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Abstract. Some recent studies reveal the development of reversible (bisymmetric) self-dual codes over fields

of order 2 and 4. In this paper, we give new methods of constructing reversible (bisymmetric) self-dual codes

over finite fields with characteristic two. This approach is motivated by the well-known reversible (bisymmetric)

self-dual codes over finite fields of order two. We first investigated some properties of a reversible (bisymmetric)

self-dual code over finite fields with characteristic two. Next, we developed a method to construct a new reversible

(bisymmetric) self-dual code over finite fields with characteristic two. Additionally, we found an optimal reversible

(bisymmetric) self-dual code over finite fields with characteristic two, and this method is applied to construct DNA

codes.
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1. INTRODUCTION

Coding theory was first introduced by Shannon in 1948 [1]. The concept of error-correcting

codes in coding theory is explored using linear codes. Error-correcting codes have a close
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relationship with cryptography [2]. One type of linear code in error-correcting codes is the self-

dual code. Golay first introduced the self-dual code in 1949 [3]. Some researchers have utilized

this code in the field of cryptography, as seen in [4, 5].

Conceptually, self-dual codes have been developed by some researchers using algebraic prop-

erties of finite fields. In 1970, Gleason discussed the properties of codes over a field of order

2 and 3 [6]. Pless proposed a generalization of the extended Golay code over a field of order

3 in 1972 [7]. In 1981, Leon classified self-dual codes of length 24 over a field of order 3 [8].

In 1987, Pless discussed the properties of self-dual codes over a field of order 7 [9]. Dougherty

investigated self-dual codes over a field of order 2 associated with finite projective planes [10]

in 1998. Next, in 2003, Gaborit studied self-dual codes over a field of order 4, 5, 7, and 9

[11]. In 2009, Kim discussed and constructed self-dual codes over a field of order q≡ 3 mod 4

[12]. In 2018, Shi investigated orthogonal matrices as a basis for algorithms and methods for

developing self-dual codes over arbitrary finite fields [13].

In 1964, Massey introduced the concept of reversible codes [14]. In error-correcting codes,

reversible codes facilitate error correction by enabling lossless information recovery [15]. In

1970, Tzeng explored certain classes of reversible codes and investigated their minimum dis-

tance. These codes have shown significant potential for applications in data storage and retrieval

systems, as they provide enhanced reliability by correcting up to two errors, which is crucial for

maintaining data integrity in high-density storage [16]. In 1986, Muttoo discussed reversible

codes over fields of order q and developed these codes. These codes were structured with in-

formation symbols, providing a mechanism for efficient error detection and correction [17]. In

1995, Takishima demonstrated that reversible codes offer strong error correction capabilities

and enable efficient data transmission [18]. Bhasin, in 2013, applied reversible codes as a cryp-

tographic tool to detect hardware Trojan horse virus attacks [19]. Later, in 2016, Jin discussed

an optimal reversible code construction. In error-correcting, an optimal code is a code that

meets an upper bound, ensuring maximum efficiency in detecting and correcting errors [20].

In biology, reversible and self-dual codes have been applied to construct DNA codes [21,

22, 23, 24]. DNA codes are sequences over the alphabet {A,T,G,C}, representing the four

nucleotides: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). These codes must
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satisfy specific constraints such as Watson-Crick complementarity, where A pairs with T and G

pairs with C, ensuring stability and error correction in DNA-based data storage and molecular

computing. Reversible and self-dual codes provide a robust framework for constructing DNA

codes by ensuring that each codeword’s reverse complement is also a codeword, enhancing

error correction and preserving genetic information integrity.

Moreover, various researchers developed construction studies that combine the concept of

reversible and self-dual code. The concept was introduced by Kim in 2020 [25]. The article

explores how reversible self-dual codes are connected to persymmetric matrices. In 2021, Kim

showed that the properties of the generator matrix of reversible self-dual codes over a field of

order two were also applied to codes over a field of order four [26]. The research resulted in an

optimal code. Then, in 2024, some researchers developed constructions of reversible self-dual

codes over arbitrary finite fields using alternative methods unrelated to persymmetric matrices

[27, 28]. The concept of a persymmetric matrix is generally employed for building reversible

self-dual codes over fields of order 2 and 4. It can be observed that the construction of reversible

self-dual code over a field of order 2 and 4 involves fields with characteristic two. Therefore,

in this paper, we develop reversible self-dual codes over finite fields with characteristic two

in general. Meanwhile, in 2024, Kim developed a code construction over a field of order 2,

associated with bisymmetric matrices, called bisymmetric self-dual code [29]. Furthermore,

building on advancements in the code, we also construct a bisymmetric self-dual code over

arbitrary fields with characteristic two.

Based on concepts analogous to those derived from relevant articles, the research methodol-

ogy is outlined below. First, we examine the properties of reversible (bisymmetric) self-dual

codes over a field with characteristic two. After that, we analyze the construction of new re-

versible (bisymmetric) self-dual codes over finite fields with characteristic two using known

reversible (bisymmetric) self-dual codes. Finally, an updated generator matrix of the reversible

(bisymmetric) self-dual code over a field with characteristic two will be constructed. There are

four sections in this article. In the second section, we provide some literature reviews. We

present some properties of a reversible (bisymmetric) self-dual code over a field with character-

istic two. We also construct a new reversible self-dual code over a field with characteristic two
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in the third section. Furthermore, we perform computations of a bisymmetric self-dual code.

Then, we compare their parameters with the data provided in Grassl [30]. Additionally, these

codes are applied to construct DNA codes. Later, in the final section, we give the conclusion of

this article.

2. PRELIMINARIES

Let q≥ 2 and n be a natural number. We denote a finite field of order q by Fq. A finite field Fq

has the characteristic n if nx = 0 holds for every x ∈ Fq. A code C of length n over a finite field

Fq is called a linear code if C is a subspace of Fn
q . Each element of C is known as a codeword.

The dual code of C , denoted as C⊥, is defined as:

C⊥ =
{

u ∈ F n
q |u · z = 0 for all z ∈ C

}
.

We define C as a self-dual code if C⊥ is identical to C . The Hamming weight of a codeword

a, represented as wt(a), is defined as the count of non-zero symbols in the codeword. The

Hamming distance between two codewords a and b is defined as wt(a− b). The minimum

distance of a code, represented by d(C ), is defined as d(C ) = min{d(a,b) |a,b ∈ C , a 6= b} .

For a linear code C over Fq with length n, dimension k, and minimum distance d, the code is

referred to as an [n,k,d]q code. The [n,k,d]q code with the minimum distance d = n− k+1 is

called a maximum distance separable (MDS) code. An MDS code is optimal because it meets

the singleton bound [31].

A matrix G is called a generator matrix for the linear code C if its rows form a basis for C .

Linear code C of length n and dimension k with generator matrix G which can be stated as

C =
{

zG|z ∈ F k
q

}
.

If C is self-dual, then GGT = O. The standard generator matrix of [n,k,d]q code is defined

by G = (Ik|X), with G as a matrix of size k× n and Ik as the identity matrix of size k× k.

G = (Ik|X) is generator standard of self-dual code if XXT = −Ik [13]. Next, some definitions

related to reversible code are provided.

Definition 2.1. [17] A linear code C of length n digit is said to be a reversible code if for all

c = (c1,c2, · · · ,cn) ∈ C
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there is cr = (cn,cn−1, · · · ,c1) ∈ C .

Definition 2.2. [25] A reversible code C is said to be a reversible self-dual code if C is a

self-dual code.

Next, we recall some definitions of special matrices needed to generate reversible self-dual

codes over a field with characteristic two. Let K = (ki, j)m×n. Then, the transpose of matrix

K is KT = (k j,i)n×m, and the flip transpose of matrix K is KF = (kn− j+1,m−i+1)n×m, and Kr =

(km,n− j+1)m×n is the column reversed matrix of K. The matrix K is called persymmetric if

K = KF . We say K is a bisymmetric matrix if K = KF = KT . Therefore, if K is bisymmetric,

then K is persymmetric and symmetric.

Let X , Y be a square matrix of size n× n and I be the identity matrix of size n× n. The

following properties of the flip transpose of the matrix are straightforward:

(1) Ir = (Ir)T = (Ir)F ,

(2) (Ir)2 = I,

(3) X r = XIr,

(4) XF = IrXT Ir,

(5) (XF)F = X ,

(6) (XF)T = (XT )F ,

(7) (X +Y )F = XF +Y F ,

(8) (XY )F = Y FXF .

Moreover, a self-dual code related to bisymmetric matrices is defined as follows.

Definition 2.3. [29] A self-dual code C with the standard generator matrix G = (In|X) is called

a bisymmetric self-dual code if the matrix X is bisymmetric.

3. MAIN RESULT

Here, we begin by investigating the properties of a reversible self-dual code over a finite

field with characteristic two. We denote a finite field with characteristic two by F , a reversible

self-dual code by RSD code, and a bisymmetric self-dual code by BSD code.
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3.1. Some Properties of Reversible (Bisymmetric) Self-dual Codes over F .

Lemma 3.1. If z ∈F 2n, then

zFz = zT (zF)T = 0.

Proof. zFz = zT (zF)T = ∑
2n
i=1 ziz2n−i+1 = 2∑

n
i=1 ziz2n−i+1 = 0. �

Lemma 3.2. For a square matrix X over F , the following conditions hold.

(1) X is persymmetric if and only if X r is symmetric.

(2) X is bisymmetric if and only if X r is bisymmetric.

Proof. (1) Suppose X is persymmetric. Then X = XF . By using some properties of the flip

transpose of matrix X , we obtain,

X = XF ⇐⇒ XIn = Ir
nXT Ir

n⇐⇒ XIr
n =Ir

nXT ⇐⇒ X r = (X r)T .

Therefore, X r is symmetric. In a similar way, the opposite direction can be proven.

(2) Suppose X is bisymmetric. Thus, we have X , which is persymmetric. Based on (1) and

some properties of the flip transpose of matrix X , we get,

XIr
n = Ir

nXT ⇐⇒ Ir
nXIr

n = Ir
nIr

nXT ⇐⇒ Ir
nXIr

nIr
n = Ir

nIr
nXT Ir

n⇐⇒ X r = (X r)F .

Thus, X r is persymmetric. Because X r = (X r)T = (X r)F , X r is bisymmetric. Using

the same method, the reverse can be proven.

�

Lemma 3.3. For a self-dual code C over F with the generator matrix G = (In |X), C is re-

versible if and only if it meets at least one of the following conditions:

(1) X is persymmetric.

(2) X r is symmetric.

Proof. Since C is reversible, it implies that

G(Gr)T =O,

=⇒
(

In X
)(

X r Ir
n

)T
=O,

=⇒
(

Ir
nXT +XIr

n

)
=O,
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The expression Ir
nXT +XIr

n =O holds if Ir
nXT = XIr

n, implying that (X r)T = X r. Thus, condition

(2) is satisfied. Then, based on condition 1 it is also satisfied by Lemma 3.2. The reverse case

can be shown similarly. �

Example 3.1. Given an RSD code C over F4 = {u+ va|a2 = a+ 1,u,v ∈ F2}. The generator

matrix of C is as follows.

(I2|X) =

1 0 a+1 a

0 1 a a+1

 ,

where XXT = I2. Here, X is persymmetric X = XF . Moreover, the matrix X r =

 a a+1

a+1 a


is symmetric.

Based on Definition 2.3 and Lemma 3.3, the BSD code is closely related to RSD code, as in

the corollary below.

Corollary 3.1. If C is a bisymmetric self-dual code over F , then C is a reversible self-dual.

The existence of an RSD code over F is established in the following proposition.

Proposition 3.1. For every code of even length, there exists an RSD code over F .

Proof. Consider that, (In|Ir
n) generates a trivial RSD code over F of length 2n. This holds

Lemma 3.3 because (Ir
n)

F = Ir
n and (Ir

n)(I
r
n)

T = In. �

Next, an RSD code can be constructed by extending the previously known RSD code based

on the properties below.

3.2. Construction of a Reversible (Bisymmetric) Self-dual Code over F .

Theorem 3.1. Suppose that G1 = (In|M) is a generator matrix of an RSD code C1 over F of

length 2n and z is an eigenvector of Mr with eigenvalue 1. The following matrix G2 = (In+1|N),

where

N =

z M+L

k zF


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is a generator matrix of a RSD code C2 of length 2n+2 digits, the vector z, k and the matrix L

are given under the following case.

(1) If k = 0, zT z = 1 and L = zzF .

(2) If k 6= 0,k2 = 1+ zT z, zT z 6= 0, and L = (k+1)−1zzF .

Proof. We prove that, G2 = (In+1|N) is a generator matrix of RSD code C2. First, we have to

show that C2 is self-dual code. Thus,

N(N)T =

z M+L

k zF

 zT k

MT +LT (zF)T


=

zzT +(M+L)(MT +LT ) kz+(M+L)(zF)T

kzT + zF(MT +LT ) k2 + zF(zF)T


=In+1.

Then, we need to verify that the following equations are true.

zzT +(M+L)(MT +LT ) =In,(3.1)

kz+(M+L)(zF)T =On×1,(3.2)

kzT + zF(MT +LT ) =O1×n,(3.3)

k2 + zF(zF)T =1.(3.4)

Based on the given assumptions, it follows that MMT = In. Additionally, since z is an eigen-

vector of Mr with eigenvalue 1, it is clear that z = Mrz. By using some properties of the flip

transpose of the matrix and direct computations, we obtain that

M(zF)T = M(Ir
nz) = Mrz = z(3.5)

consequently, we have

zFMT = (M(zF)T )T = zT .

Next, we verify equations (3.1), (3.2), (3.3), and (3.4) for each case.

For case (i), k = 0, zT z = 1 and L = zzF . Thus, by equation (3.5), we get
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MLT =M(zzF)T = M(zF)T )zT = zzT ,(3.6)

LMT =(ML)T = zzT ,(3.7)

LLT =zzF(zzF)T = z(zT z)FzT = zzT ,(3.8)

L(zF)T =zzF(zF)T = z(zF(zF)T ) = z,(3.9)

zFLT =(L(zF)T )T = zT .(3.10)

By equation (3.6), (3.7), (3.8), (3.9), and (3.10), we have

zzT +(M+L)(MT +LT ) =zzT +MMT +LMT +MLT +LLT

=zzT + In + zzT + zzT + zzT

=In,

kz+(M+L)(zF)T =M(zF)T +L(zF)T = z+ z = On×1,

kzT + zF(MT +LT ) =zF(MT )+ zF(LT ) = zT + zT = O1×n,

k2 + zF(zF)T =0+(zT z)F = 1.

Hence, equations (3.1), (3.2), (3.3), and (3.4) are true.

For case (ii), k 6= 0,k2 = 1+ zT z, zT z 6= 0, and L = (k+1)−1zzF . Thus, by equation (3.5), we

get

MLT = M((k+1)−1zzF)T = (k+1)−1M(zF)T )zT = (k+1)−1zzT ,(3.11)

LMT = (ML)T = (k+1)−1zzT ,(3.12)

LLT = (k+1)−2zzF(zzF)T = (k+1)−2z(k+1)2zT = zzT ,(3.13)

L(zF)T = (k+1)−1zzF(zF)T = (k+1)−1z(zF(zF)T ) = (k+1)z,(3.14)

zFLT = (L(zF)T )T = (k+1)zT .(3.15)

By equation (3.11), (3.12), (3.13), (3.14), and (3.15) we have,

zzT +(M+L)(MT +LT ) =In,
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kz+(M+L)(zF)T =kz+M(zF)T +L(zF)T = kz+ z+(k+1)z = On×1,

kzT + zF(MT +LT ) =kzT + zF(MT )+ zF(LT ) = kzT + zT +(k+1)zT = O1×n,

k2 + zF(zF)T =1.

According to two cases, equations (3.1), (3.2), (3.3), and (3.4) are true. Therefore, C2 is self-

dual code. Based on Lemma 3.3 M is persymmetric, so we have to show that N is persymmetric

or NF = N.

(N)F =

z M+L

k zF

F

=

(zF)F MF +LF

kF zF


=

z M+LF

k zF

 .

Thus, N is persymmetric if L is persymmetric. Note that for two cases, by definition of flip trans-

pose (zzF)F = (zzF)F and ((k+1)−1zzF)F = (k+1)−1(zzF)F . Therefore, L is persymmetric,

implying N is persymmetric. �

According to Theorem 3.1, the minimum distance of the code can be determined as shown in

Proposition 3.2 below.

Proposition 3.2. If G = (In+1|N), where

N =

z M+L

k zF


is a generator matrix of an RSD code C of length 2n+2 digits over F , then

d(C ) = 1+min{wt(k)+wt(z),min{wt(y(i)},

where y(i) is the ith-row vector of G, generated after eliminating the first n+ 1 digits for i =

1,2 · · ·n.
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Proof. Note that for all c∈C can be generated from w∈F n+1. Therefore, we need to examine

the following two cases.

(1) If the first n digit of w are zero and the last digit of w is non-zero, w = (0|t). Then

c ∈ C is c = (0|t|tk|tzF). Thus, we find that wt(c) = 1+wt(k) +wt(zF). Because

wt(zF) = wt(z), then wt(c)= 1+wt(k)+wt(z).

(2) If the ith-digit of w is non-zero and other digit are zero with i = 1, · · · ,n. In this case,

several conditions will be considered, as follows.

(a) If the first digit of w is non-zero, w=(t|0). Then we get c∈C is c=(t|0|tz|t(M+L)).

Then wt(c) = 1+wt(y(1)), where y(1) is the first row vector of G is obtained by

removing the first n+1 digits.

(b) If the ith-digit of w is non-zero with i= 2,3....,n, w= (0|t|0). Thus, we get c∈C is

c = (0|t|tz|t(M+L)|0). Then wt(c) = 1+wt(yi)), where y(i) is the ith-row vector

of G, generated after eliminating the first n+1 digits.

Therefore, minwt(c) = 1+min{wt(y(i)} with i = 1,2, · · · ,n.

According to the 2 cases above, d(C ) = 1+min{wt(k)+wt(z),min{wt(y(i))}}. �

Example 3.2. Given an RSD code C1 of length 4 over F4 = {u+ va|a2 = a+1,u,v ∈ F2}. The

generator matrix of C1 is

G = (I2|M) =

1 0 1 0

0 1 0 1

 .

To construct a new code C2 with a length of 6 digits as stated in Theorem 3.1, we can calculate

the eigenvectors of the matrix Mr that satisfy the assumptions in Theorem 3.1. Therefore, the

resulting eigenvector is as follows.

z =

 a

a+1


Thus,

M+L =

1 0

0 1

+

1 a+1

a 1

=

0 a+1

a 0

 .
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Finally, if we choose k = 0 then the generator matrix of C2 is

G2 =


1 0 0 a 0 a+1

0 1 0 a+1 a 0

0 0 1 0 a+1 a

 .

Moreover, if we encode C2 using the matrix G2 and obtain codewords from C2, then by

calculating its minimum distance, we find that d(C2) = 3. Let y(i) be the vector of the ith row

of G2 with i=1,2. Consider that, wt(y(1) = wt(y(2)) = wt(z) = 2, and d(C2) = 1+min{wt(0)+

wt(z),min{wt(ri)}}= 3. This shows that Proposition 3.2 is satisfied.

In the following proposition, we discuss the existence of an MDS code over F generated

using a method in Theorem 3.1.

Proposition 3.3. Let G = (In+1|N), where

N =

z M+L

k zF


be a generator matrices of an RSD code C over F . If k 6= 0 and wt(z) = min{wt(yi)}= n, with

y(i) is the ith-row vector of G with i = 1,2,3...,n, then C is an MDS code.

We obtained the development of RSD codes in Theorem 3.1. Based on Corollary 3.1, the

next theorem will address the construction of BSD codes.

Theorem 3.2. Let [I2n|M] be a generator matrix of a BSD code of length 4n over F . The matrix

G = (I2n+2|N) , where

N =


α zT β

z M+L (zF)T

β zF α


constructs a BSD code of length 4n+ 4 over F for the matrix L, α,β ∈F , and the column

vector z ∈F 2n that satisfy one of the following cases.

(1) β = α +1, z is an eigenvector of Mr, L = O, and zT = zF .

(2) α = β = 1, z is an eigenvector of Mr, L = zzT +(zF)T zF , and zT z = 1.

(3) α = β = 0, z is an eigenvector of M, L = zzT +(zF)T zF , and zT z = 1.
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Proof. According to the assumption, we have MMT = MM = I2n and the matrix L is bisymmet-

ric which satisfy all cases. Thus, it can be easily shown that N is bisymmetric. Thus, we need

to verify that

NN =


α2 + zT z+β 2 αzT + zT (M+L)+βzF zT (zF)T

αz+(M+L)z+β (zF)T zzT +(M+L)2 +(zF)T zF βz+(M+L)(zF)T +α(zF)T

zFz βzT + zF(M+L)+αzF β 2 + zF(zF)T +α2


=I2n+2.

First, we have to show that the following equations hold:

α
2 + zT z+β

2 =1,(3.16)

αzT + zT (M+L)+βzF =O1×2n,(3.17)

zT (zF)T =0,(3.18)

αz+(M+L)z+β (zF)T =O2n×1,(3.19)

zzT +(M+L)2 +(zF)T zF =I2n,(3.20)

βz+(M+L)(zF)T +α(zF)T =O2n×1,(3.21)

zFz =0,(3.22)

βzT + zF(M+L)+αzF =O1×2n,(3.23)

β
2 + zF(zF)T +α

2 = 1.(3.24)

Based on Lemma 3.1, equations (3.18) and (3.22) are clearly satisfied. Next, we show that the

other equations are satisfied for each case.

Case (i) Since z is an eigenvector of Mr, we have Mrz = z,⇐⇒M(zF)T = z⇐⇒ zT M = zF .

Since zT = zF , by Lemma 3.2 zT z = 0. Therefore, we obtain

α
2 + zT z+β

2 =α
2 +(α +1)2 = 1,

αzT + zT (M+L)+βzF =αzT +(β +1)zF = O1×2n,

αz+(M+L)z+β (zF)T =(αzT + zT (M+L)+βzF)T = O2n×1,

zzT +(M+L)2 +(zF)T zF =M2 = I2n,
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βz+(M+L)(zF)T +α(zF)T =(αzT + zT (M+L)+βzF)F = O2n×1,

βzT + zF(M+L)+αzF =(βz+(M+L)(zF)T +α(zF)T )T = O1×2n,

β
2 + zF(zF)T +α

2 =(α +1)2 +α
2 = 1.

Hence, equations (3.16), (3.17), (3.18), (3.19), (3.20), (3.21), (3.22), (3.23), and (3.24) are

satisfied. The other cases are verified similarly. �

The minimum distance of the constructed code is determined in the following proposition

using Theorem 3.2.

Proposition 3.4. If G = (I2n+2|N), where

N =


α zT β

z M+L (zF)T

β zF α


is a generator matrix of a BSD code C of length 4n + 4 digits over F , then d(C ) = 1 +

min{wt(α) +wt(β ) +wt(z),min{wt(y(i)} where y(i) is the ith-row vector of G, obtained by

removing the first 2n+2 digits for i = 2,3 · · ·2n+1.

Proof. The proof is similar to the proof of Proposition 3.2 �

Next, we show the subsistence of an MDS code for the BSD code over finite fields with

characteristic two by employing the method outlined in the definition of an MDS code and

Proposition 3.4.

Proposition 3.5. Let G = (I2n+2|N), where

N =


α zT β

z M+L (zF)T

β zF α


be a generator matrix of a BSD code C of length 4n+4 digits over F . If α,β 6= 0, wt(z) = n

and wt(y(i)) = 2n+2 where y(i) is the ith-row vector of G, obtained by removing the first 2n+2

digits for i = 2,3 · · ·2n+1, then C is an MDS code.
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The following example illustrates Theorem 3.2 and Proposition 3.5.

Example 3.3. Let C1 be a BSD code with parameter [4,2,2]4, where F4 = {u+ va|a2 = a+

1,u,v ∈ F2}. The generator matrix of C1 is

G1 = (I2|M) =

1 0 a a+1

0 1 a+1 a

 .

We can apply the construction method described in Theorem 3.2. Choose α = a,β = a+ 1.

Thus, we compute, according to case (i), that the eigenvector of Mr is z =

1

1

 . Therefore, we

obtain a BSD [8,4,5] code C2 over F4 with generator matrix

G2 =


1 0 0 0 a 1 1 a+1

0 1 0 0 1 a a+1 1

0 0 1 0 1 a+1 a 1

0 0 0 1 a+1 1 1 a

 .

The code is MDS.

3.3. Computational Result of Bisymmetric Self-dual Code over F4.

In this section, we develop a BSD code over F4 = {u+ va|a2 = a+ 1,u,v ∈ F2}, using the

method in the previous section. First, we present a BSD code C1 of length 8 to generate a BSD

code C4 of length 20.

• A generator matrix of [8,4,5]4 code C1


1 0 0 0 a 1 1 a+1

0 1 0 0 1 a a+1 1

0 0 1 0 1 a+1 a 1

0 0 0 1 a+1 1 1 a

 .
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• A generator matrix of [12,6,7]4 code C2

1 0 0 0 0 0 a+1 1 1 1 1 a

0 1 0 0 0 0 1 a 1 1 a+1 1

0 0 1 0 0 0 1 1 a a+1 1 1

0 0 0 1 0 0 1 1 a+1 a 1 1

0 0 0 0 1 0 1 a+1 1 1 a 1

0 0 0 0 0 1 a 1 1 1 1 a+1


• A generator matrix of [16,8,9]4 code C3

1 0 0 0 0 0 0 0 1 a+1 a a a a a 1

0 1 0 0 0 0 0 0 a+1 a a+1 a+1 a+1 a+1 a a

0 0 1 0 0 0 0 0 a a+1 a 1 1 a+1 a+1 a

0 0 0 1 0 0 0 0 a a+1 1 a a+1 1 a+1 a

0 0 0 0 1 0 0 0 a a+1 1 a+1 a 1 a+1 a

0 0 0 0 0 1 0 0 a a+1 a+1 1 1 a a+1 a

0 0 0 0 0 0 1 0 a a a+1 a+1 a+1 a+1 a a+1

0 0 0 0 0 0 0 1 1 a a a a a a+1 1


• A generator matrix of [20,10,11]4 code C4

1 0 0 0 0 0 0 0 0 0 a+1 1 1 1 1 1 1 1 1 a

0 1 0 0 0 0 0 0 0 0 1 1 a+1 a a a a a 1 1

0 0 1 0 0 0 0 0 0 0 1 a+1 a a+1 a+1 a+1 a+1 a a 1

0 0 0 1 0 0 0 0 0 0 1 a a+1 a 1 1 a+1 a+1 a 1

0 0 0 0 1 0 0 0 0 0 1 a a+1 1 a a+1 1 a+1 a 1

0 0 0 0 0 1 0 0 0 0 1 a a+1 1 a+1 a 1 a+1 a 1

0 0 0 0 0 0 1 0 0 0 1 a a+1 a+1 1 1 a a+1 a 1

0 0 0 0 0 0 0 1 0 0 1 a a a+1 a+1 a+1 a+1 a a+1 1

0 0 0 0 0 0 0 0 1 0 1 1 a a a a a a 1 1

0 0 0 0 0 0 0 0 0 1 a 1 1 1 1 1 1 1 1 a+1


We demonstrate a transformation of BSD codes with applying Theorem 3.2 in Table 1. Based

on [30], we have obtained new codes over F4 with improved parameters and all three codes are

MDS (optimal) codes. The MDS codes are derived from Proposition 3.5 with α,β 6= 0.
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TABLE 1. Construction of code C4

Length Case zT Constant d(C )

8 - - - 5

12 i) 1111 α = a+1 7

16 ii) (a+1)aaaaa α = 1 9

20 i) 11111111 α = a+1 11

3.4. The Application of Bisymmetric Self-dual Codes to DNA Codes.

In this section, DNA codes will be constructed using BSD codes over F4 = {u+ va|a2 = a+

1,u,v ∈ F2} and F4n = F4 + y1F4 + ...+ ynF4. Let D = {A,T,G,C} be a set of DNA alphabets

of order 4. We define a bijective mapping f as follows.

f :F4 −→ D,

with f (0) = C, f (1) = G, f (a) = T and, f (a+1) = A. Next, a DNA code of length 2n D , can

be constructed from a BSD code of length 2n C with the following bijective mapping.

f1 :C −→D ,

with f1(c = (c1c2, · · ·c2n)) = ( f (c1) f (c2) · · · f (c2n)). Then, we apply Proposition 3.5 to con-

struct an MDS DNA code. Let C1 be a BSD code of length 4n+4 with a generator matrix G as

in Proposition 3.5. The code C1 ⊆ F 4n+4
4 is obtained by performing the following encoding.

E :F 2n+2
4 −→ F 4n+4

4

x 7−→ E(x) = xG.

So, we get an MDS DNA code of length 4n+4 D1, the following bijective mapping.

h :C1 −→D1

c1 7−→ h(c1) = h(E(x)) = f (x1g1,1 + · · ·+ x2n+2g2n+2,1) · · · f (x1g1,4n+4 + · · ·+ x2n+2g2n+2,4n+4) ,

where x ∈ F 2n+2
4 . Meanwhile, we define the following bijective mapping from the field F4n to the set of

DNA D = {A,T,G,C} to construct DNA codes over the field F4n .

θ :F4n −→ D,
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with θ(a1 + b1a2 + b2a3 + · · ·+ bn−1an) = f (a1 + a2 + · · ·an), where a1,a2, · · · ,an ∈ F4. Next, using

Proposition 3.5, the MDS DNA code of length 4n+ 4 D2, can be constructed from the BSD code over

F4n . Let C2 be a BSD of length 4n+4code over F4n with generator matrix G∗. The code C1 ⊆ F 4n+4
4n is

generated through the encoding function E1 as follows.

E1 :F 2n+2
4n −→ F 4n+4

4n

x 7−→ E1(x) = xG∗.

Then, the MDS DNA code D2 is obtained through the following bijective mapping.

h1 :C2 −→D2,

with h(c1) = h1(E1(x)) = θ

(
x1g∗1,1 + · · ·+ x2n+2g∗2n+2,1

)
· · ·θ

(
x1g∗1,4n+4 + · · ·+ x2n+2g∗2n+2,4n+4

)
, where x∈F 2n+2

4n .

Example 3.4. Given a BSD code of length 8 over F4 = {u+ va|a2 = a+1,u,v ∈ F2} C . The generator

matrix of C is as follows.

G =


1 0 0 0 a 1 1 a+1

0 1 0 0 1 a a+1 1

0 0 1 0 1 a+1 a 1

0 0 0 1 a+1 1 1 a

 .

According to Example 3.3, C is an MDS code. Thus, we can construct an MDS DNA code D using the

following bijective mapping.

h :C −→D1

c 7−→ h(c1) = h(E(x)) = f (x1g1,1 + · · ·+ x4g4,1) · · · f (x1g1,8 + · · ·+ x4g4,8) ,

where E is an encoding map from F 4
4 to F 8

4 . The elements of the MDS DNA code D are presented in the

following table.
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TABLE 2. Element of an MDS code D

CCCCCCCC CCTCTTCT CCCGAGGT CCTGGAGC CCCTTTTC CCTTCCTT CCCAGAAT CCTAAGAC

GCCCTGGA GCTCCAGG GCCGGTTG GCTGACTA GCCTCAAA GCTTTGAG GCCAACCG GCTAGTCA

TCCCCTTT TCTCTCTC TCCGAAAC TCTGGGAT TCCTTCCT TCTTCTCC TCCAGGGC TCTAAAGT

ACCCTAAG ACTCCGAA ACCGGCCA ACTGATCG ACCTCGGG ACTTTAGA ACCAATTA ACTAGCTG

CGCCGTAG CGTCACAA CGCGCACA CGTGTGCG CGCTACGG CGTTGTGA CGCATGTA CGTACATG

GGCCAACC GGTCGGCT GGCGTCGT GGTGCTGC GGCTGGTC GGTTAATT GGCACTAT GGTATCAC

TGCCGCGA TGTCATGG TGCGCGTG TGTGTATA TGCTATAA TGTTGCAG TGCATACG TGTACGCA

AGCCAGTT AGTCGATC AGCGTTAC AGTGCCAT AGCTGACT AGTTAGCC AGCACCGC AGTATTGT

CTCCTCTT CTTCCTTC CTCGGGAC CTTGAAAT CTCTCTCT CTTTTCCC CTCAAAGC CTTAGGGT

GTCCCGAG GTTCTAAA GTCGATCA GTTGGCCG GTCTTAGG GTTTCGGA GTCAGCTA GTTAATTG

TTCCTTCC TTTCCCCT TTCGGAGT TTTGAGGC TTCTCCTC TTTTTTTT TTCAAGAT TTTAGAAC

ATCCCAGA ATTCTGGG ATCGACTG ATTGGTTA ATCTTGAA ATTTCAAG ATCAGTCG ATTAACCA

CACCATGA CATCGCGG CACGTATG CATGCGTA CACTGCAA CATTATAG CACACGCG CATATACA

GACCGATT GATCAGTC GACGCCAC GATGTTAT GACTAGCT GATTGACC GACATTGC GATACCGT

TACCACAG TATCGTAA TACGTGCA TATGCACG TACTGTGG TATTACGA TACACATA TATATGTG

AACCGGCC AATCAACT AACGCTGT AATGTCGC AACTAATC AATTGGTT AACATCAT AATACTAC

4. CONCLUSIONS

In this study, we have investigated some properties of reversible (bisymmetric) self-dual codes over

finite fields with characteristic two. We have also proposed a method for constructing reversible (bisym-

metric) self-dual codes over finite fields with characteristic two, based on code extension. We construct

bisymmetric self-dual codes over finite fields with improved parameters and also discover MDS codes

using this method. We applied bisymmetric self-dual codes over the fields F4 and F4n to form a DNA code

using a bijective mapping. However, this construction method can be applied only to fields with charac-

teristic two. Therefore, future research can develop other algebraic structures. Additionally, applications

of reversible (bisymmetric) self-dual codes on F can also be explored.
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