

optimal in terms of model selection criteria.

In Table 7 and Figure 1, (plot A & B), it is emphasized that PM2 outperforms all other models

with the lowest AIC (107.78) and AICc (120.23), indicating that it provides the best trade-off

between model complexity and fit. AICc, which adjusts AIC for small sample sizes, shows

a significant difference between PM2 and the other models. The BIC values in Table 7 and

Figure 2, (plot A), also follow the same trend, further confirming that PM2 is the best among

the six models. Lower BIC values reinforce the idea that this model is the most efficient when

penalizing for complexity. Based on the difference in AIC (∆AIC) in Table 7 and Figure 2, (plot

B), models PM2 and PM1 have the strongest support among the candidate models. A smaller

∆AIC indicates that these models provide the best balance between fit and complexity. Models

with higher ∆AIC values are less likely to be the best choice. Therefore, PM2 and PM1 emerge

as the most plausible models based on AIC comparison. The Akaike weight (wi) in Table 7

and Figure 3, further supports this conclusion, with PM2 achieving a value of 0.94504, which
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means it has a 94.504% probability of being the best model among the six. In contrast, the

second-best model is PM1 having a weight of only 0.018935. This emphasizes that PM2 is the

most suitable model in terms of model selection in this research study. Model PM2 stands out

as the most suitable option, as it optimally balances accuracy and complexity. With the lowest

selection criteria values and the highest Akaike weight, it proves to be the most reliable model

for practical applications.

FIGURE 1. AIC and AICc values of every model under consideration.

FIGURE 2. BIC and Delta AIC values of every model under consideration.
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FIGURE 3. Akaike weight values of every model under consideration.

TABLE 7. Statistical evaluation of six models based on different selection met-

rics.

Model SSE k AIC AICc BIC ∆AIC Akaike weight

Model 1 4201.1363 11 115.67 168.47 124.83 7.89 0.018326

Model 2 4232.9452 10 115.8 168.6 124.96 8.014 0.017188

Model 3 7604.1123 14 131.75 341.75 143.42 23.97 5.887e-06

Model 4 5703.5561 12 122.87 200.87 132.86 15.08 5.0136e-04

Proposed Model 1 4185.0178 11 115.6 168.4 124.77 7.82 0.018935

Proposed Model 2 4229.4494 7 107.78 120.23 113.61 0.0000 0.94504

5. CONCLUSION AND FUTURE REMARKS

In conclusion, this study compared six mathematical epidemiological TB models, revealing

that PM2 is the most suitable one, as indicated by its lowest AIC (107.78), AICc (120.23),

and BIC (113.61) values. The Akaike weight further supports this conclusion, assigning a
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94.504% probability to its suitability. While PM1 and M1 also demonstrated relatively good

performance, their higher selection criteria values suggest they are less optimal. These findings

underscore the importance of balancing the complexity and accuracy of the model in epidemi-

ological modeling. Future research could improve this work by incorporating factors such as

seasonality, intervention strategies, or stochastic effects to improve the reliability of the model

and its application in TB control policies.
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[5] B. Acay Öztürk, A. Yusuf, M. Inc, Fractional HIV Infection Model Described by the Caputo Derivative with

Real Data, Bol. Soc. Mat. Mex. 30 (2024), 18. https://doi.org/10.1007/s40590-023-00592-2.

[6] M. Moosazadeh, M. Nasehi, A. Bahrampour, et al. Forecasting Tuberculosis Incidence in Iran Using Box-

Jenkins Models, Iran. Red Crescent Med. J. 16 (2014), e11779. https://doi.org/10.5812/ircmj.11779.

[7] W.C. Roda, M.B. Varughese, D. Han, M.Y. Li, Why Is It Difficult to Accurately Predict the COVID-19

Epidemic?, Infect. Dis. Model. 5 (2020), 271–281. https://doi.org/10.1016/j.idm.2020.03.001.

[8] Q. Liu, M.A. Charleston, S.A. Richards, B.R. Holland, Performance of Akaike Information Criterion and

Bayesian Information Criterion in Selecting Partition Models and Mixture Models, Syst. Biol. 72 (2023),

92–105. https://doi.org/10.1093/sysbio/syac081.

[9] E. Susko, A.J. Roger, On the Use of Information Criteria for Model Selection in Phylogenetics, Mol. Biol.

Evol. 37 (2020), 549–562. https://doi.org/10.1093/molbev/msz228.

[10] H. Motulsky, Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide

to Curve Fitting, Oxford University Press, 2004.

https://www.who.int/news-room/fact-sheets/detail/tuberculosis
https://www.who.int/news-room/fact-sheets/detail/tuberculosis
https://doi.org/10.1007/978-3-319-72122-4
https://doi.org/10.1007/978-3-319-72122-4
https://www.who.int/teams/global-tuberculosis-programme/data
https://www.who.int/teams/global-tuberculosis-programme/data
https://doi.org/10.5588/pha.19.0014
https://doi.org/10.5588/pha.19.0014
https://doi.org/10.1007/s40590-023-00592-2
https://doi.org/10.5812/ircmj.11779
https://doi.org/10.1016/j.idm.2020.03.001
https://doi.org/10.1093/sysbio/syac081
https://doi.org/10.1093/molbev/msz228


18 QURESHI, QURESHI, SHAIKH, SHAHANI

[11] K. Das, B.S.N. Murthy, Sk.A. Samad, Md.H.A. Biswas, Mathematical Transmission Analysis of SEIR Tu-

berculosis Disease Model, Sensors Int. 2 (2021), 100120. https://doi.org/10.1016/j.sintl.2021.100120.

[12] D. Bloom, D. Canning, Global Demographic Change: Dimensions and Economic Significance, National

Bureau of Economic Research, Cambridge, MA, 2004. https://doi.org/10.3386/w10817.

[13] A.J. Garcia-Prats, J.R. Starke, B. Waning, B. Kaiser, J.A. Seddon, New Drugs and Regimens for Tuberculosis

Disease Treatment in Children and Adolescents, J. Pediatr. Infect. Dis. Soc. 11 (2022), S101–S109. https:

//doi.org/10.1093/jpids/piac047.

[14] A.Y. Ayinla, W.A.M. Othman, M. Rabiu, A Mathematical Model of the Tuberculosis Epidemic, Acta Bio-

theor. 69 (2021), 225–255. https://doi.org/10.1007/s10441-020-09406-8.

[15] K. Oshinubi, O.J. Peter, E. Addai, et al. Mathematical Modelling of Tuberculosis Outbreak in an East African

Country Incorporating Vaccination and Treatment, Computation 11 (2023), 143. https://doi.org/10.3390/co

mputation11070143.

[16] F. Sulayman, F.A. Abdullah, M.H. Mohd, An SVEIRE Model of Tuberculosis to Assess the Effect of an

Imperfect Vaccine and Other Exogenous Factors, Mathematics 9 (2021), 327. https://doi.org/10.3390/math

9040327.

[17] M.A. Khan, M.H. DarAssi, I. Ahmad, N.M. Seyam, E. Alzahrani, Modeling the Dynamics of Tuberculosis

with Vaccination, Treatment, and Environmental Impact: Fractional Order Modeling, Comput. Model. Eng.

Sci. 141 (2024), 1365–1394. https://doi.org/10.32604/cmes.2024.053681.

[18] F.O. Ochieng, Mathematical Modeling of Tuberculosis Transmission Dynamics With Reinfection and Opti-

mal Control, Eng. Rep. 7 (2025), e13068. https://doi.org/10.1002/eng2.13068.

https://doi.org/10.1016/j.sintl.2021.100120
https://doi.org/10.3386/w10817
https://doi.org/10.1093/jpids/piac047
https://doi.org/10.1093/jpids/piac047
https://doi.org/10.1007/s10441-020-09406-8
https://doi.org/10.3390/computation11070143
https://doi.org/10.3390/computation11070143
https://doi.org/10.3390/math9040327
https://doi.org/10.3390/math9040327
https://doi.org/10.32604/cmes.2024.053681
https://doi.org/10.1002/eng2.13068

	1. Introduction
	2. Material and Methods
	3. Model Selection Criteria
	3.1. Akaike Information Criterion
	3.2. Corrected Akaike Information Criterion
	3.3. Bayesian Information Criterion
	3.4. Difference in AIC
	3.5. Akaike Weight

	4. Interpretation of Model Selection Criteria
	5. Conclusion and Future Remarks
	Conflict of Interests
	References

