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Abstract. Dengue fever is one of the most common insect-borne infectious diseases in the world. In this paper, a

dynamics model of dengue fever with incubation periods and vertical transmission in a heterogeneous environment

is developed, taking into account the influence of incubation periods and vertical transmission on dengue virus

transmission. Theoretically the existence of a global classical solution of the model is proved uniquely, and the

threshold dynamics of the model is described using the basic reproduction number R0. The global asymptotic

stability of the disease-free equilibrium is proved by constructing the upper and lower solutions in combination with

the properties of the basic reproduction number when R0 < 1, and the disease-free equilibrium is unstable when

R0 > 1. There exists a global exponential attraction set in the system when R0 > 1. Finally, numerical simulation

and PRCC sensitivity analysis were combined to obtain that increasing the diffusion coefficients of both susceptible

and infected populations exacerbates the spread of dengue virus. In reality, dengue virus transmission can be

effectively controlled by reducing the frequency of crowd activities, good personal protection against mosquito

bites, timely medical treatment, and effective vaccination, among which the reduction of mosquito bite rate has the

most significant effect.
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1. INTRODUCTION

Dengue fever (DF) is a mosquito-borne tropical infectious disease caused by the dengue

fever virus (DENV). The virus is transmitted primarily through the bites of infected female

mosquitoes, mainly in our country to the Aedes aegypti and Aedes albopictus mosquitoes,

mosquitoes infected with DENV can not only be carried for life, but also through the eggs

of the virus that will be passed on to the offspring, and at the same time, people can also be

transmitted through the mother and child, organ donation, etc[1, 2, 3]. Clinical studies have

shown that the life cycle of mosquitoes is about 3 weeks and DENV generally has incubation

periods of 5-8 days in mosquitoes and 3-14 days in humans[1]. The vast majority of people

infected with DENV individuals do not have symptoms. Symptomatic of infected people are

mainly fever, headache, muscle and joint pain. In severe cases, life-threatening dengue hem-

orrhagic fever (DHF), shock, or death[4]. According to WHO statistics, 80% of symptomatic

DF infections have only mild symptoms, such as fever, while the remaining 20% of infected

deteriorate further and develop severe symptoms[5].

During the 18th and 19th centuries, DF was prevalent mainly in the tropics, but the trend

of globalization has led to a more rapid spread of DF, a wider range of epidemics, and the

emergence of multiple DENV epidemics in different regions, resulting in most countries in the

tropics and subtropics becoming high-risk areas. In China,it is more serious in Guangdong,

Yunnan, Guangxi and Zhejiang[6]. There are four main serotypes of DENV, DENV-1, DENV-

2, DENV-3 and DENV-4. When a person recovers from infection with one of these serotypes,

he or she develops lifelong immunity to that type of serotype, but has only partial and short-

lived cross-immunity to the other serotypes, and the lethality of subsequent infections with the

other serotypes (secondary infections) can be as high as 5% to 8%[7]. During the last decade,

the incidence rate of DF has increased dramatically around the world. From 2000 to 2019,

the WHO reported cases have increased from 505,430 to 5.2 million, and the actual number

of cases will be higher as many of them will be misdiagnosed as other febrile disease[1]. In

the literature[8], it is known that the DENV is present in more than 110 counties around the

world and there are 390 million cases of DENV infection each year, 96 million of which are

clinically symptomatic, and based on prevalence estimates, a total of 3.9 billion people around
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the world are at risk of dengue infection, which kills about 25,000 people each year. In the first

decade of the 21st century, it is estimated that approximately 3 million people were infected with

the DENV and 6,000 died annually in 112 countries in South Asia[9]. In 2019, the domestic

DF epidemic in the form of severe, the country reported a total of 22,599 cases of DF, the

incidence of 1.63/100,000, the number of reported cases is second only to the big outbreak of

DF in 2014[10]. Until now, in the control of DF, although a lot of research has been done

on vaccine research, a truly effective vaccine has not yet been developed, so the prevention of

DENV transmission is mainly dependent on avoiding the bite of mosquitoes, of which the main

control strategies are spraying insecticides, genetic modification, insect technology sterilization

and Wolbachia mosquito control technology. Due to the limited control strategies and the wide

range of populations involved, DF has become one of the most researched insect-borne diseases

in the world[11].

In existing research on DF, scholars use mathematical models to study, common are ordinary

differential equations, stochastic differential equations and partial differential equations[12, 13,

14]. In 1970, Fischer and Halstead[15] first proposed a class of dynamics models reflecting the

dynamics system of transmission of DF, with which they described the transmission of DHF

due to successive infections with different viral types, and evaluated the number of cases and

time intervals at which DHF occurs. In 1998, Esteva and Vargas[16] proposed the classical

SIR-SI model of DF with standard incidence(1.1)

(1.1)



dSh
dt = µhNh− βhb

Nh+mShIv−µhSh,

dIh
dt =

βhb
Nh+mShIv− (µh + γh) Ih

dRh
dt = γhIh−µhRh,

dSv
dt = A− βvb

Nv+mSvIh−µvSv,

dIv
dt =

βvb
Nv+mSvIh−µvIv,

Sh(0), Ih(0),Rh(0),Sv(0), Iv(0)≥ 0.

The model divides the population into into three compartments: susceptible populations Sh,

infected population Ih and recovered population Rh, the mosquitoes are divided into two com-

partments: susceptible mosquito swarms Sv and infected mosquito swarms Iv. The model de-

picts the generalized process of the transmission of DF, and discusses the global asymptotic
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stability of the positive equilibrium point through the stability of the periodic solution, analyzes

the effective mosquito control measures based on the threshold conditions to further prevent the

transmission of DENV effectively.

Today, many scholars have further studied the vertical transmission of DF, cross-infection

and the characteristics of DENV under different age structures on the basis of this classic

model[17, 18, 19], among which in literature[17], based on hospitalization data of mothers

infected with DENV during breastfeeding in the region of New Caledonia, it was found that

there was a high risk of complications for mothers and infants, and that vertical transmission

of DF was up to 90% of mothers’ deliveries. In order to study the effects of climatic fac-

tors and cross-infection on DENV transmission, a dynamics model for the transmission of two

strains of DENC between mosquitoes and populations with seasonal influences is proposed

in literature[18]. Using the next-generation matrix method, the local asymptotic stability and

global asymptotic stability are obtained by determining the disease-free periodic solution of the

model. Subsequently following in 2017 in the literature[19], the authors investigated a class

of Aedes aegypti mosquito population models with with a class age structure and obtained the

threshold conditions controlling the growth and development of the stage structure of the Aedes

aegypti mosquito population: when the basic reproduction number R0 < 1, the local equilib-

rium state in the system is globally asymptotically stable; when the basic reproduction number

R0 > 1, the positive equilibrium states in the system are globally asymptotically stable. Through

the analysis of various dengue dynamics models, the characteristics of DENV transmission and

the transmission mechanism have been clarified. With the advent of the era of globalization and

the increasing frequency of contacts around the world, infectious diseases can be transmitted

from one area to another through the spread of the population or the migration of mosquito

swarms, so the spread of DENV is not only related to time, but also related to spatial loca-

tion, so some biomathematicians have used reaction-diffusion equations to construct a model

of DF infectious diseases to describe the transmission mechanism of DENV spread in space

and time. Taking into account spatial heterogeneity, in 2019, the problem of the free boundary

of several types of reaction-diffusion systems is considered in the literature[20], the determin-

ing criterion of spreading and elimination of the disease is given, and the expansion capacity
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of the initial distribution region and the effect on the free boundary are analyzed by numeri-

cal simulation. In the following period of time, some scholars have considered the effects of

spatio-temporal transmission, media coverage and time delay on DENV spread using reaction-

diffusion equation in conjunction with the DENV spreading mechanism[21, 23, 22, 24], and

using stability theory and optimal control theory criteria for the propagation and elimination

of disease were given. Through existing research and real life, it is found that the spread of

DENV is a complex process which is affected by various factors, including environment, hu-

man behavior, socio-economic factors, ect. Therefore, to effectively control and prevent DENV

spread, it is necessary to consider various influencing factors in a comprehensive way and take

the corresponding response measures. In previous research on DF, the influence of DENV incu-

bation periods is often neglected in consideration of the convenience of model theory analysis,

which will overestimate the risk of DENV transmission. In 2020 Zhou and Zheng[25] dis-

cussed a class of dengue thermodynamic models with latent time delays,and obtained the local

asymptotic stability of the disease-free equilibrium and the endemic equilibrium using the lin-

earization method. Furthermore, by constructing Lyapunov functional models, the criteria for

determining the global asymptotic stability of the disease-free equilibrium and endemic equi-

librium were obtained. In this paper, based on the previous research on DENV, optimize the

classic SIR-SI model considering the effects of DENV incubation and vertical transmission, we

use the next generation characteristic operator to calculate the basic reproduction number R0. It

is theoretically proven that when R0 < 1, the global asymptotic stability of the disease-free equi-

librium of the system is obtained; when R0 > 1, the instability of the disease-free equilibrium

of the system is demonstrated. The existence theorem of the global exponential attraction set of

the system is proved by constructing upper and lower solutions. The accuracy of the relevant

theory is verified through numerical simulation. Considering the sensitivity analysis of PRCC

of each parameter to the basic reproduction number, some effective and feasible suggestions for

preventing DF are given.
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2. MODEL FORMULATION

Combining the DF dynamics model with time delays and vertical transmission in the literature[24],

we established a SEIR-SI reaction-diffusion dynamics model with incubation and vertical trans-

mission in a heterogeneous environment. The model flow diagram is as follows

FIGURE 1. Flow diagram of DF SEIR-SI model

According to the figure 1, we construct the SEIR-SI model equation for DF with incubation

periods and vertical transmission in a heterogeneous environment

(2.1)



∂Sh(x,t)
∂ t = ∇(Ds(x, t)∇Sh)+bhNh− βh(x,t)b

Nh+m ShIv−dhSh− phbhIh, t > 0,x ∈Ω,

∂Eh(x,t)
∂ t = ∇(De(x, t)∇Eh)+

βh(x,t)b
Nh+m ShIv− (dh + kh)Eh, t > 0,x ∈Ω,

∂ Ih(x,t)
∂ t = ∇(Di(x, t)∇Ih)+ khEh− (dh + γh) Ih + phbhIh, t > 0,x ∈Ω,

∂Rh(x,t)
∂ t = ∇(Dr(x, t)∇Rh)+ γhIh−dhRh, t > 0,x ∈Ω,

∂Sv(x,t)
∂ t = ∇(Dv(x, t)∇Sv)+bvNv− βv(x,t)b

Nv+m SvIh− (dv +ρv)Sv, t > 0,x ∈Ω,

∂ Iv(x,t)
∂ t = ∇(Dv(x, t)∇Iv)+

βv(x,t)b
Nv+m SvIh− (dv +ρv) Iv, t > 0,x ∈Ω,

∂Sh
∂n = ∂Eh

∂n = ∂ Ih
∂n = ∂Rh

∂n = ∂Sv
∂n = ∂ Iv

∂n = 0, t > 0,x ∈ ∂Ω,

Sh(x,0),Eh(x,0), Ih(x,0),Rh(x,0),Sv(x,0), Iv(x,0)≥ 0, x ∈Ω.

Where Sh(x, t),Eh(x, t), Ih(x, t),Rh(x, t) represent the population densities of susceptible pop-

ulations, exposed populations, infected populations and recovered populations at location x and

time t, Sv(x, t), Iv(x, t) represent the population densities of susceptible and infected mosquitoes

at location x and time t, Ds(x, t),De(x, t),Di(x, t),Dr(x, t) represent the diffusion coefficients of

susceptible populations, exposed populations, infected populations and recovered populations

at location x and time t,Dv(x, t) represents the diffusion coefficient of the mosquito populations
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at location x and time t. For convenience of discussion. To facilitate discussion, we assume

that the activity range of the crowd will not cross the region Ω, which satisfies the Neumann

boundary condition

∂Sh

∂n
=

∂Eh

∂n
=

∂ Ih

∂n
=

∂Rh

∂n
=

∂Sv

∂n
=

∂ Iv

∂n
= 0, t > 0,x ∈ ∂Ω,

where n is the out-of-unit normal vector of the boundary Ω, and the specific parameters repre-

sent the infectious disease significance as shown in table 1 here ph +qh = 1.

Parameters Biological significance

βh (x, t) The transmission coefficient of DF from Iv to Sh

βv (x, t) The transmission coefficient of DF from Ih to Sv

γh The recovery rate of patients infected with DENV

b The biting rate of mosquito

kh The conversion rate from exposed population to infected population

ρv Mosquito mortality from insecticides or other similar measures

m The density of alternative hosts available as blood source

bv The breeding rate of mosquitoes

bh The birth rate of human population

dv The natural mortality of mosquitoes

dh The natural mortality rate of human population

ph The probability that an infected human will transmit DF to the next generation

qh The probability that an infected human won’t transmit DF to the next generation

TABLE 1. The notation of SEIR-SI model (2.1)

3. SUITABILITY OF SOLUTIONS

In this section, we discuss the problem of the suitability of the solution of the system (2.1)

in terms of the existence and uniqueness of the global classical solution and the domain of

existence of the solution. Firstly, based on the content of Section 2, we make the following

assumptions about the system (2.1).
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(A1) Assume that the birth rate of the population is equal to the natural mortality rate of

the population and that the mosquito breeding rate is equal to the sum of the natural mor-

tality rate of mosquitoes and the mortality rate of mosquitoes due to other measures, that is

bh = dh,bv = dv +ρv, when Sh(x,0),Eh(x,0), Ih(x,0),Rh(x,0),Sv(x,0), Iv(x,0) ≥ (6≡)0,x ∈ Ω,

we define

(3.1)
∫

Ω

[Sh(x, t)+Eh(x, t)+ Ih(x, t)+Rh(x, t)]dx = Mh(t),
∫

Ω

[Sv(x, t)+ Iv(x, t)]dx = Mv(t).

Next, we prove the global existence, uniqueness, boundednes and positivity of th0e classical

solutions of the system (2.1), we take the vector d = (d1(·, t), d2(·, t),d3(·, t),d4(·, t),d5(·, t),

d6(·, t)) = (Ds(·, t), De(·, t),Di(·, t),Dr(·, t),Dv(·, t),Dv(·, t)), the operator L = (L1,L2, L3,L4,

L5,L6), in this paper we define the following differential operator

(3.2)
Liφ := ∇(di(·)∇φ) ,

D(Li) :=
{

φ ∈C2(Ω)∩C1(Ω) : Liφ ∈C
(

Ω, ∂φ

∂n = 0,x ∈ ∂Ω

)}
.

According to literature[14], we can get that Li generates a C0-semigroup {Ti(t)}t≥0, and at the

same time, it makes ωi(t) = Ti(t)φ is a solution of dωi(t) = Liωi(t)dt, t > 0 and the solution

satisfies µi(0) = φ ∈ D(Li), here

D(Li) :=
{

φ ∈C(Ω) : lim
t→0+

(Ti(t)− Id)φ

t
existence

}
,

where Id denotes the unit operator. In order to be able to utilize the representation system (2.1)

in the form of operators as above, we define the following nonlinear operators Fi(i = 1,2.....6)

(3.3)

F1(ψ)(x) = bhNh− βhb
Nh+mψ1ψ6−dhψ1− (1−qh)bhψ3,

F2(ψ)(x) = βhb
Nh+mψ1ψ6− (dh + kh)ψ2,

F3(ψ)(x) = khψ2− (dh + γh)ψ3 + phbhψ3,

F4(ψ)(x) = γhψ3−dhψ4,

F5(ψ)(x) = bvNv− βvb
Nv+mψ5ψ3− (dv +ρv)ψ5,

F6(ψ)(x) = βvb
Nv+mψ5ψ3− (dv +ρv)ψ6.

Take Y :=C(Ω̄,R6) to denote the state space with the upper bounding paradigm ‖·‖Y , i.e.,

‖ω‖Y = max

{
sup
x∈Ω̄

|ω1(·)| , sup
x∈Ω̄

|ω2(·)| , sup
x∈Ω̄

|ω3(·)| , sup
x∈Ω̄

|ω4(·)| , sup
x∈Ω̄

|ω5(·)| , sup
x∈Ω̄

|ω6(·)|
}
.
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Let Y+ := C(Ω̄,R6
+) denote the positive cone of Y , so (Y,Y+) is a strongly ordered Banach

space. Based on the operators defined in equation (3.2), the system (2.1) can be rewritten as the

following equation

(3.4) dω(t)
dt = Lω(t)+F(ω(t)),ω(·,0) = ψ ∈ D(L)⊂ Y,

where ω(t)= (Sh(·, t),Eh(·, t), Ih(·, t),Rh(·, t),Sv(·, t), Iv(·, t),) ,F =(F1,F2,F3,F4,F5,F6)
T . Wh-

en ψi = 0,Fi := 0,Y :=C(Ω̄). Since L is a contracted C0-semigroup generated on Y and F sat-

isfies the local Lipschitz condition with respect to ω(t), according to literature[14], it can be

known there exists at least one saturated solution of the system (2.1) when the initial values sat-

isfy (Sh(x,0),Eh(x,0), Ih(x,0), Rh(x,0),Sv(x,0), Iv(x,0)) ∈C(Ω), ω(t) ∈C2,1(Ω× (0, t]). The

following theorem is given in order to prove the existence of uniqueness of the global classical

solution.

Theorem 3.1. For any initial data (Sh(x,0),Eh(x,0), Ih(x,0),Rh(x,0),Sv(x,0), Iv(x,0)), the so-

lution of the system (2.1) satisfies the following condition

(3.5) lim
t→∞

sup
∫

Ω

(Sh(x, t)+Eh(x, t)+ Ih(x, t)+Rh(x, t)+Sv(x, t)+ Iv(x, t))dx < ∞.

Proof. Take

M(t) =
∫

Ω

[Sh(x, t)+Eh(x, t)+ Ih(x, t)+Rh(x, t)+Sv(x, t)+ Iv(x, t)]dx = Mh(t)+Mv(t).

Considering the overall growth trend below, when the diffusion coefficient is only time-dependent,

according to the system (2.1) we can obtain

∂M(t)
∂ t

=
∫

Ω

(
∂Sh(x, t)

∂ t
+

∂Eh(x, t)
∂ t

+
∂ Ih(x, t)

∂ t
+

∂Rh(x, t)
∂ t

+
∂Sv(x, t)

∂ t
+

∂ Iv(x, t)
∂ t

)
dx

=
∫

Ω

(Ds(t)4Sh +De(t)4Eh +Di(t)4Ih +Dr(t)4Eh +Dv(t)4Sv +Dv(t)4Iv)dx

+
∫

Ω

(bhNh +bvNv−dh(Sh +Eh + Ih +Rh)− (dv +ρv)(Sv + Iv))dx.

Further by considering the boundary conditions, we can get

∂M(t)
∂ t

≤ Ds(t)
∫

∂Ω

(
∂Sh(x, t)

∂n

)
dx+De(t)

∫
∂Ω

(
∂Eh(x, t)

∂n

)
dx+Di(t)

∫
∂Ω

(
∂ Ih(x, t)

∂n

)
dx

+Dr(t)
∫

∂Ω

(
∂Rh(x, t)

∂n

)
dx+Dv(t)

∫
∂Ω

(
∂Sv(x, t)

∂n

)
dx+Dv(t)

∫
∂Ω

(
∂ Iv(x, t)

∂n

)
dx
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+
∫

Ω

(bhNh +bvNv−dh(Sh +Eh + Ih +Rh)− (dv +ρv)(Sv + Iv))dx

≤ (bhNh +bvNv) |Ω|−BM(t),

where B = min{dh,dv +ρv}, so we can get

lim
t→∞

M(t)≤ (bhNh +bvNv) |Ω|
B

.

Therefore, the solution of the system (2.1) is bounded, i.e., equation (3.5) holds. The conclu-

sion is proved. �

Next, we prove that the system (2.1) has a unique positive solution.

Theorem 3.2. For any initial condition ψ ∈Y+ (Y+ is the positive cone of Y ). The system (2.1)

has a unique saturated solution ω (·, t;ψ) on (0,T ], and ω (·,0;ψ) = ψ . That is, if t ∈ (0,T ),

then there is ω(·, t;ψ) ∈ Y+ which is a solution to the system (2.1), where T < ∞.

Proof. For any ψ ∈ Y+ and h ∈ [0,∞), we can get

ψ +hF(ψ) =



ψ1 +h
(

bhNh− βh(x,t)b
Nh+m ψ1ψ6− (1−qh)bhψ3−dhψ1

)
ψ2 +h

(
βh(x,t)b
Nh+m ψ1ψ6− (dh + kh)ψ2

)
ψ3 +h(khψ2− (dh + γh)ψ3 + phbhψ3)

ψ4 +h(γhψ3−dhψ4)

ψ5 +h
(

bvNv− βv(x,t)b
Nv+m ψ5ψ3− (dv +ρv)ψ5

)
ψ6 +h

(
βv(x,t)b
Nv+m ψ5ψ3− (dv +ρv)ψ6

)



≥



ψ1

[
1−h

(
β̃hb

Nh+mψ6 +dh

)]
ψ2 [1−h(dh + kh)]

ψ3 [1−h(dh + γh)]

ψ4 [1−hdh]

ψ5

[
1−h

(
β̃vb

Nv+mψ3 +dv +ρv

)]
ψ6 [1−h(dv +ρv)] ,


,

where

β̃h = max
x∈Ω̄,t≥0

βh(x, t), β̃v = max
x∈Ω̄,t≥0

βv(x, t),
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so it can be deduced that

lim
h→0+

1
h

dist
(
ψ +hF(ψ),Y+

)
= 0,∀ψ ∈ Y+,

where dist denotes the spatial distance formula. By Corollary 4 in literature[26], it is known that

there exists a unique positive solution to the system (2.1) on (0,T ]. The conclusion is valid. �

Combining boundedness of solutions in theorem 3.1 and the existence of uniqueness of pos-

itive solutions in theorem 3.2, it can be deduced that there exists a unique positive solution

ω(·, t;ψ) ∈ Y+ to the system (2.1) when t ∈ [0,+∞),ω(·,0;ψ) ∈ Y+.

4. BASIC REPRODUCTION NUMBER

Combining the assumptions (A1), we can know that the system (2.1) has a disease-free equi-

librium E0 = (Sh0(x),0, 0,0,Sv0(x),0), where Sh0 = Nh, Sv0 = Nv. Then, for the convenience

of later discussion, linearizing the second, third, fourth, and sixth equations of the system (2.1)

at the disease-free equilibrium yields

(4.1)



∂Eh
∂ t = ∇(De(x, t)∇Eh(x, t))+

βh(x,t)b
Nh+m Sh0Iv− (dh + kh)Eh,

∂ Ih
∂ t = ∇(Di(x, t)∇Ih(x, t))+ khEh− (dh + γh)Ih + phbhIh,

∂Rh
∂ t = ∇(Dr(x, t)∇Rh(x, t))+ γhIh−dhRh,

∂ Iv
∂ t = ∇(Dv(x, t)∇Iv(x, t))+

βv(x,t)b
Nv+m Sv0Ih− (dv +ρv)Iv.

Inspired by literature[27], we give the basic reproduction number R0 for the system (2.1) by

the spectral radius of the next-generation infection operator. We divide the source of the pop-

ulation inside the silo into three components: the newly infected population F , the population

moving in and out of the silo by other means V and the population moving in to the silo by

diffusion D , then the system (4.1) is equivalent to

∂ µ

∂ t
= D−V +F ,x ∈Ω, t > 0,

where

µ =


Eh

Ih

Rh

Iv

 ,D =


∇(De(x, t)∇Eh(x, t))

∇(Di(x, t)∇Ih(x, t))

∇(Dr(x, t)∇Rh(x, t))

∇(Dv(x, t)∇Iv(x, t))

 ,V =


(dh + kh)Eh

(dh + γh)Ih− khEh− phbhIh

dhRh− γhIh

(dv +ρv)Iv

 ,



12 JINYAN WANG, HONGXIN LI

and

F =



βh(x,t)b
Nh+m Sh0Iv

0

0
βv(x,t)b
Nv+m Sv0Ih

 .

Using its Taylor expansion at the origin, we make the following definition

F =


0 0 0 βh(x,t)b

Nh+m Sh0

0 0 0 0

0 βv(x,t)b
Nv+m Sv0 0 0

 ,V =


dh + kh 0 0 0

−kh (dh + γh)− phbh 0 0

0 −γh dh 0

0 0 0 dv +ρv

 ,

and

D =


∇(De(x, t)∇) 0 0 0

0 ∇(Di(x, t)∇) 0 0

0 0 ∇(Dr(x, t)∇) 0

0 0 0 ∇(Dv(x, t)∇)

 .

So the system (4.1) is equivalent to

∂ µ

∂ t
= Dµ−V µ +Fµ,x ∈Ω, t > 0.

Let T (t) be the solution semigroup of the following linear equation

(4.2)
∂ µ

∂ t
= Dµ−V µ,x ∈Ω, t > 0.

According to the definition of the next-generation infection operator, let the initial state distri-

bution be φ , and take the differential operator

L (φ)(x) := F(x)
∫

∞

0
T (t)φdt.

Then the basic reproduction number R0 can be defined as

R0 := r(L ).

Based on the above conclusion, in combination with[27], taking B = D−V we can obtain the

following lemma and theorem.
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Lemma 4.1. The sign of λ ∗ := s(B+F) is the same as the sign of R0−1.

Proof. Obviously, B is an infinitesimal generator of the T (t). Note that T (t) is a semigroup in

the sense of a positive direction, i.e., it holds for all t ≥ 0. And B is the 4×4 matrix correspond-

ing to the bounded linear operators of Ω× (0,+∞)−→ R4 and

(4.3) (λ I−B)−1
φ =

∫
∞

0
e−λ tT (t)φdt, ∀λ > s(B),φ ∈ X1.

From the derivation of the C0-semigroup properties in[14], it is known that s(B)< 0. Let λ = 0

in equation (4.3), we get

−B−1
φ =

∫
∞

0
T (t)φdt, ∀φ ∈ Ω̄× (0,∞).

Thus, L = −FB−1. Define the linear operator A := B+F . By the equivalence system, A

generates a positive C0-semigroup. Using the characteristic operator, we know that s(A) has the

same sign as r
(
−FB−1)−1 = R0−1. �

Lemma 4.2. Suppose De(x, t),Di(x, t),Dr(x, t),Dv(x, t)≥ 0, if the elliptic eigenvalue problem

(4.4)

 −Dφ +V φ = λ0Fφ , x ∈Ω,

∂φ

∂n = 0, x ∈ ∂Ω.,

exists a unique positive eigenvalue λ0 with a positive eigenfunction, then the basic reproduction

number is R0 = r
(
−FB−1)= r

(
−B−1F

)
= 1/λ0.

Proof. Let

Fε(x) = F(x)+ εE, Vε(x) =V (x)− εE,

where ε > 0 is a constant and E is a 4× 4 matrix whose elements are all 1. Consider the

following system of equations

(4.5)

 ∂u
∂ t = Du−Vε(x)u, x ∈Ω,

∂u
∂n = 0, x ∈ ∂Ω, t > 0.

Denote Tε(t)φ as a solution of the system (4.5) and satisfying Tε(0)φ = φ . The following

definitions are made

Lε(φ)(x) := Fε(x)
∫

∞

0
Tε(t)φ(x)dt.
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Obviously, Lε is a strongly positive and compact operator. Therefore, it has a positive spectral

radius denoted by R0(ε) and is an eigenvalue of algebraic multiplicity 1 and a positive eigen-

vector φε . Thus, by the definition of the basic reproduction number we have

Fε(x)
∫

∞

0
Tε(t)φεdt = R0(ε)φε .

Let Bε be the generator of the continuous semigroupan Tε(t), then, we have

Bεφ = D4φ −Vε(x)φ .

Since Tε(t) is a positive semigroup, taking into account the presolution operator (λ I−Bε)
−1

for the infinitesimal generator Bε yields

(λ I−Bε)
−1

φ =
∫

∞

0
e−λ tTε(t)φdt, ∀λ > s(Bε) ,φ ∈ X1.

Due to the boundedness and continuity of the parameters, it is possible to restrict ε to be small

enough such that s(Bε) < 0. Let λ = 0, then for all φ it holds that −B−1
ε φ =

∫
∞

0 Tε(t)φdt.

Therefore, we obtain

−Fε(x)B−1
ε φε = R0(ε)φε .

Set

ψε :=−B−1
ε φε .

It follows that ψε is positive, and bylemma (4.1) that

Fε(x)ψε =−R0(ε)Bεψε ,

Therefore, combining weakly coupled elliptic system eigenvalue problem leads to the following

system  −Dφε +Vε(x)φε =
1

R0(ε)
Fε(x)φε , x ∈Ω,

∂φε

∂n = 0, x ∈ ∂Ω.

There exists a unique positive eigenvalue λε = 1
R0(ε)

and the corresponding eigenfunction is

positive. Utilizing the regress theory of linear operators and letting ε→ 0, we can obtain R−1
0 =

λ0.

�
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Combining the above two lemmas, we consider the following principal eigenvalue problem

for the system (4.1) of equivalent equations

(4.6)



−∇(De(x, t)∇φ1)+(dh + kh)φ1 = λ
βh(x,t)b
Nh+m Sh0φ4,

−∇(Di(x, t)∇φ2)− khφ1 +(dh + γh)φ2− phbhφ2 = 0,

−∇(Dr(x, t)∇φ3)− γhφ2 +dhφ3 = 0,

−∇(Dv(x, t)∇φ4)+(dv +ρv)φ4 = λ
βv(x,t)b
Nv+m Sv0φ2.

Where R0 =
1
λ

. To further understand the nature of the basic reproduction number, the fol-

lowing theorem can be obtained by combining the lemma 4.1 and Conclusion.

Theorem 4.1. When the diffusion coefficient is independent of spatial location, i.e., De(x, t) =

D̃e,Di(x, t) = D̃i, Dr(x, t) = D̃r,Dv(x, t) = D̃v, the basic reproduction number R0 of the system

(2.1) satisfies sign(1−R0) = sign(λ1). Where (λ1;φ1,φ2,φ3,φ4) is the principal feature pair of

the following characterization problem

(4.7)



−D̃e∆φ1 +(dh + kh)φ1 =
βh(x,t)b
Nh+m Sh0φ4 +λ1φ1, x ∈Ω,

−D̃i∆φ2− khφ1 +(dh + γh)φ2− phbhφ2 = λ1φ2, x ∈Ω,

−D̃r∆φ3− γhφ2 +dhφ3 = λ1φ3, x ∈Ω,

−D̃v∆φ4 +(dv +ρv)φ4 =
βv(x,t)b
Nv+m Sv0φ2 +λ1φ4, x ∈Ω.

Remark 1: According to the literature[28] and the literature[29], it can be obtained that

the basic reproduction number is positively correlated with the coefficients of the transmission

of DENV βh(x, t),βv(x, t), i.e., the higher the coefficient of the transmission of DENV, the

greater the basic reproduction number R0, we give the following estimation of the range of

basic reproduction number R0√√√√ β m
h b

Nh+mkh
β m

v b
Nv+mNvNh

(dh + kh)(dh + γh− phbh)(dv +ρv)
≤ R0 ≤

√√√√ β M
h b

Nh+mkh
β M

v b
Nv+mNvNh

(dh + kh)(dh + γh− phbh)(dv +ρv)
,

where

β m
h = min

x∈Ω̄,t≥0
βh(x, t) β m

v = min
x∈Ω̄,t≥0

βv(x, t),

β M
h = max

x∈Ω̄,t≥0
βh(x, t) β M

v = max
x∈Ω̄,t≥0

βv(x, t).
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Remark 2: When all parameters are constants independent of spatial position and time, i.e.,

βh(x, t) = β ∗h ,βv(x, t) = β ∗v , the basic reproduction number R∗0 of the system (2.1) is

(4.8) R∗0 =

√√√√ β ∗h b
Nh+mkh

β ∗v b
Nv+mNvNh

(dh + kh)(dh + γh− phbh)(dv +ρv)
.

According to equation (4.8), we can get that the basic reproduction number R∗0 is positively

related to the transmission coefficient and vertical transmission rate of DENV, and inversely re-

lated to the recovery rate. Therefore, the vertical transmission of DENV increases the transmis-

sion risk of DENV. When the vertical transmission probability of DF is higher, the transmission

coefficient is higher, the recovery rate is lower the larger the value of the basic reproduction

number R∗0 is, the higher the risk of DENV transmission is.

5. THRESHOLD DYNAMICS

In this section, we focus on the influence of global dynamics of the system (2.1). To prove

the global asymptotic stability of the disease-free equilibrium point of the system (2.1), inspired

by literature[31, 27], let X be a decomposable Banach space, J(t)t≥0 is a continuous semigroup

on X , where the space X is made as follows

X = X1⊕X2,dim(X)< ∞.

Define M : X→X1,(I−M) : X→X2 to be the orthogonal projection. According to literature[30],

the following lemma can be obtained

Lemma 5.1. For any bounded set B in X, there exists positive numbers tb,C,α and any ε > 0

such that ‖MJ(t)B‖t≥tb is bounded on a finite dimensional subspace X1 of X, and the following

conclusion holds

‖(I−M)J(t)B‖ ≤Ce−αt + ε, t ≥ tb,

where M : X → X1 is a bounded projection.

Let H = L2(Ω)∩C2,1(Ω) and H1 = H1
0(Ω)∩C2,1(Ω), denote H6 = H×H×H×H×H×H

and H6
1 = H1×H1×H1×H1×H1×H1 to be Banach spaces with the following paradigms

‖(Sh,Eh, Ih,Rh,Sv, Iv)‖H6 = max{‖Sh‖H ,‖Eh‖H ,‖Ih‖H ,‖Rh‖H ,‖Sv‖H ,‖Iv‖H} ,
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we define the number of paradigms on the space H to be ‖ f (x, t)‖H = maxx∈H ‖ f (x, t)‖, and

‖(Sh,Eh, Ih,Rh,Sv, Iv)‖H6
1

:= max
{
‖Sh‖H1

,‖Eh‖H1
,‖Ih‖H1

,‖Rh‖H1
,‖Sv‖H1

,‖Iv‖H1

}
.

Based on the above definitions, the following theorem is obtained for the system (2.1) having

a global exponential attractor set.

Theorem 5.1. If the system (2.1) has an attraction set BR̄ ⊂H6 which satisfies lemma 5.1, then

the system (2.1) has a global exponential attraction set Q, which can attract to any bounded set

H6.

Proof. By theorem 3.1 and theorem 3.2 we obtain that if the initial value of the system (2.1)

satisfies

ψ = w(0) = (Sh(x,0),Eh(x,0), Ih(x,0),Rh(x,0),Sv(x,0), Iv(x,0))
T ∈ H6,

then the system (2.1) has the global classical solution

w(t) = (Sh(·, t),Eh(·, t), Ih(·, t),Rh(·, t),Sv(·, t), Iv(·, t))T ∈C0
(

H6, [0,∞)
)
.

Based on the definition of operators in Section 3, we transform the system (2.1) into the follow-

ing operator problem
dω(t)

dt
= Lω(t)+F(ω(t)),ω(·,0) = ψ,

where the map L+F : H1 → H is called the gradient type operator. We can obtain that the

system (2.1) with the following semigroup of operators

J(t) = (J1(t),J2(t),J3(t),J4(t),J5(t),J6(t))
T ,

and J(t)ψ = ω(t;ψ). Next, we show that the operator semigroup J(t) has an attractor set

BR̄ ⊂ H6. When the diffusion coefficients are independent of the spatial position, we obtain the

inner product of the first equation of the system (2.1) with Sh〈
Ds∆Sh(x, t)+bhNh−

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t)−dhSh− phbhIh,Sh

〉
H

(5.1)

=
∫

Ω

Ds∆Sh(x, t) ·Sh(x, t)dx+
∫

Ω

bhNh ·Sh(x, t)dx−
∫

Ω

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t) ·Sh(x, t)dx

−
∫

Ω

dhSh(x, t) ·Sh(x, t)dx−
∫

Ω

phbhIh(x, t) ·Sh(x, t)dx
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≤ −Ds ‖Sh‖2
H 1

2

+
∫

Ω

bhNhShdx,

where H 1
2

is the subspace of fractional curtains generated by the sector operator L. By lemma

4.1, it follows that Sh is bounded.Hence the following inequality can be obtained∫
Ω

bhNh ·Shdx≤ K1,

since H 1
2
→ H, there exists K > 0 such that

‖Sh‖H 1
2

≥ K ‖Sh‖H ,∀Sh ∈ H 1
2
,

so the equation (5.1) can be written as

1
2

d
dt
‖Sh‖2

H ≤−DsK2 ‖Sh‖2
H +K1,

based on the above derivation, we can obtain

‖Sh‖2
H ≤ e−2DsK2t ‖Sh(x,0)‖2

H +
K1

DsK2

(
1− e−2DsK2t

)
.

Next, using the same method, the second equation of the system (2.1) can be inner product with

Eh in the space H〈
De∆Eh(x, t)+

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t)− (dh + kh)Eh(x, t),Eh

〉
H

(5.2)

=
∫

Ω

De∆Eh(x, t) ·Eh(x, t)dx+
∫

Ω

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t) ·Eh(x, t)dx

−
∫

Ω

(dh + kh)Eh(x, t) ·Eh(x, t)dx

≤−De ‖Eh‖2
H 1

2

+
∫

Ω

βh(x, t)b
Nh +m

ShIv ·Ehdx.

From theorem 3.1 and theorem 3.2, we get∫
Ω

βh(x, t)b
Nh +m

ShIv ·Ehdx≤ K2.

Similarly since H 1
2
→ H, there exists K > 0 such that

‖Eh‖H 1
2

≥ K ‖Eh‖H ,∀Eh ∈ H 1
2
,
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the equation (5.2) can be written as

1
2

d
dt
‖Eh‖2

H ≤−DeK2 ‖Eh‖2
H +K2,

therefore,

‖Eh‖2
H ≤ e−2DeK2t ‖Eh(x,0)‖2

H +
K2

DeK2

(
1− e−2DeK2t

)
.

Similarly the inner product of the third, fourth, fifth and sixth equations of the system (2.1) with

Ih, Rh, Sv and Iv respectively

〈Di∆Ih(x, t)+ khEh(x, t)− (dh + γh)Ih(x, t)+ phbhIh(x, t), Ih〉H
〈Dr∆Rh(x, t)+ γhIh(x, t)−dhRh(x, t),Rh〉H〈

Dv∆Sv(x, t)+bvNv− βv(x,t)b
Nv+m Sv(x, t)Ih(x, t)− (dv +ρv)Sv(x, t),Sv

〉
H〈

Dv∆Iv(x, t)+
βv(x,t)b
Nv+m Sv(x, t)Ih(x, t)− (dv +ρv)Iv(x, t), Iv

〉
H



(5.3) ≤



−Di ‖Ih‖2
H 1

2

+
∫

Ω
(khEh + phbhIh) · Ihdx

−Dr ‖Rh‖2
H 1

2

+
∫

Ω
γhIh ·Rhdx

−Dv ‖Sv‖2
H 1

2

+
∫

Ω
bvNv ·Svdx

−Dv ‖Iv‖2
H 1

2

+
∫

Ω

βv(x,t)b
Nv+m SvIh · Ivdx


.

According to theorem 3.1, theorem 3.2 and similar proofs of equation (5.1) and (5.2), we can

obtain that there exists a positive number K3,K4,K5,K6 for which the following conclusions

holds

(5.4)

‖Ih‖2
H ≤ e−2DiK2t ‖Ih(x,0)‖2

H + K3
DiK2

(
1− e−2DiK2t

)
,

‖Rh‖2
H ≤ e−2DrK2t ‖Rh(x,0)‖2

H + K4
DrK2

(
1− e−2DrK2t

)
,

‖Sv‖2
H ≤ e−2DvK2t ‖Sv(x,0)‖2

H + K5
DvK2

(
1− e−2DvK2t

)
,

‖Iv‖2
H ≤ e−2DvK2t ‖Iv(x,0)‖2

H + K6
DvK2

(
1− e−2DvK2t

)
.

If R̄2 > max
{

K1
DsK2 ,

K2
DeK2 ,

K3
DiK2 ,

K4
DrK2 ,

K5
DvK2 ,

K6
DvK2

}
, then there exists t∗ > 0, for any t ≥ t∗, sat-

isfying ω(t;ψ) ⊂ BR̄. Therefore, BR̄ ⊂ H6 is an attractor set. Next, we prove that the system

(2.1) has a global exponential attractor.
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Let L1 := Ds∆ : H1→ H be a symmetric operator, hence the eigenvectors ei belonging to the

eigenvalue λSh,i (the ith eigenvalue with respect to Sh) are complete orthogonal bases in H. That

is, for any Sh ∈ H

Sh =
∞

∑
j=1

x je j,‖Sh‖2
H =

∞

∑
j=1

x2
j .

Further, we get ∀NSh > 0,∃CSh ≥ 1 (the constant associated with Sh) which satisfies −NSh ≥

λSh,i,∀i≥CSh +1

H
CSh
1 = span

{
e1,e2, · · · ,eCSh

}
,H

CSh
2 =

(
H

CSh
1

)⊥
.

For any Sh ∈ H can be decomposed as

Sh = MSh +(I−M)Sh := Sh,1 +Sh,2,

Sh,1 =

CSh

∑
k=1

xkek ∈ H
CSh
1 ,Sh,2 =

∞

∑
i=CSh+1

xiei ∈ H
CSh
2 ,

where M : H→H
CSh
1 is an orthogonal projection. Eh, Ih,Rh,Sv and Iv have similar decomposition

forms. Since J(t) is a bounded attractor, for any bounded set BR̄ ⊂ H6, there exists a positive

t0. Suppose t0 > t∗ such that (ω1 (t;Sh(x,0)) ,ω2 (t; Eh(x,0)) , ω3 (t; Ih(x,0)) ,ω4 (t;Rh(x,0)) ,

ω5 (t;Sv(x,0)) ,ω6 (t; Iv(x,0)))⊂ BR̄, where

‖ω1 (t;Sh(x,0))‖2
H = ‖J1(t)Sh(x,0)‖2

H ≤ R̄2,

‖ω2 (t;Eh(x,0))‖2
H = ‖J2(t)Eh(x,0)‖2

H ≤ R̄2,

‖ω3 (t; Ih(x,0))‖2
H = ‖J3(t)Ih(x,0)‖2

H ≤ R̄2,

‖ω4 (t;Rh(x,0))‖2
H = ‖J4(t)Rh(x,0)‖2

H ≤ R̄2,

‖ω5 (t;Sv(x,0))‖2
H = ‖J5(t)Sv(x,0)‖2

H ≤ R̄2,

‖ω6 (t; Iv(x,0))‖2
H = ‖J6(t)Iv(x,0)‖2

H ≤ R̄2,

so

(5.5) ‖MJ(t)ψ‖H6 ≤ R̄,∀t ≥ t0.
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Making an inner product of the first equation of the system (2.1) with Sh,2, we get

1
2

d
dt

〈
Sh,Sh,2

〉
H

=

〈
Ds∆Sh(x, t)+bhNh−

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t)−dhSh(x, t)− phbhIh,Sh,2

〉
H

=
〈
DsSh(x, t),Sh,2(x, t)

〉
H +

〈
bhNh−dhSh(x, t)− phbhIh−

βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t),Sh,2

〉
H

=
〈
DsSh,1(x, t)+DsSh,2(x, t),Sh,2(x, t)

〉
H + 〈bhNh−dhSh(x, t)− phbhIh

−βh(x, t)b
Nh +m

Sh(x, t)Iv(x, t),Sh,2

〉
H

≤
〈
DsSh,2(x, t),Sh,2(x, t)

〉
H +

〈
bhNh,Sh,2

〉
H

≤
〈
DsSh,2(x, t),Sh,2(x, t)

〉
H +bhNhR̄,

where 〈
DsSh,2(x, t),Sh,2(x, t)

〉
H =−Ds

∥∥Sh,2
∥∥2

H 1
2

= Ds

∞

∑
i=CSh+1

x2
i λSh,i

≤−DsNSh

∞

∑
i=CSh+1

x2
i =−DsNSh

∥∥Sh,2
∥∥2

H ,

so

d
dt

∥∥Sh,2
∥∥2

H ≤−DsNSh

∥∥Sh,2
∥∥2

H +bhNhR̄,

further it is possible to obtain

∥∥Sh,2
∥∥2

H ≤ e−2DsNSh(t−t0)
∥∥Sh,2 (t0)

∥∥2
H +

bhNhR̄
DsNSh

(
1− eDsNSh(t−t0)

)
, ∀t > t0.

According to equation (5.3), similar to the above derivation we can get∥∥Eh,2
∥∥2

H ≤ e−2DeNEh(t−t0)
∥∥Eh,2 (t0)

∥∥2
H + βh(x,t)bR̄

DeNSh(Nh+m)

(
1− e−2DeNEh(t−t0)

)
, ∀t > t0,∥∥Ih,2

∥∥2
H ≤ e−2DiNIh(t−t0)

∥∥Ih,2 (t0)
∥∥2

H + phbhR̄2+khR̄
DiNSh

(
1− e−2DiNIh(t−t0)

)
, ∀t > t0,∥∥Rh,2

∥∥2
H ≤ e−2DrNRh(t−t0) ‖Rh (t0)‖2

H + γhR̄
DrNSh

(
1− e−2DrNRh(t−t0)

)
, ∀t > t0,∥∥Sv,2

∥∥2
H ≤ e−2DvNSv(t−t0) ‖Sv (t0)‖2

H + bvNv
DvNSv

(
1− e−2DvNSv(t−t0)

)
, ∀t > t0,∥∥Iv,2

∥∥2
H ≤ e−2DvNIv(t−t0) ‖Iv (t0)‖2

H + βv(x,t)bR̄2

DvNSv(Nv+m)

(
1− e−2DvNIv(t−t0)

)
, ∀t > t0.
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lemma 5.1 holds and we can obtain that the system (2.1) has a global exponential attractor set

Q. The theorem holds. �

In conjunction with the above theorem, we discuss the global stability of the disease-free

equilibrium of the system (2.1).

Theorem 5.2. (1) When R0 < 1, the disease-free equilibrium of the system (2.1) is globally

asymptotically stable, i.e.,

lim
t→∞

Sh(x, t) = S∗h0, lim
t→∞

Eh(x, t) = 0, lim
t→∞

Ih(x, t) = 0, lim
t→∞

Rh(x, t) = 0,

lim
t→∞

Sv(x, t) = S∗v0, lim
t→∞

Iv(x, t) = 0,

where S∗h0 = Nh,S∗v0 = Nv.

(2) When R0 > 1, if there exists a function Γ(x) such that the following inequality holds

lim
t→∞

Sh(x, t)≥ Γ(x), lim
t→∞

Eh(x, t)≥ Γ(x), lim
t→∞

Ih(x, t)≥ Γ(x), lim
t→∞

Rh(x, t)≥ Γ(x)

lim
t→∞

Sv(x, t)≥ Γ(x), lim
t→∞

Iv(x, t)≥ Γ(x),

Then DF will form an endemic epidemic.

Proof. (1) When R0 < 1, according to lemma 4.1 and lemma 4.2 we can obtain that there exists

ε > 0 such that λε(S∗h +ε,S∗v +ε)< 0. From the first and fifth equations of the system (2.1) the

following inequality can be obtained
∂Sh
∂ t ≤ ∇(Ds(x, t)∇Sh)+bhNh−dhSh(x, t), x ∈Ω, t > 0,

∂Sv
∂ t ≤ ∇(Dv(x, t)∇Sv)+bvNv− (dv +ρv)Sv(x, t), x ∈Ω, t > 0,

∂Sh
∂n = ∂Sv

∂n = 0, x ∈ ∂Ω, t > 0.

So there exists t1 > 0, when t > t1,x ∈ Ω̄, Sh < S∗h0 + ε and Sv < S∗v0 + ε hold. Comparing

theorems we get

∂Eh
∂ t ≤ ∇(De(x, t)∇Eh)+

βh(x,t)b
Nh+m (S∗h0 + ε)Iv− (dh + kh)Eh, x ∈Ω, t > t1,

∂ Ih
∂ t ≤ ∇(Di(x, t)∇Ih)+ khEh− (dh + γh) Ih + phbhIh, x ∈Ω, t > t1,
∂Rh
∂ t ≤ ∇(Dr(x, t)∇Rh)+ γhIh−dhRh, x ∈Ω, t > t1,

∂ Iv
∂ t ≤ ∇(Dv(x, t)∇Iv)+

βv(x,t)b
Nv+m (S∗v0 + ε)Ih− (dv +ρv) Iv, x ∈Ω, t > t1.
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Take (Ēh(x, t), Īh(x, t), R̄h(x, t), Īv(x, t),)=
(

Meλ̄ t φ̄1(x),Meλ̄ t φ̄2(x),Meλ̄ t φ̄3(x),Meλ̄ t φ̄4(x)
)

to be

a solution that satisfies the following system of equations

∂ Ēh
∂ t = ∇(De(x, t)∇Ēh)+

βh(x,t)b
Nh+m (S∗h0 + ε)Īv− (dh + kh) Ēh,

∂ Īh
∂ t = ∇(Di(x, t)∇Īh)+ khĒh− (dh + γh) Īh + phbhĪh,

∂ R̄h
∂ t = ∇(Dr(x, t)∇R̄h)+ γhĪh−dhR̄h,

∂ Īv
∂ t = ∇(Dv(x, t)∇Īv)+

βv(x,t)b
Nv+m (S∗v0 + ε)Īh− (dv +ρv) Īv.

According to lemma 4.1 we can get that φ̄1(x), φ̄2(x), φ̄3(x), φ̄4(x) are the eigenfunctions under

λ̄ < 0. According to the comparison theorem we can get that when x ∈Ω, t > t1 we have

Eh(x, t)≤ Ēh(x, t), Ih(x, t)≤ Īh(x, t),Rh(x, t)≤ R̄h(x, t), Iv(x, t)≤ Īv(x, t).

So we can obtain

Eh ≤Meλ̄ (t)φ̄1(x), Ih ≤Meλ̄ (t)φ̄2(x),Rh ≤Meλ̄ (t)φ̄3(x), Iv ≤Meλ̄ (t)φ̄4(x),

since λ̄ < 0, we take the limit on both sides when the time t→ ∞

(5.6) lim
t→∞

Eh = 0, lim
t→∞

Ih = 0, lim
t→∞

Rh = 0, lim
t→∞

Iv = 0.

Next we show that lim
t→∞

Sh = Nh, lim
t→∞

Sv = Nv. According to equation (5.6), we get that when

t ≥ t1,x ∈ Ω̄, there exists κ > 0 such that 0 < Eh < κ,0 < Ih < κ,0 < Rh < κ,0 < Iv < κ hold.

By the first equation of the system (2.1) we can obtain that there exists a t2 > 0 and that Sh(x, t)

is an upper solution of the following equation

(5.7)
∂ µ(x,t)

∂ t = ∇(Ds(x, t)∇µ)+bhNh− βh(x,t)b
Nh+m µ(x, t)κ−dhµ(x, t)− phbhκ, x ∈Ω, t > t2,

∂ µ

∂n = 0, x ∈ ∂Ω, t > t2,

µ(x, t2) = Sh(x, t2),

and is the lower solution to the following problem

(5.8)


∂v(x,t)

∂ t = ∇(Ds(x, t)∇v)+bhNh−dhv(x, t), x ∈Ω, t > t2,
∂v
∂n = 0, x ∈ ∂Ω, t > t2,

v(x, t2) = Sh(x, t2).
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According to the comparison theorem, we can get that the following conclusions hold when

t ≥ t2,x ∈Ω

µ(x, t)≤ Sh(x, t)≤ v(x, t).

Similar to the proof of theorem 5.1, we can obtain that when the diffusion coefficient is inde-

pendent of spatial location there is a global exponential attractor set in the system (5.7) and in

the system (5.8). Similar to the proof of literature[31], we can get

lim
t→∞

µ(x, t) = Sh,0(κ,x)−, lim
t→∞

v(x, t) = Sh,0(κ,x)+,

where Sh,0(κ,x)− and Sh,0(κ,x)+ represent the steady states of the system (5.7) and (5.8) re-

spectively. Thus when we take κ → 0, we have

Sh,0(κ,x)−,Sh,0(κ,x)+→ Sh0 = Nh, t→ ∞.

Similarly we can get lim
t→∞

Sv = Nv. The first half of the theorem is proved, i.e., the disease-free

equilibrium of the system (2.1) is globally asymptotically stable.

(2) When R0 > 1, by lemma 4.1 then there exists ε > 0 such that λ
(
S∗h− ε,S∗v− ε

)
> 0. This

means that there exists a t̃1 > 0 satisfying Sh(x, t)> S∗h0− ε and Sv(x, t)> S∗v0− ε . When t ≥ t̃1

and x ∈Ω, by the principle of comparison, we can get

∂Eh
∂ t ≥ ∇(De(x, t)∇Eh)+

βh(x,t)b
Nh+m (S∗h0− ε)Iv− (dh + kh)Eh, x ∈Ω, t > t1,

∂ Ih
∂ t ≥ ∇(Di(x, t)∇Ih)+ khEh− (dh + γh) Ih + phbhIh, x ∈Ω, t > t1,
∂Rh
∂ t ≥ ∇(Dr(x, t)∇Rh)+ γhIh−dhRh, x ∈Ω, t > t1,

∂ Iv
∂ t ≥ ∇(Dv(x, t)∇Iv)+

βv(x,t)b
Nv+m (S∗v0− ε)Ih− (dv +ρv) Iv, x ∈Ω, t > t1.

For x ∈Ω, t > t̃1, we denote(
Ẽh(x, t), Ĩh(x, t), R̃h(x, t), Ĩv(x, t),

)
=
(

Peλ̃ t
ϕ̃1(x),Peλ̃ t

ϕ̃2(x),Peλ̃ t
ϕ̃3(x),Peλ̃ t

ϕ̃4(x)
)
,

where
(

Ẽh(x, t), Ĩh(x, t), R̃h(x, t), Ĩv(x, t),
)

satisfies the following equation

∂Eh
∂ t = ∇(De(x, t)∇Eh)+

βh(x,t)b
Nh+m (S∗h0− ε)Iv− (dh + kh)Eh,

∂ Ih
∂ t = ∇(Di(x, t)∇Ih)+ khEh− (dh + γh) Ih + phbhIh,

∂Rh
∂ t = ∇(Dr(x, t)∇Rh)+ γhIh−dhRh,

∂ Iv
∂ t = ∇(Dv(x, t)∇Iv)+

βv(x,t)b
Nv+m (S∗v0− ε)Ih− (dv +ρv) Iv,
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where (ϕ̃1(x), ϕ̃2(x), ϕ̃3(x), ϕ̃4(x)) are the eigenfunctions with respect to λ̃ > 0. According to

the comparison theorem, when x ∈Ω, t > t̃1 we have

Eh(x, t)≥ Ẽh(x, t), Ih(x, t)≥ Ĩh(x, t),Rh(x, t)≥ R̃h(x, t), Iv(x, t)≥ Ĩv(x, t),

then we obtain

Eh(x, t)≥ Peλ̃ t
ϕ̃1(x), Ih(x, t)≥ Peλ̃ t

ϕ̃2(x),Rh(x, t)≥ Peλ̃ t
ϕ̃3(x), Iv(x, t)≥ Peλ̃ t

ϕ̃4(x).

Taking the limit on both sides, we can get

lim
t→∞

inf(Eh(x, t), Ih(x, t),Rh(x, t), Iv(x, t))≥ (Pϕ̃1(x),Pϕ̃2(x),Pϕ̃3(x), ϕ̃4(x)) .

According to the boundedness of the system (2.1), we can obtain that there exists constants

K > 0, t̃2 > 0, when x ∈Ω, t ≥ t̃2, we can get

(Eh(x, t), Ih(x, t),Rh(x, t), Iv(x, t))≤ (K,K,K,K) .

Based on the above conclusions we can obtain that Sh and Sv satisfy the following equations
∂Sh
∂ t ≥ ∇(Ds(x, t)∇Sh)+bhNh−

(
dh + phbhK + βh(x,t)bK

Nh+m

)
Sh(x, t), x ∈Ω, t > 0,

∂Sv
∂ t ≥ ∇(Dv(x, t)∇Sv)+bvNv−

(
dv +ρv +

βv(x,t)bK
Nv+m

)
Sv(x, t), x ∈Ω, t > 0,

∂Sh
∂n = ∂Sv

∂n = 0, x ∈ ∂Ω, t > 0.

So

lim
t→∞

infSh(x, t)≥ bhNh/

(
dh + phbhK +

βh(x, t)bK
Nh +m

)
,

lim
t→∞

infSv(x, t)≥ bvNv/

(
dv +ρv +

βv(x, t)bK
Nv +m

)
.

In summary, the endemic equilibrium of the system (2.1) is uniformly persistent when Γ(x) :=

min
{

bhNh/
(

dh + phbhK + βh(x,t)bK
Nh+m

)
,bvNv/

(
dv +ρv +

βv(x,t)bK
Nv+m

)
,Pϕ̃1(x),Pϕ̃2(x),Pϕ̃3(x),Pϕ̃4(x)

}
and x ∈Ω are taken. Thus the theorem is proved. �

6. NUMERICAL SIMULATION

In this section, we verify the above conclusions by numerical simulation, then we obtain the

parameters that have a greater influence on the basic reproduction number R0 by performing

PRCC sensitivity analysis on the basic reproduction number. Let the space be Ω = [0,π]. We

take bh = dh = 0.5,bv = 1,ρv = dv = 0.5, and the rest of the parameters take values in table 2.
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Parameters Value Sources Parameters Value Sources

ph 0.8 [24] Nv 18 [24]

kh 0.2778 [17] Ds 0.45 [33]

b 5.1 [31] De 0.45 [33]

Nh 7 [24] Dr 0.45 [33]

m 3 [24] Dv 0.375 [31]

γh 0.1429 [32] Di 0.45 [31]

TABLE 2. Specific values for each parameter in the system (2.1)

6.1. The Impact of DENV Transmission Coefficients. According to the literature[24] on

the value of the infection coefficient, we discuss the various population density change curves

of the system (2.1) for R0 < 1 and R0 > 1 in the following two cases, respectively.

Case 1: Let βh(x, t) = 0.015(1+ 0.3(sinx+ sin t)),βv(x, t) = 0.01(1+ 0.2(sinx+ cos t)), at

this time 0.04≤ R0 ≤ 0.09, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+cosx,2+cosx,3+cosx,1+

cosx,6+5cosx,18−Sv). Then we can get the following statistical graphs of changes in density

of various populations
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FIGURE 2. Surface plot of density variation in each population compartment of

the system (2.1) when R0 < 1
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According to figure 2 it can be seen that when the basic reproduction number R0 < 1, the

disease-free equilibrium of the system (2.1) is globally asymptotically stabilized over time,

which is the same as the conclusion of the theorem in this paper. To further observe the trend

of the change in population density over time, the change in density of various populations is

plotted at different locations when R0 < 1, as shown in figure 3.
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FIGURE 3. The change curve of population density of each compartment in the

system (2.1) when R0 < 1

From figure 3, we know that when R0 < 1, the system (2.1) eventually converges to the

disease-free equilibrium, and the mosquitoes can reach the disease-free equilibrium faster.

Since the density of the recovered populations is small at the positions x = π and x = 3π

4 ,

there is a process of rising and then falling. To observe the epidemiological trend of DF when

the basic reproduction number R0 > 1, we discuss the second case.

Case 2: Let βh(x, t) = 0.4(1+ 0.3(sinx+ sin t)),βv(x, t) = 0.3(1+ 0.2(sinx+ cos t)),at this

time 1.24 ≤ R0 ≤ 2.48, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+ cosx,2+ cosx,3+ cosx,1+

cosx,6+ 5cosx,18− Sv). Then we can get the following statistical graphs of changes in the

density of various populations. From figure 4, we know that DF will form an endemic disease
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over time when R0 > 1. To observe the trend of population density over time, we plotted the

density change of various populations at different positions when R0 > 1, as shown in figure 5.
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FIGURE 4. Surface plot of density variation in each population compartment of

the system (2.1) when R0 > 1
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FIGURE 5. The change curve of population density in system (2.1) when R0 > 1
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From figure 5, we know that in the system (2.1), DF tends to stabilize periodically when

R0 > 1. It indicates that when the basic reproduction number R0 > 1, the system (2.1) has a

periodic solution.

6.2. The Influence of Diffusion Coefficient on the Transmission of DENV. In this section,

we focus on how changing the diffusion coefficient of susceptible and infected populations

affects the transmission of DENV. We discuss the following four cases.

Case 1: Let βh(x, t)= 0.015(1+0.3(sinx+sin t)),βv(x, t)= 0.01(1+0.2(sinx+cos t)),Ds =

De = Dr = 0.45,Di = 1,Dv = 0.375, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+cosx,2+cosx,3+

cosx,1+ cosx,6+ 5cosx,18− Sv). Then we have plotted the changes in the infected popula-

tions and infected mosquitoes as shown in figure 6.
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FIGURE 6. Plot of changes in infected populations and infected mosquitoes den-

sities in system (2.1) when R0 < 1,Di = 1

Compared with figure 6 and figure 3, it can be seen that increasing the diffusion coefficient of

the infected populations causes the infected populations in different locations to reach the same

value of density faster. To observe the impact of changing the diffusion coefficients of suscep-

tible populations, exposed populations, and convalescent populations on the epidemiological

trend of DF when R0 < 1, we discuss the following case.

Case 2: Let βh(x, t)= 0.015(1+0.3(sinx+sin t)),βv(x, t)= 0.01(1+0.2(sinx+cos t)),Ds =

De = Dr = 1,Di = 0.45,Dv = 0.375, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+cosx,2+cosx,3+

cosx,1+ cosx,6+ 5cosx,18− Sv). We have drawn the following population density change

curves for each compartment, as shown in figure 7.
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FIGURE 7. Plot of the variation of population density in each compartment of

the system (2.1) when R0 < 1,Ds = 1

Compared with figure 7 and figure 3, it can be seen that when R0 < 1 increasing the diffusion

coefficient of the susceptible populations results in the susceptible population, the latent patient

population, and the recovering population reaching the same density value faster, and does not

have any significant delaying or advancing effect on the final extinction time of DF. Next, we

discuss the impact of changing the diffusion coefficient of infected populations on the trend of

DF epidemic when R0 > 1. In this paper, we discuss the following case.

Case 3: Let βh(x, t) = 0.4(1+ 0.3(sinx+ sin t)),βv(x, t) = 0.3(1+ 0.2(sinx+ cos t)),Ds =

De = Dr = 0.45,Di = 1,Dv = 0.375, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+cosx,2+cosx,3+

cosx,1+cosx,6+5cosx,18−Sv). Then we have plotted the change curve of the infected pop-

ulations and mosquitoes. Compared with figure 8 and figure 5, it can be seen that increasing the

diffusion coefficient of the infected populations will accelerate the transmission of DENV when

R0 > 1, and the densities of the infected populations at different locations are closer during the

DF epidemic. Next, we discuss the impact of changing the diffusion coefficients of susceptible

populations, exposed populations, and convalescent populations on the epidemiological trend

of DF when R0 > 1.
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FIGURE 8. Plot of changes in infected populations and infected mosquitoes den-

sities in system (2.1) when R0 > 1,Di = 1

Case 4: Let βh(x, t) = 0.4(1+ 0.3(sinx+ sin t)),βv(x, t) = 0.3(1+ 0.4(sinx+ cos t)),Ds =

De = Dr = 1,Di = 0.45,Dv = 0.375, we assume (Sh,Eh, Ih,Rh,Sv, Iv) = (1+cosx,2+cosx,3+

cosx,1 + cosx,6 + 5cosx,18− Sv). Then we have drawn the following population density

change curves for each compartment, as shown in figure 9.
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FIGURE 9. Plot of the variation of population density in each compartment of

the system (2.1) when R0 > 1,Ds = 1
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Compared with figure 9 and figure 5, it can be seen that increasing the diffusion coefficient

of susceptible populations will not only cause DF to form endemic diseases earlier, but also

lead to closer density values of susceptible, expose, and recovering populations when DF forms

endemic diseases. Therefore, in reality, reducing the frequency of activities of susceptible and

infected populations is conducive to the prevention and treatment of DF.

6.3. Sensitivity Analysis. In this subsection, we performed PRCC sensitivity analysis of the

basic reproduction number R0 according to equation (4.8),and plotted the histogram of the

PRCC sensitivity analysis of each parameter to the basic reproduction number R0 when the

parameters are constant, as shown in figure 10

FIGURE 10. PRCC sensitivity analysis of each parameter to the basic reproduc-

tion number R0

According to the PRCC sensitivity analysis, it can be obtained that the total population den-

sity Nh, the total population density of mosquitoes Nv, the birth rate bh, the transmission co-

efficient of DENV βh,βv, the vertical transmission rate ph, the conversion rate of the exposed

population to the infected population kh and the biting rate b were positively correlated with the

basic reproduction number R0, while other population densities m, the natural mortality rates of

the population and mosquitoes dh,dv, the recovery rates γh and the mortality rates of mosquitoes

due to other measures ρv were negatively correlated with the basic reproduction number R0.

When the PRCC sensitivity coefficient exceeds 0.6, there is a significant correlation; when the

PRCC sensitivity coefficient is greater than 0.4, there is a more obvious correlation, then we
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can obtain the total density of the population Nh, the total density of mosquitoes Nv, the natu-

ral mortality rate of the population dh, the DENV transmission coefficient from mosquitoes to

population βh, The conversion rate kh from the population of exposed to the infected popula-

tions and the mosquito bite rate b have a significant effect on the basic reproduction number R0.

The population recovery rate γh, the mosquito mortality rate due to various other measures ρv,

transmission coefficient of DENV from population to mosquito swarms βv and other population

densities m have more significant correlations on the basic reproduction number R0. Combin-

ing positive and negative correlations with the real-life situation, the risk of DENV transmission

can be reduced by taking personal protection measures to reduce the number of mosquito bites,

using efficient mosquito killing measures, developing effective vaccines, and seeking medical

treatment as early as possible. Since the mosquito bite rate b has a significant effect on the

basic reproduction number R0, the prevention and control of DF should focus on reducing the

mosquito bite rate in real life.

7. CONCLUSION

In this paper, we incorporate the factors of incubation periods and vertical transmission of

DENV into the spread of DF, and develop a class of dengue dynamics models in a heterogeneous

environment with the effects of incubation periods and vertical transmission. Theoretically we

prove the existence and uniqueness of global classical solutions for the system (2.1); and we

obtain the expression of the basic reproduction number R0 and the related properties by using

the next-generation matrix operator. We show the threshold-type dynamics in terms of the

basic reproduction number R0: the disease-free equilibrium is global asymptotic stable when

R0 < 1, the disease-free equilibrium is unstable when R0 > 1; and the existence of a global

exponential attractor set for the system (2.1) is proved analytically by constructing upper and

lower solutions.In the end,combined with numerical simulation, we verify the correctness of

the theory, and find that shortening the incubation periods of DF can reduce the risk of dengue

virus transmission through PRCC sensitivity analysis, and the vertical transmission of DENV in

the population can increase the risk of DF transmission, but the effect is not obvious. In reality,

the risk of DENV transmission can be reduced by reducing the frequency of crowd activities,

taking good personal protection measures to reduce the rate of mosquito bites, seeking medical
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treatment as early as possible, and developing an effective vaccine, among which the reduction

of the rate of mosquito bites has the most significant effect on the prevention and control of

DENV.

In this paper, although the basic reproduction number can be utilized to describe the related

threshold dynamics, the explicit expression of the basic regeneration number is not given in

this paper, and only an approximate range of values of the basic reproduction number can be

obtained. Therefore, finding a new method to calculate the exact value of the basic reproduction

number is a key task in the future. DF transmission is a complex process, which is affected by

a variety of factors such as weather variations and human activities, and the 2014 Guangdong

DF outbreak was the most serious outbreak to date, Yi Jing, Xia Wang[34] evaluated the effects

of a variety of factors on DF, including weather variables and human activities, with respect

to the current outbreak of the DF, and the results showed that there was a significant correla-

tion between the density of adult mosquitoes and the increasing number of cases, and that the

weather variables might lead to the increase of complexity in spread of DENV. Combined with

the latest research[35], it is found that the DF incidence in children is much higher than that

in adults, and the development of a vaccine is difficult because the pathogenesis of DF has not

yet been clarified. Therefore, incorporating the effects of weather variations and anthropogenic

characteristics on DF in the model is our next research focus.
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