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Abstract. HIV infection can progress to AIDS, the most severe stage of the disease, characterized by a critically

weakened immune system. In some regions, AIDS is a leading cause of mortality. This study develops a mathe-

matical model of HIV/AIDS aimed at reducing new infections, using Thailand as a case study. The model includes

epidemic and endemic analyses, along with stability evaluations for both equilibrium points. Additionally, an

optimal control analysis is conducted to identify strategic interventions for minimizing all stages of HIV infection.
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1. INTRODUCTION

HIV, or Human Immunodeficiency Virus, is a virus that compromises the immune sys-

tem by targeting and destroying CD4 cells, a type of white blood cell essential for immune

defense. As HIV progresses, it weakens the immune system, reducing the body’s ability to

combat infections and certain cancers. If left untreated, HIV can advance to AIDS (Acquired

Immunodeficiency Syndrome), the most severe stage of the infection.
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HIV/AIDS is among the world’s most deadly infectious diseases, with a particularly devas-

tating impact in Sub-Saharan Africa. Over recent decades, it has significantly affected health

outcomes and life expectancy in this region [22]. According to the Global Burden of Disease

study, nearly one million people die annually from HIV/AIDS, accounting for approximately

1.5 % of global deaths. The mortality rates vary widely across regions, with some countries in

southern Sub-Saharan Africa experiencing rates exceeding 100 deaths per 100,000 people.

Since the onset of the HIV epidemic, approximately 88.4 million people have been infected

with the virus, and about 42.3 million have died from HIV-related causes [32]. By the end of

2023, an estimated 0.6 % of adults aged 15–49 worldwide were living with HIV, including 20.5

million women and 18.1 million men. Additionally, 1.4 million children under the age of 15

were living with HIV, with around 630,000 deaths attributed to HIV-related causes.

Numerous mathematical models of HIV/AIDS have been developed, each differing in fo-

cus and approach. In 2014, Fatma Bozkurt et al. [9] presented a study on the HIV epidemic,

dividing the population into three groups: HIV-negative individuals, HIV-positive individuals

unaware of their infection, and HIV-positive individuals aware of their status. The study found

that the disease becomes more endemic due to immigration, while the prevalence decreases

when infected individuals become aware of their status through screening and contact tracing,

subsequently refraining from sexual activity. Conversely, in the absence of contact tracing, the

prevalence increases. The study concluded that the most effective strategy to reduce infection

rates and prevalence is to educate individuals about HIV and raise awareness of the conse-

quences of unsafe sexual practices and other risky behaviors.

In 2020, S. Saravanakumar et al. [27] proposed a model examining risk factors in HIV/AIDS

transmission dynamics, with a specific focus on the female sexual network in India. The study

highlighted the role of female sex workers in the spread of HIV. The model categorized the

population into several groups: HIV-susceptible males, susceptible females, susceptible female

sex workers, HIV-infected males, infected females, infected female sex workers, AIDS-infected

males, and AIDS-infected females, including sex workers. The findings provide insights into the

dynamics of HIV prevalence, enabling the development of more effective prevention strategies.
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In 2021, Tigabu Kasia Ayele et al. [29] developed a mathematical model of HIV/AIDS with

optimal control, focusing on a case study in Ethiopia. The study categorized the population

into six groups: individuals aware of HIV/AIDS who are not yet exposed, individuals unaware

of HIV/AIDS who are not yet exposed, individuals unknowingly infected, individuals aware

of their infection but not yet progressed to AIDS, individuals undergoing treatment but not

fully recovered, and individuals infected with HIV displaying AIDS symptoms. The findings

revealed that a combination of optimal control strategies significantly reduces the number of

unaware susceptible individuals, undiagnosed infections, diagnosed infections, and diagnosed

cases with AIDS symptoms.

In 2022, Roberto Arias, Kevin De Angeles, and colleagues [26] proposed a mathematical

model of the HIV/AIDS epidemic. The study divided the population into four groups: suscepti-

ble individuals, HIV-infected individuals, AIDS-infected individuals, and a ”removed” category

representing those isolated, cured, or permanently immune. However, it is important to note that

HIV cannot be cured. Their experiments indicated that one HIV-infected individual could po-

tentially transmit the virus to the entire susceptible population, leading to widespread infection.

In the same year, Cristian Camilo Espitia Morillo and colleagues [5] analyzed a mathemati-

cal model of HIV/AIDS that incorporated sexual preferences under antiretroviral therapy. Their

findings suggested that reducing the rate of homosexual partnerships could significantly de-

crease transmission rates and help achieve a disease-free equilibrium.

In the same year, Cristian C. Espitia et al. [6] developed a model of HIV/AIDS that consid-

ered sexual preferences under antiretroviral therapy, using a case study from San Juan de Pasto,

Colombia. The model analyzed the impact of bisexual behavior in a global community and

is governed by nonlinear equations representing various groups: susceptible homosexual men,

untreated infected homosexual men, susceptible women, untreated infected women, suscepti-

ble heterosexual men, untreated infected heterosexual men, individuals receiving antiretroviral

treatment, and individuals living with AIDS. The study concluded that the most effective way to

reduce transmission and achieve a disease-free equilibrium is primarily by decreasing the num-

ber of homosexual partners. While increasing the departure rate of infected individuals reduces
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infections among heterosexual men and women, it is not sufficient to fully prevent or control

the rate of contagion.

In 2024, Syeda Alishwa Zanib and colleagues [33] proposed a model of HIV/AIDS that

incorporates both the fisher-folk community and the general community. The study categorized

individuals in the general population into several groups: those who are purely susceptible,

individuals exposed to the virus, those aware of HIV/AIDS, patients undergoing treatment after

showing symptoms and becoming infectious, and individuals who progress to AIDS in the

absence of adequate therapy. Similarly, the fisher-folk community was classified using the

same categories. The study highlighted gaps in the representation of exposed individuals within

both communities, offering valuable insights into the dynamics of HIV/AIDS and its societal

impact.

In the same year, M. O. Ogunmodimu and colleagues [21] proposed a mathematical model

addressing HIV/AIDS prevention in the context of the ”undetectable equals untransmittable”

principle. Their research focused on HIV/AIDS transmission in Africa, using Cape Verde as a

case study, and incorporated antiretroviral therapy (ART) as a key component. The study an-

alyzed the qualitative properties of the model, including the boundedness and positivity of the

solutions, alongside other essential mathematical proofs. The findings emphasized the impor-

tance of educating HIV-endemic communities about the disease and its fatality. Furthermore,

the study recommended that governments and health organizations ensure access to ART treat-

ment at significantly subsidized costs for those in need.

In June 2024, Idris Ahmed and colleagues [12] proposed a mathematical model incorporat-

ing HIV/AIDS treatment strategies, including antiretroviral therapy. The study examined the

dynamics of HIV/AIDS transmission and employed numerical methods to analyze the behavior

of each compartment within the model. The results highlighted the importance of implementing

non-pharmaceutical interventions as effective control strategies.

The studies we reviewed represent only a small selection of the available literature. However,

few have explored the transitional state between HIV and AIDS or considered a class of indi-

viduals who are aware of their infection and take measures to prevent transmitting the disease to

others. In the remainder of this paper, we first introduce our model, which incorporates control
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measures, followed by an analysis of the model, including the solution boundaries and the basic

reproduction number. We then present the disease-free and endemic equilibrium points along

with their stability conditions. Subsequently, we apply the optimal control model and provide

numerical simulations. Finally, we discuss the simulation results and conclude with a summary

and discussion of our findings.

FIGURE 1. HIV/AIDS model

In this section, we present our model along with an optimal control strategy. The population is

divided into five categories: susceptible individuals (S), asymptomatic HIV-infected individuals

(I1), symptomatic HIV-infected individuals (I2), AIDS patients (A), and a semi-recovered group

who are aware of their condition and take precautions to prevent transmission (R).

We assume that susceptible individuals can become infected through contact with asymp-

tomatic and symptomatic HIV patients. Upon infection, individuals initially enter the asymp-

tomatic category (I1) and can reduce their risk of transmission through medical care. If left

untreated, asymptomatic individuals may progress to the symptomatic category (I2). Symp-

tomatic patients, if provided with appropriate care, can revert to the asymptomatic state (I1).

Without treatment or adherence to care guidelines, symptomatic patients may advance to the

AIDS stage (A).
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AIDS patients (A) represent individuals with severe symptoms who face a high risk of mor-

tality. However, with effective healthcare, they can transition into the semi-recovered category

(R), where they can live a normal life, are aware of their condition, and do not transmit the dis-

ease to others. Similarly, symptomatic patients receiving proper care may also move directly to

the semi-recovered group. The progression of the disease is described by the following system

of equations:

dS
dt

= µN−β1SI1−β2SI2−µS(1)

dI1

dt
= β1SI1 +β2SI2−σ I1−µI1−φ1I1 +αI2(2)

dI2

dt
= σ I1−δ I2−µI2−φ2I2−αI2(3)

dA
dt

= δ I2−κA−µA−φ3A(4)

dR
dt

= φ1I1 +φ2I2 +φ3A−µR(5)

where

- N is the total population.

- µ is the natural birth and natural death rate.

- β1 is the transmission rate from asymptomatic patients to susceptible population.

- β2 is the transmission rate from symptomatic patients to susceptible population.

- σ progressing rate from asymptomatic HIV patients becoming symptomatic patients.

- α is the progression rate of treatments for symptomatic patients becoming asymp-

tomatic patients.

- δ is progression rate of symptomatic HIV group becoming AIDS group.

- κ is the AIDS-related death rate.

- φ1 is the ART rate for HIV infections.

- φ2 is the additional medication rate for symptomatic patients.

- φ3 is the additional medication rate for AIDS group.

Written in a vector from, the above equations become

dX
dt

= F(X)
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with X = (S, I1, I2,A,R)T .

It is important to note that while approximately 60% of the costs for HIV patients are at-

tributed to antiretroviral therapy (ART), an additional 40% is associated with related expenses,

such as doctor visits and treatments for other infection-related medical conditions.

2. EPIDEMIC ANALYSIS

Next we will find a disease-free equilibrium by setting I1, I2,A and R in the equations to zero

and solve for S. We have S = N. Thus now we have the DFE:

ε0 = (N,0,0,0,0)

Since dN
dt = −κA < 0, the solutions of the system are bounded, and the function N(t) is

monotonically decreasing.

To calculate the basic reproduction number, R0, for this model, we employ the method of van

den Driessche and Watmough. The associated next-generation matrices are defined as follows:

F =


β1SI1 +β2SI2

0

0

 ,

V =


σ I1 +µI1 +φ1I1−αI2

−σ I1 +δ I2 +µI2 +φ2I2 +αI2

−δ I2 +κA+µA+φ3A

 .
Then

(6) F =


∂FI1
∂ I1

∂FI1
∂ I2

∂FI1
∂A

∂FI2
∂ I1

∂FI2
∂ I2

∂FI2
∂A

∂FA
∂ I1

∂FA
∂ I2

∂FA
∂A

=


β1S β2S 0

0 0 0

0 0 0

 ,
and

(7) V =


∂VI1
∂ I1

∂VI1
∂ I2

∂VI1
∂A

∂VI2
∂ I1

∂VI2
∂ I2

∂VI2
∂A

∂VA
∂ I1

∂VA
∂ I2

∂VA
∂A

 =


σ +µ +φ1 −α 0

−σ δ +µ +φ2 +α 0

0 −δ κ +µ +φ3

 ,
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At the DFE point, we have

F(ε0) =


β1N β2N 0

0 0 0

0 0 0

 .
Let

M∗ = β1N,

N∗ = β2N.

Then we write

F(ε0) =


M∗ N∗ 0

0 0 0

0 0 0

 .
Then we have,

detV =
(
(σ +µ +φ1)(δ +µ +φ2 +α)(κ +µ +φ3)+0+0

)
−σα(κ +µ +φ3)

= (σ +µ +φ1)(δ +µ +φ2 +α)(κ +µ +φ3)−σα(κ +µ +φ3)

Let

K = (σ +µ +φ1)(δ +µ +φ2 +α)(κ +µ +φ3)−σα(κ +µ +φ3)

Thus,

adjV =


C11 C12 C13

C21 C22 C23

C31 C32 C33


T

=


(δ +µ +φ2 +α)(κ +µ +φ3) σ(κ +µ +φ3)

α(κ +µ +φ3) (σ +µ +φ1)(κ +µ +φ3)

0 0

σδ

δ (κ +µ +φ3)

(σ +µ +φ1)(δ +µ +φ2 +α)−σα


T
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=


(δ +µ +φ2 +α)(κ +µ +φ3) α(κ +µ +φ3)

σ(κ +µ +φ3) (σ +µ +φ1)(κ +µ +φ3)

σδ δ (κ +µ +φ3)

0

0

(σ +µ +φ1)(δ +µ +φ2 +α)−σα


and hence ,

V−1 =
1

detV
· adjV

=
1
K


(δ +µ +φ2 +α)(κ +µ +φ3) α(κ +µ +φ3)

σ(κ +µ +φ3) (σ +µ +φ1)(κ +µ +φ3)

σδ δ (κ +µ +φ3)

0

0

(σ +µ +φ1)(δ +µ +φ2 +α)−σα



=


(δ+µ+φ2+α)(κ+µ+φ3)

K
α(κ+µ+φ3)

K 0
σ(κ+µ+φ3)

K
(σ+µ+φ1)(κ+µ+φ3)

K 0
σδ

K
δ (κ+µ+φ3)

K
(σ+µ+φ1)(δ+µ+φ2+α)−σα

K

 .
Thus

FV−1 =


M∗ N∗ 0

0 0 0

0 0 0




(δ+µ+φ2+α)(κ+µ+φ3)
K

α(κ+µ+φ3)
K 0

σ(κ+µ+φ3)
K

(σ+µ+φ1)(κ+µ+φ3)
K 0

σδ

K
δ (κ+µ+φ3)

K
(σ+µ+φ1)(δ+µ+φ2+α)−σα

K



=


M∗ · (δ+µ+φ2+α)(κ+µ+φ3)

K +N∗ · σ(κ+µ+φ3)
K M∗ · α(κ+µ+φ3)

K +N∗ · (σ+µ+φ1)(κ+µ+φ3)
K 0

0 0 0

0 0 0

 .
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Let

C∗ = M∗ · (δ +µ +φ2 +α)(κ +µ +φ3)

K
+N∗ · σ(κ +µ +φ3)

K

D∗ = M∗ · α(κ +µ +φ3)

K
+N∗ · (σ +µ +φ1)(κ +µ +φ3)

K

The basic reproductive number is then determined as the spectral radius of FV−1, which yields.

det(λ I−FV−1) =

∣∣∣∣∣∣∣∣∣
C∗−λ D∗ 0

0 −λ 0

0 0 −λ

∣∣∣∣∣∣∣∣∣
= (C∗−λ )(−λ )(−λ ) = 0

thus λ =C∗,0 which are real numbers. Hence,

R0 = M∗ · (δ +µ +φ2 +α)(κ +µ +φ3)

K
+N∗ · σ(κ +µ +φ3)

K

=
β1N(δ +µ +φ2 +α)(κ +µ +φ3)+β2Nσ(κ +µ +φ3)

K

=
β1N(δ +µ +φ2 +α)(κ +µ +φ3)+β2Nσ(κ +µ +φ3)

(σ +µ +φ1)(δ +µ +φ2 +α)(κ +µ +φ3)−σα(κ +µ +φ3)

=
β1N(δ +µ +φ2 +α)(κ +µ +φ3)+β2Nσ(κ +µ +φ3)

(κ +µ +φ3)
(
(µ +φ1)(δ +µ +φ2 +α)+σ(δ +µ +φ2)

)
Based on the work in [31], we immediately obtain the result below :

Theorem The disease-fee equilibrium of the model is locally asymptotically stable

if R0 < 1, and unstable if R0 > 1 .

To analyze the global asymptotic stability of the disease-free equilibrium (DFE), a common

approach involves constructing an appropriate Lyapunov function. However, we found it more

straightforward to utilize the following result proposed by Castillo-Chavez et al.

Lemma Consider a model system written in the form

dX1

dt
= F(X1,X2),

dX2

dt
= G(X1,X2), G(X1,0) = 0

where X1 ∈ Rm denotes (its components) the number of uninfected individuals and X2 ∈ Rn

denotes (its components) the number of infected individuals including latent, infectious, etc;
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X0 = (X∗1 ) denotes the disease-free equilibrium of the system.

Also assume the conditions (H1) and (H2) below:

(H1) For dX1
dt = F(X∗1 ,0) is globally asymptotically stable;

(H2) G(X1,X2) = AX2− Ĝ(X1,X2), Ĝ(X1,X2) ≥ 0 for (X1,X2) ∈ Ω, where the Jacobian A =

∂G
∂X2

(X∗1 ,0) is an M-matrix (the off diagonal elements of A are non-negative) and Ω is the region

where the model makes biological sense.

Then the DFE X0 = (X∗1 ,0) is globally asymptotically stable.

Theorem The disease-free equilibrium of the model is globally asymptotic stable.

Proof. We only need to show that the condition (H1) and (H2) hold.

In our ODE system, X1 = S, X2 = (I1, I2,A), and X∗1 = N. We note that the system is linear and

its solution can be easily found as:

dX1

dt
= F(X1,X2) =

[
µN−β1SI1−β2SI2−µS

]
.

We have

dX1

dt
= F(X1,0) =

[
µN−µS

]
is linear and its solution can be easily found as follows:

For S:

eµt dS
dt

+ eµt
µS = eµt

µN

d
dt
(eµtS) = eµt

µN ,∫ d
dt
(eµtS)dt =

∫
eµt

µNdt ,

= Neµt−
∫

eµtN′(t)dt;By Parts,

eµtS = Neµt−
∫

eµtN′(t)dt ,

S(t) = N−
∫

eµtN′(t)dt
eµt .

Since the integral over certain intervals approximates the integrand, which is a real number,

it follows that S(t)→ N as t→ ∞. Therefore, X∗1 = N is globally asymptotically stable.
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Next consider that

dX2

dt
= G(X1,X2) =


β1SI1 +β2SI2−σ I1−µI1−φ1I1 +αI2

σ I1−δ I2−µI2−φ2I2−αI2

δ I2−κA−µA−φ3A

 ,
and thus

A =


β1N−σ −µ−φ1 β2N +α 0

σ −δ −µ−φ2−α 0

0 δ −κ−µ−φ3

 .
Hence

Ĝ(X1,X2) = AX2−G(X1,X2)

=


β1N−σ −µ−φ1 β2N +α 0

σ −δ −µ−φ2−α 0

0 δ −κ−µ−φ3




I1

I2

A

−


β1SI1 +β2SI2−σ I1−µI1−φ1I1 +αI2

σ I1−δ I2−µI2−φ2I2−αI2

δ I2−κA−µA−φ3A



=


(β1N−σ −µ−φ1)I1 +(β2N +α)I2

σ I1− (δ −µ−φ2−α)I2

δ I2− (κ−µ−φ3)A

−


β1SI1 +β2SI2−σ I1−µI1−φ1I1 +αI2

σ I1−δ I2−µI2−φ2I2−αI2

δ I2−κA−µA−φ3A



=


β1I1(N−S)+β2I2(N−S)

0

0

 .
Now we can write the matrix in the form

∴ Ĝ(X1,X2) = [β1I1(N−S)+β2I2(N−S),0,0]T .
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Since 0≤ S≤N, it is obvious that Ĝ(X1,X2)≥ 0. The stability of the disease-free equilibrium

(DFE) determines the short-term dynamics of the epidemic, while the long-term behavior of the

disease is governed by the stability of the endemic equilibrium. In this section, we analyze the

endemic properties of our model.

3. ENDEMIC EQUILIBRIUM

When the disease is presence in the population, I∗1 and I∗2 6= 0, there may be several critical

points where I∗1 and I∗2 6= 0, which are the endemic equilibrium points (EEP) of the model.

These points will be denoted as ε∗0 = (S∗, I∗1 , I
∗
2 ,A
∗,R∗) which are determined from the model as

follows:

dS∗

dt
= µN−β1S∗I∗1 −β2S∗I∗2 −µS∗ ,

dI∗1
dt

= β1S∗I∗1 +β2S∗I∗2 −σ I∗1 −µI∗1 −φ1I∗1 +αI∗2 ,

dI∗2
dt

= σ I∗1 −δ I∗2 −µI∗2 −φ2I∗2 −αI∗2 ,

dA∗

dt
= δ I∗2 −κA∗−µA∗−φ3A∗ ,

dR∗

dt
= φ1I∗1 +φ2I∗2 +φ3A∗−µR∗ .

Its components must satisfy,

S∗ =
µN

β1I∗1 +β2I∗2 +µ
,

I∗1 = =
I∗2 (δ +µ +φ2 +α)

σ
,

I∗2 =
σ I∗1

δ +µ +φ2 +α
,

A∗ =
δ I∗2

κ +µ +φ3
,

R∗ =
φ1I∗1 +φ2I∗2 +φ3A∗

µ
.

We first show the following theorem.

Theorem The positive endemic equilibrium exists and is unique if and only if R0 > 1.

Proof. Note that
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N = S∗+ I∗1 + I∗2 +A∗+R∗ .

Substitute of S∗,R∗ in N, we have

N =
µN

β1I∗1 +β2I∗2 +µ
+ I∗1 + I∗2 +A∗+

φ1I∗1 +φ2I∗2 +φ3A∗

µ
.

Let

a1 = δ +µ +φ2 +α ,

a2 = κ +µ +φ3 ,

a3 = σ +µ +φ1 .

Substitute of A∗ in N, we have

N =
µN

β1I∗1 +β2I∗2 +µ
+ I∗1 + I∗2 +

δ I∗2
a2

+
φ1I∗1 +φ2I∗2 +

φ3δ I∗2
a2

µ

N =
µN

β1I∗1 +β2I∗2 +µ
+ I∗1 + I∗2 +

δ I∗2
a2

+
φ1I∗1 a2 +φ2I∗2 a2 +φ3δ I∗2

µa2

N = µ
2Na2 + I∗1 µa2(β1I∗1 +β2I∗2 +µ)+ I∗2 µa2(β1I∗1 +β2I∗2 +µ)

+δ I∗2 µ(β1I∗1 +β2I∗2 +µ)+(φ1I∗1 a2 +φ2I∗2 a2 +φ3δ I∗2 )(β1I∗1

+β2I∗2 +µ)÷µa2(β1I∗1 +β2I∗2 +µ)

µa2(β1I∗1 +β2I∗2 +µ)N = µ
2Na2 + I∗1 µa2(β1I∗1 +β2I∗2 +µ)+ I∗2 µa2(β1I∗1 +β2I∗2 +µ)

+δ I∗2 µ(β1I∗1 +β2I∗2 +µ)+(φ1I∗1 a2 +φ2I∗2 a2 +φ3δ I∗2 )(β1I∗1

+β2I∗2 +µ)

0 = µa2(β1I∗1 +β2I∗2 +µ)N−µ
2Na2− I∗1 µa2(β1I∗1 +β2I∗2 +µ)

−I∗2 µa2(β1I∗1 +β2I∗2 +µ)−δ I∗2 µ(β1I∗1 +β2I∗2 +µ)

−(φ1I∗1 a2 +φ2I∗2 a2 +φ3δ I∗2 )(β1I∗1 +β2I∗2 +µ)

0 = β1a2µNI∗1 −β1a2µI∗21 −β1a2µI1∗I∗2 −β1µδ I∗1 I∗2 −β1a2φ1I∗21
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−β1a2φ2I∗1 I∗2 −β1δφ3I∗1 I∗2 +β2a2µNI∗2 −β2a2µI∗1 I∗2

−β2a2µI∗22 −β2µδ I∗22 −β2a2φ1I1∗I∗2 −β2a2φ2I∗22 −β2δφ3I∗22

−a2µ
2I∗1 −a2µ

2I∗2 −δ µ
2I∗2 −a2µφ1I∗1 −a2µφ2I∗2 −µδφ3I∗2

Note that

I∗1 =
a1I∗2

σ
.

Substitute of I∗1 in I∗2 ,we have

0 =
(
(β1a1a2µNI∗2 −β1a1a2µI∗22 −β1a1µδ I∗22 −β1a1a2φ2I∗22

−β1a1δφ3I∗22 −β2a1a2µI∗22 −β2a1a2φ1I∗22 −a1a2µ
2I∗2

−a1a2µφ1I∗2 )÷ (σ
))

+
(
(−β1a2

1a2µI∗22 −β1a2
1a2φ1I∗22 )

÷σ
2)+ (β2a2µNI∗2 −β2a2µI∗22 −β2µδ I∗22 −β2a2φ2I∗22

−β2δφ3I∗22 −a2µ
2I∗2 −δ µ

2I∗2 −a2µφ2I∗2 −µδφ3I∗2
)

β1a2
1a2µI∗22 +β1a2

1a2φ1I∗22
σ2 =

(
β1a1a2µNI∗2 −β1a1a2µI∗22 −β1a1µδ I∗22 −β1a1a2φ2I∗22

−β1a1δφ3I∗22 −β2a1a2µI∗22 −β2a1a2φ1I∗22 −a1a2µ
2I∗2

−a1a2µφ1I∗2 +β2a2µσNI∗2 −β2a2µσ I∗22 −β2µδσ I∗22

−β2a2σφ2I∗22 −β2δσφ3I∗22 −a2µ
2
σ I∗2 −δ µ

2
σ I∗2

−a2µσφ2I∗2 −µδσφ3I∗2
)
÷σ

β1a2
1a2µI∗22 +β1a2

1a2φ1I∗22 = σ
2((β1a1a2µNI∗2 −β1a1a2µI∗22 −β1a1µδ I∗22 −β1a1a2φ2I∗22

−β1a1δφ3I∗22 −β2a1a2µI∗22 −β2a1a2φ1I∗22 −a1a2µ
2I∗2

−a1a2µφ1I∗2 +β2a2µσNI∗2 −β2a2µσ I∗22 −β2µδσ I∗22

−β2a2σφ2I∗22 −β2δσφ3I∗22 −a2µ
2
σ I∗2 −δ µ

2
σ I∗2

−a2µσφ2I∗2 −µδσφ3I∗2 )÷σ
)

β1a2
1a2µI∗22 +β1a2

1a2φ1I∗22 = σ(β1a1a2µNI∗2 −β1a1a2µI∗22 −β1a1µδ I∗22 −β1a1a2φ2I∗22

−β1a1δφ3I∗22 −β2a1a2µI∗22 −β2a1a2φ1I∗22 −a1a2µ
2I∗2
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−a1a2µφ1I∗2 +β2a2µσNI∗2 −β2a2µσ I∗22 −β2µδσ I∗22

−β2a2σφ2I∗22 −β2δσφ3I∗22 −a2µ
2
σ I∗2 −δ µ

2
σ I∗2

−a2µσφ2I∗2 −µδσφ3I∗2 )

β1a2
1a2µI∗22 +β1a2

1a2φ1I∗22 = β1a1a2µσNI∗2 −β1a1a2µσ I∗22 −β1a1µδσ I∗22 −β1a1a2σφ2I∗22

−β1a1δσφ3I∗22 −β2a1a2σ µI∗22 −β2a1a2σφ1I∗22 −a1a2µ
2
σ I∗2

−a1a2µφ1σ I∗2 +β2a2µσ
2NI∗2 −β2a2µσ

2I∗22 −β2µδσ
2I∗22

−β2a2σ
2
φ2I∗22 −β2δσ

2
φ3I∗22 −a2µ

2
σ

2I∗2 −µ
2
δσ

2I∗2

−a2µσ
2
φ2I∗2 −µδσ

2
φ3I∗2

0 = β1a1a2µσNI∗2 −β1a1a2µσ I∗22 −β1a1µδσ I∗22 −β1a1a2σφ2I∗22 −β1a1δσφ3I∗22

−β2a1a2σ µI∗22 −β2a1a2σφ1I∗22 −a1a2µ
2
σ I∗2 −a1a2µφ1σ I∗2 +β2a2µσ

2NI∗2

−β2a2µσ
2I∗22 −β2µδσ

2I∗22 −β2a2σ
2
φ2I∗22 −β2δσ

2
φ3I∗22 −a2µ

2
σ

2I∗2 −µ
2
δσ

2I∗2

−a2µσ
2
φ2I∗2 −µδσ

2
φ3I∗2 −β1a2

1a2µI∗22 −β1a2
1a2φ1I∗22

0 = −(β1a1a2µσ I∗22 +β1a1µδσ I∗22 +β1a1a2σφ2I∗22 +β1a1δσφ3I∗22 +β2a1a2σ µI∗22

+β2a2µσ
2I∗22 +β2µδσ

2I∗22 +β2a1a2σφ1I∗22 +β2a2σ
2
φ2I∗22 +β2δσ

2
φ3I∗22

+β1a2
1a2µI∗22 +β1a2

1a2φ1I∗22 )I∗22 +(β1a1a2µσN +β2a2µσ
2N−a1a2µ

2
σ

−a2µ
2
σ

2−µ
2
δσ

2−a1a2µφ1σ −a2µσ
2
φ2−µδσ

2
φ3)I∗2

with

G1 = −(β1a1a2µσ +β1a1µδσ +β1a1a2σφ2 +β1a1δσφ3 +β2a1a2σ µ +β2a2µσ
2

+β2µδσ
2 +β2a1a2σφ1 +β2a2σ

2
φ2 +β2δσ

2
φ3 +β1a2

1a2µ +β1a2
1a2φ1) ,

G2 = β1a1a2µσN +β2a2µσ
2N−a1a2µ

2
σ −a2µ

2
σ

2−µ
2
δσ

2−a1a2µφ1σ −a2µσ
2
φ2

−µδσ
2
φ3 .

Hence

G1I∗22 +G2I∗2 = 0
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For I∗2 6= 0, the root of this quadratic equation must satisfy,

I∗2 =
−G2

G1

Consider that

−G2

G1
=

(
− (β1a1a2µσN +β2a2µσ

2N−a1a2µ
2
σ −a2µ

2
σ

2−µ
2
δσ

2−a1a2µφ1σ

−a2µσ
2
φ2−µδσ

2
φ3)
)
÷
(
− (β1a1a2µσ +β1a1µδσ +β1a1a2σφ2 +β1a1δσφ3

+β2a1a2σ µ +β2a2µσ
2 +β2µδσ

2 +β2a1a2σφ1 +β2a2σ
2
φ2 +β2δσ

2
φ3

+β1a2
1a2µ +β1a2

1a2φ1)
)

=
(
β1a1a2µσN +β2a2µσ

2N−a1a2µ
2
σ −a2µ

2
σ

2−µ
2
δσ

2−a1a2µφ1σ −a2µσ
2
φ2

−µδσ
2
φ3
)
÷
(
β1a1a2µσ +β1a1µδσ +β1a1a2σφ2 +β1a1δσφ3 +β2a1a2σ µ +β2a2µσ

2

+β2µδσ
2 +β2a1a2σφ1 +β2a2σ

2
φ2 +β2δσ

2
φ3 +β1a2

1a2µ +β1a2
1a2φ1

)
=

(
β1a1a2µσN +β2a2µσ

2N− (a1a2µ
2
σ +a2µ

2
σ

2 +µ
2
δσ

2 +a1a2µφ1σ +a2µσ
2
φ2

+µδσ
2
φ3)
)
÷
(
β1a1a2µσ +β1a1µδσ +β1a1a2σφ2 +β1a1δσφ3 +β2a1a2σ µ +β2a2µσ

2

+β2µδσ
2 +β2a1a2σφ1 +β2a2σ

2
φ2 +β2δσ

2
φ3 +β1a2

1a2µ +β1a2
1a2φ1

)
=

a1a2µ2σ +a2µ2σ2 + ...+µδσ2φ3

β1a1a2µσ +β1a1µδσ + ...+β1a2
1a2φ1

(
β1a1a2µσN +β2a2µσ2N

a1a2µ2σ +a2µ2σ2 + ...+µδσ2φ3
−1
)

=
a1a2µ2σ +a2µ2σ2 + ...+µδσ2φ3

β1a1a2µσ +β1a1µδσ + ...+β1a2
1a2φ1

(
β1a1a2N +β2a2σN

a1a2µ +a2µσ +µδσ + ...+δσφ3
−1
)

=
a1a2µ2σ +a2µ2σ2 + ...+µδσ2φ3

β1a1a2µσ +β1a1µδσ + ...+β1a2
1a2φ1

(
β1a1a2N +β2a2σN

a2
(
a1(µ +φ1)+σ(δ +µ +φ2)

)
−δσκ

−1

)
Since all parameters are positive, thus we have

β1a1a2N +β2a2σN
a2
(
a1(µ +φ1)+σ(δ +µ +φ2)

)
−δσκ

>
β1a1a2N +β2a2σN

a2
(
a1(µ +φ1)+σ(δ +µ +φ2)

) = R0 .

Hence if R0 > 1 , we have

β1a1a2N +β2a2σN
a2
(
a1(µ +φ1)+σ(δ +µ +φ2)

)
−δσκ

> 1 .

Therefor −G2
G1

> 0 that is I∗2 > 0.
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Consequently, from

I∗2 =
σ I∗1

δ +µ +φ2 +α

we conclude that I∗1 > 0.

4. LOCAL STABILITY

We proceed to analyze the stability properties of the endemic equilibrium. First we establish

the following result regarding the local stability.

Theorem The positive endemic equilibrium ε∗ is locally asymptotically stable.

Proof. The Jacobian of the system of our model is given by

J =


−β1I1−β2I2−µ −β1S −β2S 0

β1I1 +β2I2 β1S−σ −µ−φ1 β2S+α 0

0 σ −δ −µ−φ2−α 0

0 0 δ −κ−µ−φ3

 ,

and at x = ε∗ we have

J(ε∗) =


−β1I∗1 −β2I∗2 −µ −β1S∗ −β2S∗ 0

β1I∗1 +β2I∗2 β1S∗−σ −µ−φ1 β2S∗+α 0

0 σ −δ −µ−φ2−α 0

0 0 δ −κ−µ−φ3



=


−P−µ −β1S∗ −β2S∗ 0

P β1S∗−a3 β2S∗+α 0

0 σ −a1 0

0 0 δ −a2


where

P = β1I∗1 +β2I∗2 ,

a1 = δ +µ +φ2 +α ,

a2 = κ +µ +φ3 ,

a3 = σ +µ +φ1 .
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The characteristic polynomial of J(ε∗) is

0 = det[λ I− J(ε∗)] =


λ +P+µ β1S∗ β2S∗ 0

−P λ −β1S∗+a3 −β2S∗−α 0

0 −σ λ +a1 0

0 0 −δ λ +a2



= λ
4 +(a1 +a2 +a3 +P+µ−β1S∗)λ 3 +(a1a3 +a1P+a3P

+µa1 +µa3 +a1a2 +a2a3 +a2P+µa2−β1S∗a1−σβ2S∗

−σα−µβ1S∗−β1S∗a2)λ
2 +(Pa1a3 +µa1a3 +Pa1a2 +Pa2a3

+µa1a2 +µa2a3 +a1a2a3−σαP−µβ1S∗a1−µσβ2S∗−µσα

−β1S∗a1a2−σβ2S∗a2−σαa2−µβ1S∗a2)λ +(Pa1a2a3

+µa1a2a3−σαPa2−µβ1S∗a1a2−µσβ2S∗a2−µσαa2).

Hence

0 = b0λ
4 +b1λ

3 +b2λ
2 +b3λ +b4(8)

where

b0 = 1 ,

b1 = a1 +a2 +a3 +P+µ−β1S∗ ,

b2 = a1a3 +a1P+a3P+µa1 +µa3 +a1a2 +a2a3 +a2P+µa2−β1S∗a1−σβ2S∗

−σα−µβ1S∗−β1S∗a2 ,

b3 = a1a3P+µa1a3 +a1a2P+a2a3P+µa1a2 +µa2a3 +a1a2a3−σαP−µβ1S∗a1

−µσβ2S∗−µσα−β1S∗a1a2−σβ2S∗a2−σαa2−µβ1S∗a2 ,

b4 = a1a2a3P+µa1a2a3−σαa2P−µβ1S∗a1a2−µσβ2S∗a2−µσαa2 .

To ensure that all root of equation (8) have negative real parts, the Routh - Hurwitz stability

criterion [28] will be used. We require that b1 > 0, b1b2− b3 > 0, b3(b1b2− b3)− b2
1b4 > 0,

and b4 > 0.
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Now, we note that

b1 = a1 +a2 +a3 +P+µ−β1S∗

= (a3−β1S∗)+a1 +a2 +P+µ .

and since

I∗1 =
I∗2 (β2S∗+α)

a3−β1S∗

thus a3−β1S∗ > 0, we then have b1 > 0. Next, we have

b2 = a1a3 +a1P+a3P+µa1 +µa3 +a1a2 +a2a3 +a2P+µa2−β1S∗a1−σβ2S∗

−σα

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2 +a1P

+a2P+a3P−σβ2S∗−σα .

Let dI∗1
dt = 0 and now we have

β1S∗I∗1 +β2S∗I∗2 −a3I∗1 +αI∗2 = 0

β2S∗I∗2 = a3I∗1 −β1S∗I∗1 −αI∗2

β2S∗ =
a3I∗1
I∗2
−

β1S∗I∗1
I∗2
−α .

Thus

σβ2S∗ =
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα .

Now we simplify b2:

b2 = a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+a3P−σβ2S∗−σα

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+(β1I∗1 +β2I∗2 )(σ +µ +φ1)−σβ2S∗−σα

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+β1I∗1 σ +β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1
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−
(

σ(a3I∗1 −β1S∗I∗1 )
I∗2

−σα

)
−σα

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+β1I∗1 σ +β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1

−
σa3I∗1

I∗2
+

σβ1S∗I∗1
I∗2

+σα−σα

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1

+

(
β1I∗1 σ −

σa3I∗1
I∗2

)
+

σβ1S∗I∗1
I∗2

= a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2 +µa1 +µa2

+a1P+a2P+β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1 +σ I∗1(
β1−

a3

I∗2

)
+

σβ1S∗I∗1
I∗2

.

Hence b2 > 0. Now, we turn to b3:

b3 = a1a3P+µa1a3 +a1a2P+a2a3P+µa1a2 +µa2a3 +a1a2a3−σαP

−µβ1S∗a1−µσβ2S∗−µσα−β1S∗a1a2−σβ2S∗a2−σαa2−µβ1S∗a2

= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a3P

+a2a3P+a1a2µ−σαP−µσβ2S∗−µσα−σβ2S∗a2−σαa2 .

Since

σβ2S∗ =
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα ,

now we can write

b3 = µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a3P

+a2a3P+a1a2µ−σαP−µ

(
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα

)
−µσα

−a2

(
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα

)
−σαa2

= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a3P
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+a2a3P+a1a2µ−σαP−
µσa3I∗1

I∗2
+

µσβ1S∗I∗1
I∗2

+µσα−µσα−
a2σa3I∗1

I∗2

+
a2σβ1S∗I∗1

I∗2
+a2σα−a2σα

= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a2µ

+(δ +µ +φ2 +α)(σ +µ +φ1)(β1I∗1 +β2I∗2 )+a2(σ +µ +φ1)(β1I∗1 +β2I∗2 )

−σα(β1I∗1 +β2I∗2 )−
µσa3I∗1

I∗2
+

µσβ1S∗I∗1
I∗2

−
a2σa3I∗1

I∗2
+

a2σβ1S∗I∗1
I∗2

= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a2µ

+δσβ1I∗1 +δ µβ1I∗1 +δφ1β1I∗1 +µσβ1I∗1 +µ
2
β1I∗1 +µφ1β1I∗1 +φ2σβ1I∗1

+φ2µβ1I∗1 +φ1φ2β1I∗1 +ασβ1I∗1 +αµβ1I∗1 +αφ1β1I∗1 +δσβ2I∗2 +δ µβ2I∗2

+δφ1β2I∗2 +µσβ2I∗2 +µ
2
β2I∗2 +µφ1β2I∗2 +φ2σβ2I∗2 +φ2µβ2I∗2 +φ1φ2β2I∗2

+ασβ2I∗2 +αµβ2I∗2 +αφ1β2I∗2 +a2σβ1I∗1 +a2µβ1I∗1 +a2φ1β1I∗1 +a2σβ2I∗2

+a2µβ2I∗2 +a2φ1β2I∗2 −σαβ1I∗1 −σαβ2I∗2 −
µσa3I∗1

I∗2
+

µσβ1S∗I∗1
I∗2

−
a2σa3I∗1

I∗2

+
a2σβ1S∗I∗1

I∗2
= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a2µ +δσβ1I∗1

+δ µβ1I∗1 +δφ1β1I∗1 +µ
2
β1I∗1 +µφ1β1I∗1 +φ2σβ1I∗1 +φ2µβ1I∗1 +φ1φ2β1I∗1

+αµβ1I∗1 +αφ1β1I∗1 +δσβ2I∗2 +δ µβ2I∗2 +δφ1β2I∗2 +µσβ2I∗2 +µ
2
β2I∗2

+µφ1β2I∗2 +φ2σβ2I∗2 +φ2µβ2I∗2 +φ1φ2β2I∗2 +αµβ2I∗2 +αφ1β2I∗2 +a2µβ1I∗1

+a2φ1β1I∗1 +a2σβ2I∗2 +a2µβ2I∗2 +a2φ1β2I∗2 +
(

µσβ1I∗1 −
µσa3I∗1

I∗2

)
+

µσβ1S∗I∗1
I∗2

+

(
a2σβ1I∗1 −

a2σa3I∗1
I∗2

)
+

a2σβ1S∗I∗1
I∗2

= µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1a2(a3−β1S∗)+a1a2P+a1a2µ +δσβ1I∗1

+δ µβ1I∗1 +δφ1β1I∗1 +µ
2
β1I∗1 +µφ1β1I∗1 +φ2σβ1I∗1 +φ2µβ1I∗1 +φ1φ2β1I∗1

+αµβ1I∗1 +αφ1β1I∗1 +δσβ2I∗2 +δ µβ2I∗2 +δφ1β2I∗2 +µσβ2I∗2 +µ
2
β2I∗2

+µφ1β2I∗2 +φ2σβ2I∗2 +φ2µβ2I∗2 +φ1φ2β2I∗2 +αµβ2I∗2 +αφ1β2I∗2 +a2µβ1I∗1
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+a2φ1β1I∗1 +a2σβ2I∗2 +a2µβ2I∗2 +a2φ1β2I∗2 +µσ I∗1

(
β1−

a3

I∗2

)
+

µσβ1S∗I∗1
I∗2

+a2σ I∗1

(
β1−

a3

I∗2

)
+

a2σβ1S∗I∗1
I∗2

.

Thus b3 > 0. Now for b4, we write

b4 = a1a2a3P+µa1a2a3−σαa2P−µβ1S∗a1a2−µσβ2S∗a2−µσαa2

= a1a2µ(a3−β1S∗)+a1a2a3P−σαa2P−µσa2β2S∗−µσa2α

and from

σβ2S∗ =
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα

we then have

b4 = a1a2µ(a3−β1S∗)+a1a2a3P−σαa2P−µσa2β2S∗−µσa2α

= a1a2µ(a3−β1S∗)+a1a2a3P−σαa2P−µa2

(
σ(a3I∗1 −β1S∗I∗1 )

I∗2
−σα

)
−µσαa2

= a1a2µ(a3−β1S∗)+a2(δ +µ +φ2 +α)(σ +µ +φ1)(β1I∗1 +β2I∗2 )−σαPa2

−
µσa2a3I∗1

I∗2
+

µσa2β1S∗I∗1
I∗2

+µσαa2−µσαa2

= a1a2µ(a3−β1S∗)+δσa2β1I∗1 +δ µa2β1I∗1 +δφ1a2β1I∗1 +µσa2β1I∗1 +µ
2a2β1I∗1

+µφ1a2β1I∗1 +σφ2a2β1I∗1 +µφ2a2β1I∗1 +φ1φ2a2β1I∗1 +σαa2β1I∗1 +µαa2β1I∗1

+αφ1a2β1I∗1 +δσa2β2I∗2 +δ µa2β2I∗2 +δφ1a2β2I∗2 +µσa2β2I∗2 +µ
2a2β2I∗2

+µφ1a2β2I∗2 +σφ2a2β2I∗2 +µφ2a2β2I∗2 +φ1φ2a2β2I∗2 +σαa2β2I∗2 +µαa2β2I∗2

+αφ1a2β2I∗2 −σαPa2−
µσa2a3I∗1

I∗2
+

µσa2β1S∗I∗1
I∗2

= a1a2µ(a3−β1S∗)+δσa2β1I∗1 +δ µa2β1I∗1 +δφ1a2β1I∗1 +µ
2a2β1I∗1 +µφ1a2β1I∗1

+σφ2a2β1I∗1 +µφ2a2β1I∗1 +φ1φ2a2β1I∗1 +µαa2β1I∗1 +αφ1a2β1I∗1 +δσa2β2I∗2

+δ µa2β2I∗2 +δφ1a2β2I∗2 +µσa2β2I∗2 +µ
2a2β2I∗2 +µφ1a2β2I∗2 +σφ2a2β2I∗2

+µφ2a2β2I∗2 +φ1φ2a2β2I∗2 +µαa2β2I∗2 +αφ1a2β2I∗2 +(σαa2β1I∗1 +σαa2β2I∗2 )

−σαa2(β1I∗1 +β2I∗2 )+
(

µσa2β1I∗1 −
µσa2a3I∗1

I∗2

)
+

µσa2β1S∗I∗1
I∗2
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= a1a2µ(a3−β1S∗)+δσa2β1I∗1 +δ µa2β1I∗1 +δφ1a2β1I∗1 +µ
2a2β1I∗1 +µφ1a2β1I∗1

+σφ2a2β1I∗1 +µφ2a2β1I∗1 +φ1φ2a2β1I∗1 +µαa2β1I∗1 +αφ1a2β1I∗1 +δσa2β2I∗2

+δ µa2β2I∗2 +δφ1a2β2I∗2 +µσa2β2I∗2 +µ
2a2β2I∗2 +µφ1a2β2I∗2 +σφ2a2β2I∗2

+µφ2a2β2I∗2 +φ1φ2a2β2I∗2 +µαa2β2I∗2 +αφ1a2β2I∗2 +µσa2I∗1

(
β1−

a3

I∗2

)
+

µσa2β1S∗I∗1
I∗2

.

Therefore b4 > 0. Similarly, we will show that b1b2−b3 > 0. Consider that

b1b2−b3 = (a3−β1S)
(
a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2

+µa1 +µa2 +a1P+a2P+β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1

+σ I∗1

(
β1−

a3

I∗2

)
+

σβ1S∗I∗1
I∗2

)
−
(
µa1(a3−β1S∗)+µa2(a3−β1S∗)

+a1a2(a3−β1S∗)+a1a2P+a1a2µ +δσβ1I∗1 +δ µβ1I∗1 +δφ1β1I∗1

+µ
2
β1I∗1 +µφ1β1I∗1 +φ2σβ1I∗1 +φ2µβ1I∗1 +φ1φ2β1I∗1 +αµβ1I∗1

+αφ1β1I∗1 +δσβ2I∗2 +δ µβ2I∗2 +δφ1β2I∗2 +µσβ2I∗2 +µ
2
β2I∗2 +µφ1β2I∗2

+φ2σβ2I∗2 +φ2µβ2I∗2 +φ1φ2β2I∗2 +αµβ2I∗2 +αφ1β2I∗2 +a2µβ1I∗1

+a2φ1β1I∗1 +a2σβ2I∗2 +a2µβ2I∗2 +a2φ1β2I∗2 +µσ I∗1

(
β1−

a3

I∗2

)
+

µσβ1S∗I∗1
I∗2

+a2σ I∗1

(
β1−

a3

I∗2

)
+

a2σβ1S∗I∗1
I∗2

)
= (a3−β1S)

(
a1(a3−β1S∗)+a2(a3−β1S∗)+µ(a3−β1S∗)+a1a2

+µa1 +µa2 +a1P+a2P+β1I∗1 µ +β1I∗1 φ1 +β2I∗2 σ +β2I∗2 µ +β2I∗2 φ1

+σ I∗1

(
β1−

a3

I∗2

)
+

σβ1S∗I∗1
I∗2

)
−µa1(a3−β1S∗)−µa2(a3−β1S∗)

−a1a2(a3−β1S∗)−a1a2P−a1a2µ−δσβ1I∗1 −δ µβ1I∗1 −δφ1β1I∗1

−µ
2
β1I∗1 −µφ1β1I∗1 −φ2σβ1I∗1 −φ2µβ1I∗1 −φ1φ2β1I∗1 −αµβ1I∗1

−αφ1β1I∗1 −δσβ2I∗2 −δ µβ2I∗2 −δφ1β2I∗2 −µσβ2I∗2 −µ
2
β2I∗2 −µφ1β2I∗2

−φ2σβ2I∗2 −φ2µβ2I∗2 −φ1φ2β2I∗2 −αµβ2I∗2 −αφ1β2I∗2 −a2µβ1I∗1
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−a2φ1β1I∗1 −a2σβ2I∗2 −a2µβ2I∗2 −a2φ1β2I∗2 −µσ I∗1

(
β1−

a3

I∗2

)
−

µσβ1S∗I∗1
I∗2

−a2σ I∗1

(
β1−

a3

I∗2

)
−

a2σβ1S∗I∗1
I∗2

= a1(a3−β1S∗)2 +a2(a3−β1S∗)2 +µ(a3−β1S∗)2 +a1a2(a3−β1S∗)

+µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1P(a3−β1S∗)+a2P(a3−β1S∗)

+β1I∗1 µ(a3−β1S∗)+β1I∗1 φ1(a3−β1S∗)+β2I∗2 σ(a3−β1S∗)

+β2I∗2 µ(a3−β1S∗)+β2I∗2 φ1(a3−β1S∗)+σ I∗1 (a3−β1S∗)
(

β1−
a3

I∗2

)
+

σβ1S∗I∗1
I∗2

(a3−β1S∗)+a2
1(a3−β1S∗)+µa2

1 +µa1a2 +a2
1a2 +a2

1P

+β1I∗1 µa1 +β1I∗1 φ1a1 +β2I∗2 σa1 +β2I∗2 µa1 +β2I∗2 φ1a1 +σ I∗1 a1

(
β1−

a3

I∗2

)
+

a1σβ1S∗I∗1
I∗2

+a1a2(a3−β1S∗)+a2
2(a3−β1S∗)+a1a2

2 +µa2
2 +a1a2P

+a2
2P+a1P(a3−β1S∗)+a2P(a3−β1S∗)+µP(a3−β1S∗)+a1a2P

+µa1P+µa2P+a1P2 +a2P2 +β1I∗1 µP+β1I∗1 φ1P+β2I∗2 σP+β2I∗2 µP

+β2I∗2 φ1P+σ I∗1 P
(

β1−
a3

I∗2

)
+

Pσβ1S∗I∗1
I∗2

+µa1(a3−β1S∗)

+µ
2(a3−β1S∗)+µa2(a3−β1S∗)+µa1a2 +µ

2a1 +µ
2a2 +a1µP+a2µP

+σ I∗1 µ

(
β1−

a3

I∗2

)
= a1(a3−β1S∗)2 +a2(a3−β1S∗)2 +µ(a3−β1S∗)2 +a1a2(a3−β1S∗)

+µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1P(a3−β1S∗)+a2P(a3−β1S∗)

+β1I∗1 µ(a3−β1S∗)+β1I∗1 φ1(a3−β1S∗)+β2I∗2 σ(a3−β1S∗)

+β2I∗2 µ(a3−β1S∗)+β2I∗2 φ1(a3−β1S∗)+σ I∗1 (a3−β1S∗)
(

β1−
a3

I∗2

)
+

σβ1S∗I∗1
I∗2

(a3−β1S∗)+a2
1(a3−β1S∗)+µa2

1 +µa1a2 +a2
1a2 +a2

1P

+β1I∗1 µ
2 +β1I∗1 φ1µ +β2I∗2 σ µ +β2I∗2 µ

2 +β2I∗2 φ1µ +σ I∗1 a1

(
β1−

a3

I∗2

)
+

a1σβ1S∗I∗1
I∗2

+a1a2(a3−β1S∗)+a2
2(a3−β1S∗)+a1a2(a3−β1S∗)
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+a2
2(a3−β1S∗)+a1a2

2 +a2
2µ +a1a2P+a2

2P+a1P(a3−β1S∗)+a1a2P

+µP(a3−β1S∗)+a2P(a3−β1S∗)+µa1P+µa2P+a1P2 +a2P2

+β1I∗1 µP+β1I∗1 φ1P+β2I∗2 σP+β2I∗2 µP+β2I∗2 φ1P+σ I∗1 P
(

β1−
a3

I∗2

)
+

Pσβ1S∗I∗1
I∗2

+µa1(a3−β1S∗)+µ
2(a3−β1S∗)+µa2(a3−β1S∗)

+µa1a2 +µ
2a1 +µ

2a2 +a1µP+a2µP+σ I∗1 µ

(
β1−

a3

I∗2

)
+

µσβ1S∗I∗1
I∗2

−δσβ1I∗1 −φ2σβ1I∗1 −ασβ1I∗1 −µσβ1I∗1

= a1(a3−β1S∗)2 +a2(a3−β1S∗)2 +µ(a3−β1S∗)2 +a1a2(a3−β1S∗)

+µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1P(a3−β1S∗)+a2P(a3−β1S∗)

+β1I∗1 µ(a3−β1S∗)+β1I∗1 φ1(a3−β1S∗)+β2I∗2 σ(a3−β1S∗)

+β2I∗2 µ(a3−β1S∗)+β2I∗2 φ1(a3−β1S∗)+σ I∗1 (a3−β1S∗)
(

β1−
a3

I∗2

)
+

σβ1S∗I∗1
I∗2

(a3−β1S∗)+a2
1(a3−β1S∗)+µa2

1 +µa1a2 +a2
1a2 +a2

1P

+β1I∗1 µ
2 +β1I∗1 φ1µ +β2I∗2 σ µ +β2I∗2 µ

2 +β2I∗2 φ1µ +σ I∗1 a1

(
β1−

a3

I∗2

)
+

a1σβ1S∗I∗1
I∗2

+a1a2(a3−β1S∗)+a2
2(a3−β1S∗)+a1a2(a3−β1S∗)

+a2
2(a3−β1S∗)+a1a2

2 +a2
2µ +a1a2P+a2

2P+a1P(a3−β1S∗)+a1a2P

+µP(a3−β1S∗)+a2P(a3−β1S∗)+µa1P+µa2P+a1P2 +a2P2

+β1I∗1 µP+β1I∗1 φ1P+β2I∗2 σP+β2I∗2 µP+β2I∗2 φ1P+σ I∗1 P
(

β1−
a3

I∗2

)
+

Pσβ1S∗I∗1
I∗2

+µa1(a3−β1S∗)+µ
2(a3−β1S∗)+µa2(a3−β1S∗)+µa1a2

+µ
2a1 +µ

2a2 +a1µP+a2µP+σ I∗1 µ

(
β1−

a3

I∗2

)
+

µσβ1S∗I∗1
I∗2

−β1I∗1 σa1

= a1(a3−β1S∗)2 +a2(a3−β1S∗)2 +µ(a3−β1S∗)2 +a1a2(a3−β1S∗)

+µa1(a3−β1S∗)+µa2(a3−β1S∗)+a1P(a3−β1S∗)+a2P(a3−β1S∗)

+β1I∗1 µ(a3−β1S∗)+β1I∗1 φ1(a3−β1S∗)+β2I∗2 σ(a3−β1S∗)
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+β2I∗2 µ(a3−β1S∗)+β2I∗2 φ1(a3−β1S∗)+σ I∗1 (a3−β1S∗)
(

β1−
a3

I∗2

)
+

σβ1S∗I∗1
I∗2

(a3−β1S∗)+a2
1(a3−β1S∗)+µa2

1 +µa1a2 +a2
1a2 +a2

1P

+β1I∗1 µ
2 +β1I∗1 φ1µ +β2I∗2 σ µ +β2I∗2 µ

2 +β2I∗2 φ1µ +σ I∗1 a1

(
β1−

a3

I∗2

)
+a1a2(a3−β1S∗)+a2

2(a3−β1S∗)+a1a2(a3−β1S∗)+a2
2(a3−β1S∗)

+a1a2
2 +a2

2µ +a1a2P+a2
2P+a1P(a3−β1S∗)+a1a2P+µP(a3−β1S∗)

+a2P(a3−β1S∗)+µa1P+µa2P+a1P2 +a2P2 +β1I∗1 µP+β1I∗1 φ1P

+β2I∗2 σP+β2I∗2 µP+β2I∗2 φ1P+σ I∗1 P
(

β1−
a3

I∗2

)
+

Pσβ1S∗I∗1
I∗2

+µa1(a3−β1S∗)+µ
2(a3−β1S∗)+µa2(a3−β1S∗)+µa1a2 +µ

2a1 +µ
2a2

+a1µP+a2µP+σ I∗1 µ

(
β1−

a3

I∗2

)
+

µσβ1S∗I∗1
I∗2

+β1I∗1 σa1

(
S∗

I∗2
−1
)
.

Clearly, we have b1b2−b3 > 0. Similarly, we can also conclude that b3(b1b2−b3)−b2
1b4 > 0.

We complete the proof.

5. OPTIMAL CONTROL STUDY

We now turn to the more general model with time-dependent controls φ1(t), φ2(t), and φ3(t).

Here, φ1(t) represents the rate at which individuals who are aware of their HIV status begin

taking antiretroviral therapy (ART). We assume that these individuals start ART as soon as they

are infected, and we classify them as asymptomatic patients. φ2(t) represents the medication

rate for symptomatic HIV patients. This group of individuals may also suffer from co-infections

such as hepatitis or tuberculosis, resulting in additional treatment costs for both these diseases

and ART. Additionally, individuals with weakened immune systems may progress to AIDS.

This group experiences more severe symptoms due to their co-infections, leading to higher

treatment costs. Therefore, φ3(t) represents the additional medical costs for AIDS patients.

In this section, we consider the system over a time interval [0,T ]. The functions φ1(t), φ2(t),

and φ3(t) are assumed to be at least Lebesgue measurable on [0,T ]. The control set is defined

as:

Ω = {φ1(t),φ2(t),φ3(t)|0≤ φ1(t)≤ φ1max,0≤ φ2(t)≤ φ2max,0≤ φ3(t)≤ φ3max}
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where φ1,2,3max denotes the upper bounds for the effort of controls. The bound reflects practical

limitation on the maximum rate of control in given time period.

The inclusion of time-dependent controls complicates the analysis of our system, as the dis-

ease dynamics now depend on the evolution of these controls. In the following, we conduct an

optimal control analysis of this problem, aiming to minimize both the total number of infections

and the control costs over the time interval [0,T ] i.e.,

min
(φ1,2,3)∈Ω

∫ T

0
[I1(t)+ I2(t)+A(t)+ c11φ1(t)I1(t)+ c12φ2(t)I2 + c13φ3(t)A

+ c21φ
2
1 (t)+ c22φ

2
2 (t)+ c23φ

2
3 (t)]dt(9)

Here, the parameters c11, c12, c13, c21, c22, and c23, with their respective units, represent the

costs associated with each control. Quadratic terms are included to account for nonlinear costs

that may arise at higher intervention levels.

The minimization process is subject to the differential equations of our system, which are

referred to as the state equations. The unknowns I1, I2, and A are now considered state variables,

in contrast to the control variables φ1, φ2, and φ3. Our objective is to determine the optimal

controls φ∗1 (t), φ∗2 (t), and φ∗3 (t) that minimize the objective functional in (9).

We first establish the following theorem on the existence of optimal control.

Theorem There exists φ∗1 (t),φ
∗
2 and φ∗3 ∈Ω such that the objective functional in (9) is mini-

mized.

Proof. The control set Ω is closed and convex, and the integrand of the objective functional

in (9) is also convex. Therefore, according to the standard optimal control theorems outlined in

[10], the conditions for the existence of an optimal control are satisfied, as the model is linear

with respect to the control variables. Furthermore, the optimal control is unique for small T

due to the Lipschitz continuity of the state equations and the boundedness of the state variables

[13].
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We will apply the method outlined in [2] and [15] to determine the optimal control solu-

tion. This method is based on Pontryagin’s Maximum Principle [24], which introduces adjoint

functions and expresses the optimal control in terms of both the state and adjoint functions. Es-

sentially, this approach transforms the problem of minimizing the objective functional (subject

to the state equations) into minimizing the Hamiltonian with respect to the controls.

dS
dt

= µN−β1SI1−β2SI2−µS(10)

dI1

dt
= β1SI1 +β2SI2−σ I1−µI1−φ1(t)I1 +αI2(11)

dI2

dt
= σ I1−δ I2−µI2−φ2(t)I2−αI2(12)

dA
dt

= δ I2−κA−µA−φ3(t)A(13)

dR
dt

= φ1(t)I1 +φ2(t)I2 +φ3(t)A−µR(14)

Let us first define the adjoint functions λS,λI1,λI2 and λA associated with the state equations

for S, I1, I2 and A, respectively. We then form the Hamiltonian, H, by corresponding state equa-

tions, and adding each of these products to the integrand of the objective functional. As a result,

we obtain

H = I1(t)+ I2(t)+A(t)+ c11φ1(t)I1(t)+ c12φ2(t)I2(t)+ c13φ3(t)A(t)+ c21φ
2
1 (t)

+c22φ
2
2 (t)+ c23φ

2
3 (t)

+λS(µN−β1SI1−β2SI2−µS)

+λI1(β1SI1 +β2SI2−σ I1−µI1−φ1(t0)I1 +αI2)

+λI2(σ I1−δ I2−µI2−φ2(t)I2−αI2)

+λA(δ I2−κA−µA−φ3(t)A)

To achieve the optimal control, the adjoint functions must satisfy

dλS

dt
=−∂H

∂S
=−

(
λS(−β1I1−β2I2−µ)+λI1(β1I1 +β2I2)

)
dλI1

dt
=−∂H

∂ I1
=−

(
1+ c11φ1(t)+λS(−β1S)+λI1(β1S−σ −µ−φ1(t))+λI2σ

)
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dλI2

dt
=−∂H

∂ I2
=−

(
1+ c12φ2(t)+λI1α +λI2(−δ −µ−φ2(t)−α)+λAδ

)
dλA

dt
=−∂H

∂A
=−

(
1+ c13φ3(t)+λA(−κ−µ−φ3(t))

)
with transversality conditions (or final time conditions):

λS(T ) = 0, λI1(T ) = 0, λI2(T ) = 0 and λA(T ) = 0

The characterization of the optimal control φ∗1 (t), φ∗2 (t) and φ∗3 (t) based on the condition

∂H
∂φ1

= 0,
∂H
∂φ2

= 0 and
∂H
∂φ3

= 0

respectively, subject to the constraint 0≤ φ1 ≤ φ1max , 0≤ φ2 ≤ φ2max and

0≤ φ3 ≤ φ3max.Specifically, we have

φ
∗
1 (t) = max

(
0,min(φ1(t),φ1max)

)
φ
∗
2 (t) = max

(
0,min(φ2(t),φ2max)

)
φ
∗
3 (t) = max

(
0,min(φ3(t),φ3max)

)
where

φ1(t) =
(
(λI1I1− c11I1(t))

)
/(2c21)

φ2(t) =
(
(λI2I2− c12I2(t))

)
/(2c22)

φ3(t) =
(
(λI3A− c13A(t))

)
/(2c23)

Given the presence of both initial conditions (for the state equations) and final time conditions

(for the adjoint equations), along with the nonlinearity of most models of interest, the optimal

control system must be solved numerically. For this purpose, we will employ the Forward-

Backward Sweep Method to perform the numerical simulations.
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Parameter Symbol Value Reference

Total population N 61,340,000 [30]

Initial susceptible population S(0) 60,000,000 [30]

HIV asymptotic patients I1(0) 580,000 [30]

HIV symptomatic patients I2(0) 110,000 [30]

AIDS patients A(0) 180,000 [30]

Patients living with HIV

and know their status R(0) 470,000 [30]

Natural human birth and death rate µ 0.01470588 [7]

The transmission rate from

asymptotic HIV patients

to susceptible population β1 1×10−11 Observed

The transmission rate from

symptomatic HIV patients

to susceptible population β2 1.2×10−8 Observed

The progression rate of becoming I2 for I1 σ 0.0002 [7]

The rate at which I2 progressing to I1 α 0.0001 [25]

The progression rate to A for I2 δ 0.1 [25]

The rate of the disease-related death κ 0.1630045919 [25]

TABLE 1. Model parameters.

6. RESULTS

In this section, we use HIV/AIDS data from UNAIDS [30] for Thailand to simulate our

model. Based on the data, the initial values for each state are provided in Table 1. According

to the data, Thailand records approximately 9,100 new infections annually. To align with this,

we set β1 = 1×10−11 and β2 = 1.2×10−8. The natural birth and death rate is assumed to be

0.01470588, while other parameter values are listed in Table 1.

First, we use Thailand’s data to analyze the trend of infections and adjust our parameters

accordingly. Thailand has been highly effective in maintaining a low number of new infections
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and successfully implementing an ART distribution program for HIV patients. However, the

cost of care for HIV and AIDS patients remains significantly high.

In our first simulation, we assume that the additional medical costs for symptomatic and

AIDS patients are considerably higher, setting c2 = 30 and c3 = 40, while keeping c1 = 10.

Figure 2 illustrates the dynamics of HIV/AIDS patients under this scenario. Figure 2(a) shows

that if HIV patients consistently take ART, regardless of whether they exhibit symptoms or re-

main asymptomatic, the trend of HIV infections will decline over time. This leads to longer

lifespans for patients, as depicted in Figure 2(d), and encourages awareness, reducing the like-

lihood of transmitting HIV to others.

In contrast, if patients do not take ART, the infection rate will increase, as indicated by the

solid line. This growth can lead to community collapse, with a significant rise in asymptomatic

HIV patients and a sharp decline in the number of individuals in the HIV awareness group,

ultimately causing severe challenges for the entire nation. This scenario closely resembles the

current situation in Thailand, where most HIV-infected individuals with symptoms are receiving

ART. Additionally, our numerical simulation in Figure 4 aligns with the trend of new HIV

infections observed in the actual data from Thailand, as shown in Figure 3.

In the first simulation, the model indicates a decreasing trend in the number of HIV patients,

which corresponds to the actual data. Furthermore, the number of individuals who are aware of

their HIV status and take precautions to prevent transmission is increasing. This allows us to

predict future trends in new infections, as shown in Figure 5.

According to the simulation in Figure 5, Thailand could see as few as 200 new HIV infections

by 2050 if current strategies are maintained. However, various factors, such as an increase in

infections among young people, could potentially lead to higher numbers.
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FIGURE 2. Simulation results HIV infections: (a) the HIV infection with symp-

tomatic individuals, (b) the HIV asymptomatic patients, (c) AIDS people, (d) the

HIV Awareness Group
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FIGURE 4. The simulated data from our model for the years 2000 to 2023.
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FIGURE 5. The projected number of new infections in Thailand based on our

model for the years 2025 to 2050.

Next, we assume that Thailand could have improved outcomes by reducing the costs of med-

ications for other diseases that individuals with HIV commonly experience, thereby lowering

the overall cost of treating HIV. We implement this assumption by reducing medication costs as

follows: c1 = 10, c2 = 10, c3 = 10.

As illustrated in Figure 6 (dashed lines), lower treatment costs would improve patient access

to medical care, potentially leading to reduced infections across all stages of the disease. In

contrast, the solid lines represent the number of infections without a treatment plan. In this

scenario, the infection rates could overwhelm the population over time, ultimately leading to

the collapse of the community as the numbers continue to rise unchecked.
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FIGURE 6. Simulation results of HIV infections: (a) the HIV infection with

symptomatic individuals, (b) the HIV asymptomatic patients, (c) AIDS people,

(d) the HIV Awareness Group

To explore the impact of reducing additional medical care costs beyond ART, we lower the

treatment costs for symptomatic HIV patients and individuals with AIDS to minimal levels

(c1 = 1 and c2 = 1), while keeping the cost of ART unchanged. The simulation results for this

scenario are presented in Figure 7.
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FIGURE 7. Simulation results of HIV infections: (a) the HIV infection with

symptomatic individuals, (b) the HIV asymptomatic patients, (c) AIDS people,

(d) the HIV Awareness Group

With lower costs for additional medical care, individuals with HIV and AIDS can access

more treatments, leading to a decrease in the number of people with AIDS and an increase

in the HIV awareness group, as shown in Figure 7(d). This latter group plays a crucial role

in controlling the spread of the disease because they are aware of their HIV status and take

measures to avoid transmitting it to others. Therefore, a higher number of patients in this group

contributes significantly to disease control.

For Thailand, it is essential to provide basic healthcare that includes additional treatments for

HIV patients, such as symptom-based care plans or reduced costs for doctor visits. By doing

so, individuals can live normal lives while remaining aware of their condition and preventing

the transmission of HIV to others.
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7. CONCLUSION

We have developed a mathematical model for HIV infection based on data from Thailand,

using both theoretical and numerical approaches. The model captures the dynamics of the

disease through a system of five nonlinear differential equations.

Additionally, we analyzed the epidemic and endemic dynamics of the model, focusing on the

local and global stability properties determined by the basic reproductive number (R0). Specif-

ically, when R0 < 1, the disease dies out, and the disease-free equilibrium is stable.

When R0 > 1, the disease persists, and the disease-free equilibrium becomes unstable. We

conducted numerical simulations using two sets of control costs. The first set represents the

current situation in Thailand, and the results indicate that the number of new infections predicted

by our model closely aligns with actual data.

Building on this, we extended our simulations to predict the number of new infections from

2025 to 2050. The results suggest a significant decline in yearly new infections, with Thailand

projected to have only about 200 new HIV cases by 2050. This trend is expected to continue as

long as no major factors, such as increased infections among young people who lack awareness

of prevention methods, trigger a resurgence.

Nevertheless, both our simulations and the real-world data demonstrate a positive outlook for

Thailand. The country is on track to maintain the current infection rate and could potentially

reduce it to approximately 100 new cases annually by 2050.
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