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Abstract. HIV infection can progress to AIDS, the most severe stage of the disease, characterized by a critically
weakened immune system. In some regions, AIDS is a leading cause of mortality. This study develops a mathe-
matical model of HIV/AIDS aimed at reducing new infections, using Thailand as a case study. The model includes
epidemic and endemic analyses, along with stability evaluations for both equilibrium points. Additionally, an
optimal control analysis is conducted to identify strategic interventions for minimizing all stages of HIV infection.
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1. INTRODUCTION

HIV, or Human Immunodeficiency Virus, is a virus that compromises the immune sys-
tem by targeting and destroying CD4 cells, a type of white blood cell essential for immune
defense. As HIV progresses, it weakens the immune system, reducing the body’s ability to
combat infections and certain cancers. If left untreated, HIV can advance to AIDS (Acquired

Immunodeficiency Syndrome), the most severe stage of the infection.
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HIV/AIDS is among the world’s most deadly infectious diseases, with a particularly devas-
tating impact in Sub-Saharan Africa. Over recent decades, it has significantly affected health
outcomes and life expectancy in this region [22]. According to the Global Burden of Disease
study, nearly one million people die annually from HIV/AIDS, accounting for approximately
1.5 % of global deaths. The mortality rates vary widely across regions, with some countries in
southern Sub-Saharan Africa experiencing rates exceeding 100 deaths per 100,000 people.

Since the onset of the HIV epidemic, approximately 88.4 million people have been infected
with the virus, and about 42.3 million have died from HIV-related causes [32]. By the end of
2023, an estimated 0.6 % of adults aged 15-49 worldwide were living with HIV, including 20.5
million women and 18.1 million men. Additionally, 1.4 million children under the age of 15
were living with HIV, with around 630,000 deaths attributed to HIV-related causes.

Numerous mathematical models of HIV/AIDS have been developed, each differing in fo-
cus and approach. In 2014, Fatma Bozkurt et al. [9] presented a study on the HIV epidemic,
dividing the population into three groups: HIV-negative individuals, HIV-positive individuals
unaware of their infection, and HIV-positive individuals aware of their status. The study found
that the disease becomes more endemic due to immigration, while the prevalence decreases
when infected individuals become aware of their status through screening and contact tracing,
subsequently refraining from sexual activity. Conversely, in the absence of contact tracing, the
prevalence increases. The study concluded that the most effective strategy to reduce infection
rates and prevalence is to educate individuals about HIV and raise awareness of the conse-
quences of unsafe sexual practices and other risky behaviors.

In 2020, S. Saravanakumar et al. [27] proposed a model examining risk factors in HIV/AIDS
transmission dynamics, with a specific focus on the female sexual network in India. The study
highlighted the role of female sex workers in the spread of HIV. The model categorized the
population into several groups: HIV-susceptible males, susceptible females, susceptible female
sex workers, HIV-infected males, infected females, infected female sex workers, AIDS-infected
males, and AIDS-infected females, including sex workers. The findings provide insights into the

dynamics of HIV prevalence, enabling the development of more effective prevention strategies.
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In 2021, Tigabu Kasia Ayele et al. [29] developed a mathematical model of HIV/AIDS with
optimal control, focusing on a case study in Ethiopia. The study categorized the population
into six groups: individuals aware of HIV/AIDS who are not yet exposed, individuals unaware
of HIV/AIDS who are not yet exposed, individuals unknowingly infected, individuals aware
of their infection but not yet progressed to AIDS, individuals undergoing treatment but not
fully recovered, and individuals infected with HIV displaying AIDS symptoms. The findings
revealed that a combination of optimal control strategies significantly reduces the number of
unaware susceptible individuals, undiagnosed infections, diagnosed infections, and diagnosed
cases with AIDS symptoms.

In 2022, Roberto Arias, Kevin De Angeles, and colleagues [26] proposed a mathematical
model of the HIV/AIDS epidemic. The study divided the population into four groups: suscepti-
ble individuals, HIV-infected individuals, AIDS-infected individuals, and a "removed” category
representing those isolated, cured, or permanently immune. However, it is important to note that
HIV cannot be cured. Their experiments indicated that one HIV-infected individual could po-
tentially transmit the virus to the entire susceptible population, leading to widespread infection.

In the same year, Cristian Camilo Espitia Morillo and colleagues [5] analyzed a mathemati-
cal model of HIV/AIDS that incorporated sexual preferences under antiretroviral therapy. Their
findings suggested that reducing the rate of homosexual partnerships could significantly de-
crease transmission rates and help achieve a disease-free equilibrium.

In the same year, Cristian C. Espitia et al. [6] developed a model of HIV/AIDS that consid-
ered sexual preferences under antiretroviral therapy, using a case study from San Juan de Pasto,
Colombia. The model analyzed the impact of bisexual behavior in a global community and
is governed by nonlinear equations representing various groups: susceptible homosexual men,
untreated infected homosexual men, susceptible women, untreated infected women, suscepti-
ble heterosexual men, untreated infected heterosexual men, individuals receiving antiretroviral
treatment, and individuals living with AIDS. The study concluded that the most effective way to
reduce transmission and achieve a disease-free equilibrium is primarily by decreasing the num-

ber of homosexual partners. While increasing the departure rate of infected individuals reduces
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infections among heterosexual men and women, it is not sufficient to fully prevent or control
the rate of contagion.

In 2024, Syeda Alishwa Zanib and colleagues [33] proposed a model of HIV/AIDS that
incorporates both the fisher-folk community and the general community. The study categorized
individuals in the general population into several groups: those who are purely susceptible,
individuals exposed to the virus, those aware of HIV/AIDS, patients undergoing treatment after
showing symptoms and becoming infectious, and individuals who progress to AIDS in the
absence of adequate therapy. Similarly, the fisher-folk community was classified using the
same categories. The study highlighted gaps in the representation of exposed individuals within
both communities, offering valuable insights into the dynamics of HIV/AIDS and its societal
impact.

In the same year, M. O. Ogunmodimu and colleagues [21] proposed a mathematical model
addressing HIV/AIDS prevention in the context of the “undetectable equals untransmittable”
principle. Their research focused on HIV/AIDS transmission in Africa, using Cape Verde as a
case study, and incorporated antiretroviral therapy (ART) as a key component. The study an-
alyzed the qualitative properties of the model, including the boundedness and positivity of the
solutions, alongside other essential mathematical proofs. The findings emphasized the impor-
tance of educating HIV-endemic communities about the disease and its fatality. Furthermore,
the study recommended that governments and health organizations ensure access to ART treat-
ment at significantly subsidized costs for those in need.

In June 2024, Idris Ahmed and colleagues [12] proposed a mathematical model incorporat-
ing HIV/AIDS treatment strategies, including antiretroviral therapy. The study examined the
dynamics of HIV/AIDS transmission and employed numerical methods to analyze the behavior
of each compartment within the model. The results highlighted the importance of implementing
non-pharmaceutical interventions as effective control strategies.

The studies we reviewed represent only a small selection of the available literature. However,
few have explored the transitional state between HIV and AIDS or considered a class of indi-
viduals who are aware of their infection and take measures to prevent transmitting the disease to

others. In the remainder of this paper, we first introduce our model, which incorporates control
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measures, followed by an analysis of the model, including the solution boundaries and the basic
reproduction number. We then present the disease-free and endemic equilibrium points along
with their stability conditions. Subsequently, we apply the optimal control model and provide
numerical simulations. Finally, we discuss the simulation results and conclude with a summary

and discussion of our findings.
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FIGURE 1. HIV/AIDS model

In this section, we present our model along with an optimal control strategy. The population is
divided into five categories: susceptible individuals ($), asymptomatic HIV-infected individuals
(I1), symptomatic HIV-infected individuals (1), AIDS patients (A), and a semi-recovered group
who are aware of their condition and take precautions to prevent transmission (R).

We assume that susceptible individuals can become infected through contact with asymp-
tomatic and symptomatic HIV patients. Upon infection, individuals initially enter the asymp-
tomatic category (/) and can reduce their risk of transmission through medical care. If left
untreated, asymptomatic individuals may progress to the symptomatic category (/;). Symp-
tomatic patients, if provided with appropriate care, can revert to the asymptomatic state (/).
Without treatment or adherence to care guidelines, symptomatic patients may advance to the

AIDS stage (A).
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AIDS patients (A) represent individuals with severe symptoms who face a high risk of mor-

tality. However, with effective healthcare, they can transition into the semi-recovered category

(R), where they can live a normal life, are aware of their condition, and do not transmit the dis-

ease to others. Similarly, symptomatic patients receiving proper care may also move directly to

the semi-recovered group. The progression of the disease is described by the following system

of equations:
dS
ey I
dl
) -
dr.
3) —
dA
“) I
dR
) I
where

- N is the total population.

UN — 1Sy — poShL — uS

BiSL + BoSL, — oy — uly — o111 + ol
oly — 6L —uh — ¢ — ah

Ol — KA — UA — ¢3A

Ot + o + 93A — UR

- 1is the natural birth and natural death rate.

- P is the transmission rate from asymptomatic patients to susceptible population.

- B, is the transmission rate from symptomatic patients to susceptible population.

o progressing rate from asymptomatic HIV patients becoming symptomatic patients.

a is the progression rate of treatments for symptomatic patients becoming asymp-

tomatic patients.

0 is progression rate of symptomatic HIV group becoming AIDS group.

K 18 the AIDS-related death rate.

- ¢ 1s the ART rate for HIV infections.

- ¢ is the additional medication rate for symptomatic patients.

- @3 1s the additional medication rate for AIDS group.

Written in a vector from, the above equations become

ax

- =F(X)
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with X = (S,1;,5,A,R)T.
It is important to note that while approximately 60% of the costs for HIV patients are at-
tributed to antiretroviral therapy (ART), an additional 40% is associated with related expenses,

such as doctor visits and treatments for other infection-related medical conditions.

2. EPIDEMIC ANALYSIS

Next we will find a disease-free equilibrium by setting /;,1;,A and R in the equations to zero

and solve for S. We have S = N. Thus now we have the DFE:

& = (N,0,0,0,0)

Since ‘%’ = —KA < 0, the solutions of the system are bounded, and the function N(¢) is
monotonically decreasing.
To calculate the basic reproduction number, Ry, for this model, we employ the method of van

den Driessche and Watmough. The associated next-generation matrices are defined as follows:

BiSI + B2SIh
y — O 9
0

ol +uh+ ¢ —ab

Vv = —oly + 0L+ uh + ¢ L + al
I —0L + KA+ UA+ ¢3A
Then
(6) F = 35212 352’2 8;99212 =1 0 0 O/,
aé? aa% 8(«5;7« 0 0 0

and

93721 ‘98421 9% o+ U+ 9 —a 0
7 v=|Zp T o | = —0  d+tputhta 0 )

98_?? %_IW; % 0 -8 K+ U+ 03
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At the DFE point, we have

BN BN 0
F(&) = 0 0 0
0 0 0
Let

M* = BN,
N* = [oN.
Then we write
M* N* 0
F(Eo) = 0 0 O
0O 0 O
Then we have,
detV = ((0+u+¢1)(S+p+¢+a)(k+p+¢3)+0+0) —ca(k+u+¢)

= (o+u+¢)6+u+hta)(k+u+s)—ocalk+pu+es)

Let
K = (c+u+¢)0+u+dp+o)(x+u+¢s)—oco(k+u+e3)
Thus,
T

Cn Cip Ci3

adjV =| G Cpn Cp

G Cxn GCs3

(6+u+¢+o)(K+u+¢3) o(k+u+¢3)
= a(K+ U+ ¢3) (C+u+¢1)(k+u+¢3)
0 0
T
od
O(Kk+u+¢3)

(c+u+¢)(0+u+p+a)—oco
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(+U+dr+a)K+pu+3) oa(K+pu+¢3)
= o(K+u+¢3) (C+u+o1)(Kk+u+e3)
oé O(K+u+¢3)
0
0

(O+u+¢)(6+u+p+a)—oa

and hence ,
1
vl = —.adjv
detV ad
(6+u+¢+a)(k+pu+¢3) a(k+u+¢3)
1
=X o(K+ 1 +93) (O +u+01)(K+u+¢s3)
od O(K+u+e3)
0
0
(c+u+¢)d+u+¢p+oa)—oca

(O+p+dr+a) (k+1+¢s3) a(k+u+¢s) 0

K K
— o(K+u-+¢s) (o+p+o1)(k+u+¢s) 0

K K

et O(Kk+u+¢3) (o+u+¢1)(6+u+dr+0)—c0
K K K
Thus
M* N* 0 (5+I~l+¢2+g)(’(+ﬂ+¢3) a(K+1’;L+¢3) 0
_1 o
Fvli=1 0 0 o G(K+I;(i+¢3) (G+#+¢1}((K+M+¢3) 0
1) 1)(8 -
0 0 0 %5 (1<+I;<1+¢3) (o+u+¢1)( +Iél+¢2+oc) oo

M* - (6+u+¢z+10(c)(r<+u+¢3) +N*- 6(K+[;(L+¢3) M- (X(K+Il(1+¢3) +N*- (0+#+¢1;(('<+#+¢3) 0
= 0 0 0
0 0 0
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Let
o = e OtHt o) (ktutgs) . o(kti+es)
K K
D* — M*'a(K+[éL+¢3)+N*'(G+“+¢13((K+“+¢3)

The basic reproductive number is then determined as the spectral radius of FV !, which yields.

c*—A D* 0
det(Al—FV~!) = 0 -1 0
0 0 —A

— (C*=A)(=A)(=A) =0

thus A = C*,0 which are real numbers. Hence,

(b+uU+dr+a)k+pu+3) N o(k+pu+¢3)
K N
BIN(6+u+¢+a)(k+pu+¢3)+BNo(k+ p+ ¢3)

K
BINO+u+dr+a)(k+pu+¢3)+BoNo(k+u+¢3)
(C+u+¢)(0+u+dp+a)(k+u+¢s)—oca(k+u+es)
BINO+uUu+dr+a)(k+pu+¢3)+ PoNo(k+ 1+ ¢3)
(K+u+03)((L+01)(+u+dr+0)+0(5+u+¢))

Ry = M*-

Based on the work in [31], we immediately obtain the result below :

Theorem The disease-fee equilibrium of the model is locally asymptotically stable
if Ry < 1, and unstable if Ry > 1.

To analyze the global asymptotic stability of the disease-free equilibrium (DFE), a common
approach involves constructing an appropriate Lyapunov function. However, we found it more
straightforward to utilize the following result proposed by Castillo-Chavez et al.

Lemma Consider a model system written in the form

dXi

U P X

dt ( 15 2)3

dx

d—; = G(X,X2), G(X,0)=0

where X; € R™ denotes (its components) the number of uninfected individuals and X, € R"

denotes (its components) the number of infected individuals including latent, infectious, etc;
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Xo = (X{') denotes the disease-free equilibrium of the system.
Also assume the conditions (H1) and (H2) below:
(H1) For % = F(X{,0) is globally asymptotically stable;
(H2) G(X1,X,) = AX, — G(X1,X5), G(X1,X2) > 0 for (X1,X2) € Q, where the Jacobian A =
g—g(Xl* ,0) is an M-matrix (the off diagonal elements of A are non-negative) and Q is the region
where the model makes biological sense.
Then the DFE Xj = (X, 0) is globally asymptotically stable.

Theorem The disease-free equilibrium of the model is globally asymptotic stable.

Proof. We only need to show that the condition (H1) and (H2) hold.
In our ODE system, X = S, X, = (I1,1»,A), and X = N. We note that the system is linear and

its solution can be easily found as:

dX;
= =F(X1,X2) = [ UN — BiSIy — BoSh, — uS ] :
We have
X, -

is linear and its solution can be easily found as follows:

For S:

ds
e“ta—l-e“t/.LS = e*uN

d
S(eMs) = M,

dt
d t t
/E(e“ S)dt = /e“ uNdt ,
= Ne“’—/e’”N’(t)dt;By Parts,

s = Ne‘”—/e’”N’(t)dt,

N [ eH N'(t)dt

eMt

Since the integral over certain intervals approximates the integrand, which is a real number,

it follows that S(#) — N as t — co. Therefore, X" = N is globally asymptotically stable.
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Next consider that

BiSIi + BoSh, — oy — ply — ¢111 + alp

%ZG(Xl,Xz) = ol — 8L —uh — b —ab :
0l — KA — UA — $3A
and thus
BIN—0 —u— ¢ BN+« 0
A = c —d—Uu—¢pr—a 0
0 —K—[—¢3
Hence

G(X1,X,) = AX,—G(X1,X>)

BIN—0c—u—¢ BN +a 0 Iy
= o —0—U—pr— 0 b
6 —K—U—¢3 A

BiSh + oS — oy — uly — o1y + ol
ol — 0L —uh—¢pb—ab
5[2—KA—‘LLA—¢3A

(BIN—0—u—¢1)l1 + (BN +a)h
= (711—(5—“—@)2—06)12 -
0L —(K—pu—¢3)A

B1SIi + BoSh, — oy — ply — ¢111 + alp
oly — 6L —uh — ¢ —ah
6[2 — KA — [LLA — ¢3A

[ BuI (N — )+ Bola (N — S)
= 0
0

Now we can write the matrix in the form

L G(X1,X) = [Bili(N—S)+Bahr(N—S5),0,0]".
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Since 0 < § <N, it is obvious that G(Xl ,X2) > 0. The stability of the disease-free equilibrium
(DFE) determines the short-term dynamics of the epidemic, while the long-term behavior of the
disease is governed by the stability of the endemic equilibrium. In this section, we analyze the

endemic properties of our model.

3. ENDEMIC EQUILIBRIUM

When the disease is presence in the population, /{ and I # 0, there may be several critical
points where /| and I # 0, which are the endemic equilibrium points (EEP) of the model.

These points will be denoted as &5 = (S*,1],1;,A*, R*) which are determined from the model as

follows:

ds* * % * % *
7 UN = BiS*I} — poS"L5 — uS™
i BiS*I + BoS"ly; — oy — uli — ¢l +aly
dr:
Ul 15—t — uls — a
dA*

= O8I —KA* — UA" — )zA"
dt 2 Hu ¢3 y
dR* * * * *
i Ol + 925 + G3A” — UR" .

Its components must satisfy,

, UN
S * * ’
ﬁlll +ﬁ212 —I—,LL
1 - — c ’
2 S+u+pta’
oo 0
K+u+ 93
Rt — O} + ol5 + g3AT
M .

We first show the following theorem.
Theorem The positive endemic equilibrium exists and is unique if and only if Ry > 1.

Proof.  Note that
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Substitute of S*,R* in N, we have
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S* I+ +A* +R" .

~ B +“/;ZI§‘ +u PHHGATS PEERET
Let
ag = 6+u+pta,
a = K+p+¢s,
a = O+Uu+¢r.
Substitute of A* in N, we have
; . « 9300
= B +“B]Zz;+u““’5+ilf + 2 +¢2;?+ -
Vo= pr +“é:q+u+Ii‘+1§"+i—?+‘pllfazwzg:”%&;
N = WNay+ I par(Bily + Pols + 1) + B pax (Bl + Pols + 1)
+OL U (BT + Baly + 1) + (¢l az + oy ax + 36 1) (Bulf
+B2ly + 1)+ pax(Puly + Bl + 1)
uay(BiIf + ol + N = pNay+Ifpar(Bily + Bols + 1) + L paa (Bi 1y + Bols + )
FOLU(BiIT + Bols + 1) + (d1lfax + $olyaz + 9361 ) (Bi Iy
+Bl; + 1)
0 = pay(Bili +Boks + )N — u>Nay — I ar(Bi I} + Bols + )
—Luay (B + Boly + 1) — SLu(Buly + faly + 1)
—(¢1l{az + g2lyaz + 36 1) (BiIy + Bal; + 1)
0 = BiauNIf — Brayul;? — Brapuly<ls — BiuSIL — Bras gy I
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Note that

Substitute of /7 in I5,we have

Bratauly? + Bratar ¢i15?
2
o

Biatarpuly + Brajar i ;> =

Biatarpuly* + Brajar i ;> =

—BraaoIi Iy — B1O QT + Bras UND — Bras Ui 15
—Baarul* — BouS B — Brar i Iy 15 — Prar o152 — B8 3157

—a I} — Ly — UL — ayu i If — ayuuoly — n8¢al;

((Bia1asuNI; — Brajarpli* — BraiuS13* — Prarar ol
—Biar8$35° — Prararply? — Prarar i > — arar I
—a1pudi5) <+ (0)) + (—Biatasuls” — Brajaz 91 157)
+62) + (BraauNI; — Braopuly* — BopuS13% — Prar ol
—B289315” — ayp’ I — Sl — arpidols — u8313)
(Bia1a;uNI; — Brajaopl;* — BraiudL;* — Prarar ol
—Bi1a18 3% — Brararsul* — Prarar 1 52 — ayar L
—a1audil; + PrasuoNI — prapi 615> — fyudol;’
—Boaro o132 — PS¢ 152 — ar ol — Su’cl;
—auopls —udopl;) +o

62((B1a1a2,uNI§ — Brajapply? — Bra ud L% — Brayary ¢ 13
—Bia18§s15% — prararuly? — Prarar 115> — ayar Iy
—ayau @15 + PrayloNI; — BzazucIQQ - [32,115613‘2
—Braro$ol3? — B8 93132 — aru’ol; — Su*cl;
—ayuodply — pudcpsl;) < o)

o (BrajaxuNI; — ﬁlalag/,LI;z — ﬁlal/,LSI;Z — Blalazq)glfz

—Bra18$:557 — prararpuly* — Prarar$i 5> — arao I
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—ajarpt§1 15 + Poar loNI; — Brarioly? — BouuSoly?
—Braro$ol3? — B8 93132 — aru’ol; — Su’cl;
—auopl; —udopsl;)

Biaiauly® + Brajar$ily> = PraiaxpioNI; — Brarazpioly” — Braypdoly’ — Prajar o g1y
—Bia\50935* — Prajarouls’ — Prararo 0113 — ajau* ol
—a1as ¢ 6L + Brart 6> NI — Brarpu 62132 — ot 8 62152
—Brar 0o l3? — Br 862 93152 — app* o’y — uSc’l;

—a UG Pl — u8 P31

0 = PiaiaxtoNL — Biarariol? — BraiuSols” — Brajax o 91;* — Bra1 50 93157
—Bzalazclulfz — Bgalach)lli‘z — alazuzcﬂ; —ajaxpu¢ol; + ﬁzaz,uczNI;
—Brarpt 62 1% — Bon8 62 1% — Brar 62 oIy — Br8 62 93157 — apu* 0P l; — u?Sc’l;
—a &> ¢l — 87315 — Brajartly” — Prajar Iy’

0 = —(Biaiaauoly + Biaiudcly? + Brajayo gy + Bra1 8o 3157 + Prajay o I
+Boar it 1% + ot 82152 + Brarar o 91 I3 + Brar 62 9o 137 + oS 62 93157
+Piataruls? + Brajar$1 ;%) 57 + (Braiaa i oN + Bras i °N — ayar p* o

—a*0° — P*806% —ajar i1 0 — arxjl67 Py — uSG93)1;

with
G = —(Biaiazpuo+Praiudo + Prajaro ¢y + Pra186¢3 + frararop + frar o’
+Bau86° + Pra1ar 091 + Brar 672 + P28 6793 + Pratarp + Prajar )
G, = PiaiaatoN + Brau6N — ayar o — ap 6> — p* 86> — aja 916 — ar 16> ¢,
—udo’es .
Hence

Gi1>+Galy; =0
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For I5 # 0, the root of this quadratic equation must satisfy,

* _GZ
12 - G_l

Consider that

-G
G_12 = (- (BiajasptoN + Boaspt6°N — ajarpi®c — arpu’c? — u?86? —ajarpu ¢
—ay 162y — 802 ¢3)) + (= (Brarazpo + Braipdo + Prajazo s + Prai 5o ¢
+Bra1arop + Prar 6 + Popu86° + Prar1ar o9y + Prar o’y + P8 o7 s

+Biatarp + Brajaz )

= (Bia1aaptoN + Prarpt6°N — ayapi* 6 — a 1> 6* — U*86° — a1ax )11 6 — ar LGy
—186°¢3) + (Bratazpuo + Brai 86 + Praja;ogr + Pra1 56 ¢s + frajar o i + Prar i o>
+Bop86% + Praiar oy + Prar o ¢y + B2 56793 + Brajarp + Prajar )

= (Bia1aaioN + Brarpu6°N — (a1aap® o + arp* 0% + 5 6% + ayaz i1 6 + ar 6> o

2

+186%¢3)) + (Braraz o + Bra udo + Pra1a;o ¢y + Pra1 563 + Prararo it + Prar Lo

+Bo186% + Pra1ar 691 + Brar 9y + P28 3 + Bratarp + B a%a2¢1)

aja>c +aru*c* + ...+ udo s ( BiaiarioN + Brar >N B 1)
ﬁlalazuc—f— ﬁ1a1u56 + ... +ﬁ1a%a2¢1 alaz,uzd +a2/.L262 +...+ ‘uan(])g

a1a2u26+a2u262 +... —l—,LL(SO'z(])g ( BiaiaaN + BraroN B )
ﬁlalaz,uc—f—ﬁlal,uSG—i— —l—B]a%az(]ﬁ aja U —1—612[1(7—}—[.130'—|— et 66(])3

a1 ?c +ari* 6 + ...+ u8c¢s Biaia;N + Bra 6N 1
Biaiapio + raipdo + ...+ Pratardy \ az(ai(u+¢1)+0(8+p+¢)) — 6ok

Since all parameters are positive, thus we have

BiraiaxN + BrayoN - BiraiaxN + Bray6N
a(a(u+¢1)+0(8+u+¢)) — 80k~ ar(ai(u+1)+0(8+u+¢2))

=Ry .

Hence if Ry > 1, we have

BiaiaxN + Bra,oN

ar(ar(i+91) + 08+ i+ 92)) — doK t

Therefor E—?Z > 0 that is I3 > 0.
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Consequently, from

olf
O+u+dp+a

we conclude that /] > 0.

4. LOCAL STABILITY

We proceed to analyze the stability properties of the endemic equilibrium. First we establish
the following result regarding the local stability.
Theorem The positive endemic equilibrium €* is locally asymptotically stable.

Proof. The Jacobian of the system of our model is given by

| —Bily — ol — —BiS —BaS 0
;- Bl + Balx BiS—oc—pu—¢ BrS+a 0 |
0 c —0—uU—ph—o 0
i 0 0 6 —K—u—03 |
and at x = €* we have
| =By — Bl — 1 —piS* —B,S* 0 ]
J(e") = By +Bt;  BiST—o—u—¢ BS* +a 0
0 c —0—U—ph—0o 0
i 0 0 o —K—H—¢3 |
[ Pop BS BS 0]
B P BiS*—a3 BpS*+o 0
- 0 o —a; 0
0 0 0 —ay |
where

P = Bil{+Bk5
ay = 5—|—[J+¢2—|—a,
a = K+Uu+os,

a3 = Oo+u+9;.
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The characteristic polynomial of J(€*) is

[ A+P+u RS B,S* 0 |
P A-BS'tas —BS—a 0
0= detAl—J(e*)] = hisivas =
0 -0 A+a 0
i 0 0 -6 7L+a2_

= Mt(ai+ar+a3+P+pu—PBiSHA% + (aya3+a P +azP
+uay + paz +ajaz +axaz +a P+ pay — 1S a; — o B S”
—oa—upS* — ﬁlS*az)lz + (Payas + payas + Payay + Payas
+Uayay + Uapas +ajapaz — caP — uP1S*ay — uoBrS* —uoa
—Bi1S*aja; — oS ay —oaar — uP1S*ax)A + (Pajazas

+uayayaz — ooPar — ‘Llﬁls*alaz - uGﬁzs*az - ‘LLGOCaz).

Hence
(8) 0 = boA*+ A3 +boA> +b3A + by
where

by = 1,

by = aj+ay+az+P+u—pS*,

by = aiaz+aiP+a3P+ pay+ paz+ajay +aaz +arP + pay — Bi1S*a; — o rS*
—oo—uPiS* —PiStay

by = ajazP+ payaz+ajaxP+ arasP + paya; + paraz +ajaraz — ocaP — ufS*a
—uopS* —uoa—BiS*aiar — oS ar — ocaa, — uPiStar

by = ajaxazP+ payapraz — ooayP — uPi1S*aja, — uoprS*a, —uocaa, .

To ensure that all root of equation (8) have negative real parts, the Routh - Hurwitz stability
criterion [28] will be used. We require that by > 0, b1by — bz > 0, b3(b1by — b3) — b%b4 >0,

and b4 > 0.
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Now, we note that
by = ait+ay+az+P+u—pBS
= (a3—PB1S")+a+ar+P+pu.

and since

L(BS* + o)
az — B S*

thus az — B1S* > 0, we then have b; > 0. Next, we have

I =

by = ajaz+aiP+a3P+ pay +paz +ayay +aaz +ayP+ pay — B1S*a; — orS”
—0o
= ai(az — Bi1S") +ax(az — Bi1S*) +u(az — B1S*) +ajax + pay + paz +a P
+a2P+a3P—Gﬁ25*—GOC .
dr:
Let = 0 and now we have
ﬁls*lik +BQS*I; —(13[;6 + OCI; =0

BS*L = azlf —BiSIy —aly
a3li‘ [315"‘11k
S* — —_—— — —
B> 3 3

Thus

o(azly — B1S*I}
oS = (asl; I*Bl 1) —oa.
2

Now we simplify by:
by = ai(az—Pp1S)+az(az—BiS*)+u(az — B1S*) +ajar + pnay + pay
+a1P+ayP+a3P— oS —oa
= ai(a3—P1S") +az(az —Bi1S") + p(az — P1S™) + araz + pay + pay
+a1P+ayP+ (BiIf + Bol3) (6 + 1+ ¢)) —0BS* —oa
= ai(az—PiS™) +az(az — P1S*) + u(az — B1S*) + arax + pay + pa

+aiP+ayP+ Bilyo + Bl + Bili 1 + Boly; 6 + Bols 1 + Bols 91
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6(613[?< — [315*11‘)

_ 5
= ai(a3—PBiS™) +ax(az — BiS*) + u(az — B1S*) +arar + pa) + pay

—GOC) —ou

+aiP+ayP+ Bilio + Bl + Bili 91 + Bols 6 + Bols 1 + Bols 91
owsl; ofiS*I}
L I

= aj(az—P1S*)+az(as — P1S*) + u(as — B1S¥) + aja + pa; + pay

+oa—oo

+a1P+ayP+ B+ Bili ¢1 + Boly 0 + Balb 1 + Bo b5 9

oazl} o B S*I}
+(ﬁ1ﬁ6_ I*l) e
2 2

= ai(az—B1S™) +ax(az — BiS*) + u(az — BiS*) +arar + pay + paz

+a1P+a2P+ﬁllf‘u —|—ﬁ1]ik¢1 +ﬁ2]§6+ﬁ2]§,u +ﬁ2[§¢1 + G[T

a oBS*I}
(pr-22)+ 2B
12 12

Hence b, > 0. Now, we turn to bj3:

Since

b3

= aia3P+ payaz +ayar P+ arazP+ Uajax + Hazasz + ajaraz — ooP
—uPiStar —puo St —poo— BiS*aiar — oS ar — ocaay — uPiStar
= pai(az—P1S") + paz(az — B1S*) + araz(az — f1S*) + a1axP + arazP

+ayazP+ajaypt — ocoP — uorS* — poo — ofrS*ay —oaa .

G(ag,li‘< — ﬁls*lik)

GﬁzS* = "
12

—oa,

now we can write

b3

ual(a3 — BlS*) +,ua2(a3 — [315*) +a1a2(a3 — BlS*) +ayar P+ ajazP
G(aﬂik — ﬁlS*Iik)
I

+arazP+ajapl —ocoP— <
(G(Cg]f —ﬁIS*If)

IZ
pai(az — B1S™) + paz(az — B1S*) + araz(az — B1S*) + aja P+ ajazP

— Ga) —uoa

—GOC) —o0ar

21
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oazl} o S*I; aroaszlf
—f—a2a3P+a1a2u—GOCP—'u 1*3 L K 6* Lt uoca—uoco — 1*3 !
2 2 2
a,o 1 S*I;
—1—%—1-6120&—612606
2

pay(az — Pi1S*) + paz(az — BiS*) + araz(az — Bi1S*) + ajaxP + ajaru

O+ U+t a)(o+u+01)(Bili +Baks) +ax(o+u+¢1)(Bili +Bo1r)
poasli poPiS*Iy  ayoaslf  a o S*IY

I ) I )
pai(az — BiS*) + paz(az — PiS*) +araz (a3 — B1S*) +a1axP + ajar b

—oo(Bil} + Bb5) —

+8OPI +SUPIIT + SO Bily +UOPILT + 1P Bii + ugi Bl + G20 Bl

+O P+ 0192Bil] + a0 fil} +ouPily + ad filf + 80Pl +Sufol;

+801821; + UGBy + W Bals + 11 Bols + 020 Bols + 2ol + 9162 Bol>

+acl +ouoly + o fols +aro Bl +aufili +axi il +axoBal;
poasli uoPiS*ly  axoaslf

+aruPoly + a1 fols — oIy —oafrl; — R
2 2 2

S*IF
+a26ﬁi 1
12
,ual(a3 — ﬂls*) +,ua2(a3 — [315*) +a1a2(a3 — [315*) +ajayP+ajau + 56[311i'<
+OUBT + 591 Bil} + Wiy + udi Bili + 920 Bl + polt Bl + 91 G Bi I}
+auBili + o Bili + 8o Bol; + SuPals + 591 Bols + ool + uBol;

11 Bols + 026 Bols + Qo Bols + 9102 ls + oLy + 0ty Bols + arpuPily

‘UGCZ:,'IT) N poPiS*Is

+ax$1 fili +ax0Boly +ariBols +ari fol; + <“0311T T I
2 2

a26a3l* azGﬁls*I*
+(azo-ﬁ11f— T 1)+ T L
2 2

pai(az — BiS*) + paz(az — iS*) +araz (a3 — B1S*) + aiaxP + ajar i + 6 B 17
+SUBIT + 801 BiI + 2B+ o Bilf + oo Bl + dau Bili + ¢ Bl
+ouBily + ag Buli + 8 ols + SuPols + 861 Bols + o Bols + uBols

+1 Q1 Boly + 026 Boly + Qo Boly + 9192 ls + apuoly + 0ty Boly + arpBily
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as o S*I;
+ar @1 Bil} + a6 Bol5 +arufrls + a1 Boly + puoly < ! ) + Hop Sl

B ;
as a,o B S*I;
+ayol} (ﬁl - ]—*) + # :
2 2
Thus b3 > 0. Now for by, we write
by = a1a2a3P—|—uala2a3 —ooaP — uBlS*alaz — ucﬁzs*az —uodoas

= aiapu(az—P1S*) +ajarazP — caarP — poa 5 S* — poara

and from

o(asli — B1S*I}
oBS* = (a3l I*ﬁl D —oa
2

we then have

by = ajaxp(az—P1S*) +ajarazP — caaP — uocaypS* — uocaa
o(a3lf — B1S*IY)
)
= aip(az —fiS") +ax(6 +u+ ¢+ a)(o+u+¢1)(Bili +Paly) — c0Par
_“6‘2‘1311* .UG‘IZI[;IS*IT +uoaa; — Hooa

= ajapp(az — BiS*) + Scayfil} + SuarBil; + 8¢rax Bl + ucay Bl + uar il

= alazu(ag — [31S*) +ayaxasP —oaayP — Uay ( — G(X> —uooar

+udrazili + oprar il + udrar Bili + d1¢rax il + ooar Bili + poas i Iy
—|—()C(P1612ﬁlli(< + 5Ga2ﬁ21§ + 3ua2ﬁ21§ + S(Plazﬁzlik +u6a2ﬁ21§k —I—,Uzazﬁzlik

+udraxfols + cdrar Bols + udraz Bols + ¢1raooly + caarfols 4 paarfo1;
u6a2a31f [,LGazﬂlS*Iik
I 5

= aymop(az — Bi1S*) + Scar il + Suar il + Srarfil} + u>ar il + ndrar pil;

+a¢)1a2[321§ —oaPay —

+oprar i} + udpar Iy + 91020211} + pwoar Bl + odraz fily + dcax ol
+8UaBols + 8P1a:Bal; + poarfoli + uParoli + pdrafol; + o prarfoli

Fuparols + 91¢2a2 8215 + patar Bols + adrazfoly + (coar il + caarfaly)

uGazag,]ik) uGazﬁlS*Iik
* + *
12 12

caay (Bl + o) + <u6azﬁlli‘ -
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= aaxpt(az — B1S*) + 80wyl + Sparfi I} + SprazPuili + prarPili + uoras il
+otparfili + udrarfili + ¢1¢axfily + paarfili + agraxfili +8cafol;
+8parBols + 891a2Bols + noarBols + Wrarols + pdrarfols + o drar ol
FuGrarBoly + o102a2 15 4 patar Boly + opraz Boly + poaxly <ﬁ1 - %)

+.U0'612B1S*1i‘.
5

Therefore b4 > 0. Similarly, we will show that b1b, — b3 > 0. Consider that

biby—b3 = (a3—PiS)(ai(as—PBiS*) +az(az — P1S*) + p(az — iS*) + aran
+pay +pay +arP+axP+ By + Bili ¢ + Baly 6 + Boly 1+ Boly 91
. a o S*I} y .
+ol; (ﬁl—]—f) + ﬁ}* L) — (nai(az — BiS*) + pnas(az — B1S*)
> 2

taiaz(az — B1S*) +araxP +ayaxpu + S By + SuPily + 8¢1 Bily

B 4 1 B + $20 Bl + o Bl + G192 Bi I + o i}
+a@Bili + 86 Bols + SuPols + 81 Bols + Lo Bl + 1P Boli + 11 Bol
+020 8215 + Qo uols + Q1 Boly + o foly 4 0y Bols +aru Iy

as
Fax0uBLI{ + ol +asi o + axtnfeti + ot (B — 7 )

>
oB1S*I; a ar»o B S*IT
(HOPST | ot (ﬁl——f)Jr—z P L)
I I I
= (a3 —BiS)(ai(azs — BiS*) +az(az — B1S*) + p(az — 1S*) + a1an
+par +pas +arP+axP+ Biliu+ Bili o1 + Boly 0 + Boly e+ Boly

. a o1 S*I} ; .
+ol, (ﬁl_l_i) + ﬁ;* L) — uai(as — BiS*) — paz(as — BiS*)
2 2

—ajaz(a3 — B1S*) —ayaxP — ayap — 56 i1y — SuPily — 51 Bily

— W B — pd Bil; — o0 Bl — GauBili — 1Bl — Bl
— a1 B — 80 Boly — SuPali — 801 Bols — uoBoly — 2 Boly — o ol

—020 L5 — Goufols — O1$Boly — o oly — o1 Bols — aru Iy
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as
—ar 01 Bilf —aro Bol; —aruols — ar§1 ol — poly (ﬁl - I_*)

b
o8I} . a aro B S*I}
H lii L _ ol (ﬁl—l—f)— 2 ?i I
) ) >
= ai(az — Bi1S*)* +az(az — Bi1S*)* + u(as — BiS*)* +araz(as — BiS*)
+pai(az — BiS*) + paz(az — Bi1S*) +arP(az — BiS*) +asP(az — BiS”)
+BiI{ u(az — B1S*) + Bili 91 (az — B1S™) + B2y 0 (a3 — B1S7)

+BaLr (a3 — P1S™) + Boly ¢1 (a3 — P1S™) + ol (a3 — B1S7) (ﬁl - 611_23)

o1 S*I}
L

(a3 —PB1S¥) +a%(a3 —B1SY) +,ua% + Uajay —|—a%a2 —|—a%P
as
+Bil{ nay + Bili gra1 + Bols 0ar + Bols par + Pols prar + ol ay (ﬁl - I_*)
2
+a10ﬁ1S*1f
I*
2

-l-a%P-l—alP(ag —B1S*) +axP(az — B1S*) + uP(az — B1S*) + ajax P

+ajax(az — B1S*) +a3(az — BiS*) + a1d3 + ua3 + ayarP

+paiP+ parP + a1 P>+ ayP* + B I uP + il 1 P+ Bols OP + Bols P

a3> i PGﬁls*Iik

+B2I5¢1P+ oI P (ﬁl 7 7 +pai(az — PiS™)
b b

+u?(az — BiS*) + paz(as — BiS*) + paraz + play + plap +a pP + auP
a
+oliu <B1— 3)

T
= ai(a3— BIS*)Z—T—az(cB — B1S*)? + w(az — BiS*)* + a1az(az — B1S*)
+uai(az — BiS*) + pnaz(az — P1S*) +ar1P(az — 1S™) +axP(a3 — P1S™)
+Buliu(as — BiS7) + Puli o1(az — B1S7) + B2y 0 (a3 — BiS7)
+Balsp(as — BiS*) + Baly ¢1 (a3 — B1S™) + ol (a3 — B1S7) (ﬁl - CII—;)

Gﬁls*lik
L

(a3 — B1S*) +aj(az — B1S*) + pai + paias + aar + aiP

* * * * * * a
+l3111,u2 +Bilfo1u+ Boliou +[3212H2 +Boly o1+ olfa; <B1 — I_i)
2

+a10'ﬁ15*lik

IR +a1a2(a3—ﬁlS*)+a%(a3—BlS*)+a1a2(a3—ﬁlS*)
2



CHAIRAT MODNAK
+a3(as — B1S*) +ara5 + asp + ayaP+ a3P + a1 Plas — B1S¥) + ayax P
+uP(az — B1S*) +axP(az — B1S™) + wa P+ parP + a1 P* + a, P?
BT UP + By 1P+ ol 0P + Bolb uP + Bol; 1 P+ o1 P (ﬁl - ?—;)
%}SW + pay(as — BiS*) + u*(as — P1S*) + paz(az — B15¥)

a3> n uoBiS*I;

+uayaz +,u2a1 +,u2a2 +a uP+auP+ ol ( 1 — a T
2 2

—60ful] — 0PI} — aoPily —uofily

= ai(az —Bi1S)? +az(az — BiS*)* + u(as — BiS*): +araz(as — BiS*)
+par (a3 — BiS*) + pa(as — BiS*) +arPlas — BiS*) + arP(az — BiS*)
+Bilip(az — BiS™) + Pl o1 (a3 — Bi1S™) + Poly0(a3 — B1S7)
By BiS") + Palio a3~ B+ ofi = ) (B~ 2 )

o1 S*I}
L

(a3 — B1S*) +ai(az — B1S*) + pai + Haias + atar + aiP

* * £ X * X a
TR+ Bili g1+ Bolzou + Bl P + Bol3 ¢+ o1 ay (ﬁl — I-f)
2

a1 o IS*I*
+% +aiax(as — BiS*) +a3(as — BiS¥) + araz(az — BiS*)
2
+a%(a3 — ﬁlS*) —I—ala% —|—Cl%,u +a1a2P+a%P—|—a1P(a3 — [315*) +ajar P
—H.LP(ag - [515*) +a2P(a3 — [315*) + ta P+ ,LLa2P+a1P2 —|—a2P2

« % ” * * * a
—|—B111,uP—|—B111¢1P—|—B2126P+ﬁ212uP+[5212¢1P+611P(Bl —1—3>
2

PofS*I} . . .
+% + uay(az — P1S*) —I—,le(a3 —B1S*) + nazx(az — B1S*) + nayaz
2
a cP1S*I}
+ilay + Wray +a\uP +a P+ ol (B1 - I—3> + % —pilfoa
2 2

= a(az—B1S*)* +az(az — BiS*)* + p(az — P1S*)* + araz(az — Bi S*)
+pai(az — B1S*) + paz(az — B1S*) +arP(az — B1S*) +arP(az — B1S”)

+Bilip(az — BiS*) + Buli 91 (a3 — B1S™) + Bals 6 (a3 — B1S™)
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+Bals (a3 — BiS™) + Bol3 91 (a3 — B1S*) + o1 (a3 — B1S”) (B‘ - Tj)

GﬁlS*Iik

IR (a3—BlS*)+a%(a3—BlS*)+ua%+ua1a2+a%a2+a%P
2

B+ Bl o+ Bals o + Balspu? + Bl i + o1 ay (ﬁl — I_*)
2

—|—a1a2(a3 — [315*) +a%(a3 — [315*) +a1a2(a3 — BlS*) —I—a%(ag — ﬁlS*)

+a165+ a3+ araP+ a3P+ a1 Plaz — BiS) + arazP+ uP(as — Bi15*)

+ayP(az — Bi1S*) + pay P+ pasP +ay P> + ay P + ByI; WP + By I} ¢, P

a PoBS*I}
+ﬁ21§6P+[321;uP+[321;¢1P+ GITP (ﬁ] — I_S> + *
2 2

+uai(az — B1S*) + u?(az — B1S*) + pas(az — Bi1S*) + pajar + pla) + pas

a o B S* I} S*
+ajuP+auP+oliu (Bl - —f) + “B% +Bilioa (—* - 1) .
) ) 5

Clearly, we have b1b, — b3 > 0. Similarly, we can also conclude that b3(b1by — b3) — b%b4 > 0.

We complete the proof.

5. OPTIMAL CONTROL STUDY

We now turn to the more general model with time-dependent controls ¢;(z), ¢»(¢), and ¢3(¢).
Here, ¢ (r) represents the rate at which individuals who are aware of their HIV status begin
taking antiretroviral therapy (ART). We assume that these individuals start ART as soon as they
are infected, and we classify them as asymptomatic patients. @,(¢) represents the medication
rate for symptomatic HIV patients. This group of individuals may also suffer from co-infections
such as hepatitis or tuberculosis, resulting in additional treatment costs for both these diseases
and ART. Additionally, individuals with weakened immune systems may progress to AIDS.
This group experiences more severe symptoms due to their co-infections, leading to higher
treatment costs. Therefore, @3(¢) represents the additional medical costs for AIDS patients.

In this section, we consider the system over a time interval [0, 7T]. The functions ¢;(z), ¢»(7),
and ¢3(¢) are assumed to be at least Lebesgue measurable on [0,7]. The control set is defined

as:

Q= {¢1(t)7¢2(l)7¢3(t)|0 S ¢1(t) S (plmamo S ¢2(t) S ¢2max;0 S ¢3(t) S ¢3max}
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where @1 2 34 denotes the upper bounds for the effort of controls. The bound reflects practical
limitation on the maximum rate of control in given time period.

The inclusion of time-dependent controls complicates the analysis of our system, as the dis-
ease dynamics now depend on the evolution of these controls. In the following, we conduct an
optimal control analysis of this problem, aiming to minimize both the total number of infections

and the control costs over the time interval [0, 7] i.e.,

T
min /[Il(f)+12(t)+A(t)+011¢1(f)11(f>+6‘12¢2(t)12+013¢3(f>14
(9123)€QJ0

) + o197 (t) + 2093 (1) + 303 (1)) dt

Here, the parameters c1, c12, 13, €21, €22, and ¢3, with their respective units, represent the
costs associated with each control. Quadratic terms are included to account for nonlinear costs
that may arise at higher intervention levels.

The minimization process is subject to the differential equations of our system, which are
referred to as the state equations. The unknowns Iy, I, and A are now considered state variables,
in contrast to the control variables @, ¢, and ¢3. Our objective is to determine the optimal
controls ¢; (), ¢; (), and ¢5(¢) that minimize the objective functional in (9).

We first establish the following theorem on the existence of optimal control.

Theorem There exists ¢, (¢), ¢; and ¢5 € Q such that the objective functional in (9) is mini-
mized.

Proof. The control set Q is closed and convex, and the integrand of the objective functional
in (9) is also convex. Therefore, according to the standard optimal control theorems outlined in
[10], the conditions for the existence of an optimal control are satisfied, as the model is linear
with respect to the control variables. Furthermore, the optimal control is unique for small T
due to the Lipschitz continuity of the state equations and the boundedness of the state variables

[13].
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We will apply the method outlined in [2] and [15] to determine the optimal control solu-
tion. This method is based on Pontryagin’s Maximum Principle [24], which introduces adjoint
functions and expresses the optimal control in terms of both the state and adjoint functions. Es-
sentially, this approach transforms the problem of minimizing the objective functional (subject

to the state equations) into minimizing the Hamiltonian with respect to the controls.

as
(10) E = ‘LLN—ﬁlSll—stlz—uS
dl
(1 o = BiSh+pBSh—ol —ph —¢1 ()] +ab
dr
(12) d_t2 = 011—512—u12—¢2(t)12—0612
A
(13) i’—t = 5[2—KA—LLA—¢3(I)A
dR
(14) 5 = GO+ 6:(0h+03()A - R

Let us first define the adjoint functions Ag, Az, 4;, and A4 associated with the state equations
for S, 11,1, and A, respectively. We then form the Hamiltonian, H, by corresponding state equa-
tions, and adding each of these products to the integrand of the objective functional. As a result,

we obtain

H = §(t)+DL(t) A1) +cndi ()N () +crada(t) (1) +c1393()A(t) + 107 (1)
+e093 (1) + 233 (1)
A5 (UN — BiSIy — BaSh — uS)
g, (BiSIy + BaSh — o1y — Iy — ¢y (10)]; + auly)
A, (01 — 81 — b — ¢ (1)1 — auly)

+A4 (61 — KA — UA — §3(1)A)

To achieve the optimal control, the adjoint functions must satisfy

dA oH
d_tS =g = (As(=Bili — Bolo — 1) + Ag, (Bili + Bal2))
A, oH

Al T (1+c1191(1) +As(=B1S) + Ar, (BiS — 0 — 1 — 91 (1)) + A44,0)
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djth _ _g_Z =— (1+ci¢a(t) + A 0+ Ay (=8 — = (1) — &) + A4 5)
dA, JH
d_rA iyl (T+c13¢3(t) + (=K — u—93(1)))

with transversality conditions (or final time conditions):
As(T) =0, A (T) =0, A (T)=0 and M(T)=0

The characterization of the optimal control ¢; (¢), ¢;(¢) and ¢5(¢) based on the condition
JH JH JoH
I Ik 9

respectively, subject to the constraint 0 < ¢1 < @max » 0 < @2 < Pomax and

and 0

0 < 03 < P3max.Specifically, we have
91 (t) = max (0, min (1 (¢), 1max )
95 (r) = max (0, min(¢2(r), 2max )
93 (1) = max (0, min(¢s(7), P3max))

where

¢1(t) =((A [y —cnihi (1)) / (2¢21)
$2(1) =((Al2 — c12ha(1))) / (2¢22)
3(1) =((ApA —c13A(1))) / (2¢23)

Given the presence of both initial conditions (for the state equations) and final time conditions
(for the adjoint equations), along with the nonlinearity of most models of interest, the optimal
control system must be solved numerically. For this purpose, we will employ the Forward-

Backward Sweep Method to perform the numerical simulations.
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Parameter Symbol Value Reference
Total population N 61,340,000 [30]
Initial susceptible population S(0) 60,000,000 [30]
HIV asymptotic patients 1;(0) 580,000 [30]
HIV symptomatic patients L(0) 110,000 [30]
AIDS patients A(0) 180,000 [30]
Patients living with HIV

and know their status R(0) 470,000 [30]
Natural human birth and death rate u 0.01470588 [7]

The transmission rate from

asymptotic HIV patients

to susceptible population Bi 1x10~11 Observed
The transmission rate from

symptomatic HIV patients

to susceptible population B 1.2%x1078 Observed
The progression rate of becoming I, for I; o 0.0002 [7]
The rate at which I, progressing to [ o 0.0001 [25]
The progression rate to A for I, o 0.1 [25]
The rate of the disease-related death K 0.1630045919 [25]

TABLE 1. Model parameters.

6. RESULTS

In this section, we use HIV/AIDS data from UNAIDS [30] for Thailand to simulate our
model. Based on the data, the initial values for each state are provided in Table 1. According
to the data, Thailand records approximately 9,100 new infections annually. To align with this,
we set B; =1 x 10711 and B, = 1.2 x 1073, The natural birth and death rate is assumed to be
0.01470588, while other parameter values are listed in Table 1.

First, we use Thailand’s data to analyze the trend of infections and adjust our parameters

accordingly. Thailand has been highly effective in maintaining a low number of new infections
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and successfully implementing an ART distribution program for HIV patients. However, the
cost of care for HIV and AIDS patients remains significantly high.

In our first simulation, we assume that the additional medical costs for symptomatic and
AIDS patients are considerably higher, setting ¢, = 30 and c¢3 = 40, while keeping ¢; = 10.
Figure 2 illustrates the dynamics of HIV/AIDS patients under this scenario. Figure 2(a) shows
that if HIV patients consistently take ART, regardless of whether they exhibit symptoms or re-
main asymptomatic, the trend of HIV infections will decline over time. This leads to longer
lifespans for patients, as depicted in Figure 2(d), and encourages awareness, reducing the like-
lihood of transmitting HIV to others.

In contrast, if patients do not take ART, the infection rate will increase, as indicated by the
solid line. This growth can lead to community collapse, with a significant rise in asymptomatic
HIV patients and a sharp decline in the number of individuals in the HIV awareness group,
ultimately causing severe challenges for the entire nation. This scenario closely resembles the
current situation in Thailand, where most HIV-infected individuals with symptoms are receiving
ART. Additionally, our numerical simulation in Figure 4 aligns with the trend of new HIV
infections observed in the actual data from Thailand, as shown in Figure 3.

In the first simulation, the model indicates a decreasing trend in the number of HIV patients,
which corresponds to the actual data. Furthermore, the number of individuals who are aware of
their HIV status and take precautions to prevent transmission is increasing. This allows us to
predict future trends in new infections, as shown in Figure 5.

According to the simulation in Figure 5, Thailand could see as few as 200 new HIV infections
by 2050 if current strategies are maintained. However, various factors, such as an increase in

infections among young people, could potentially lead to higher numbers.
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Next, we assume that Thailand could have improved outcomes by reducing the costs of med-
ications for other diseases that individuals with HIV commonly experience, thereby lowering
the overall cost of treating HIV. We implement this assumption by reducing medication costs as
follows: ¢ = 10, ¢ = 10, ¢3 = 10.

As illustrated in Figure 6 (dashed lines), lower treatment costs would improve patient access
to medical care, potentially leading to reduced infections across all stages of the disease. In
contrast, the solid lines represent the number of infections without a treatment plan. In this
scenario, the infection rates could overwhelm the population over time, ultimately leading to

the collapse of the community as the numbers continue to rise unchecked.
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FIGURE 6. Simulation results of HIV infections: (a) the HIV infection with

symptomatic individuals, (b) the HIV asymptomatic patients, (c) AIDS people,
(d) the HIV Awareness Group
To explore the impact of reducing additional medical care costs beyond ART, we lower the

treatment costs for symptomatic HIV patients and individuals with AIDS to minimal levels

(c1 = 1 and ¢, = 1), while keeping the cost of ART unchanged. The simulation results for this

scenario are presented in Figure 7.
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With lower costs for additional medical care, individuals with HIV and AIDS can access
more treatments, leading to a decrease in the number of people with AIDS and an increase
in the HIV awareness group, as shown in Figure 7(d). This latter group plays a crucial role
in controlling the spread of the disease because they are aware of their HIV status and take
measures to avoid transmitting it to others. Therefore, a higher number of patients in this group
contributes significantly to disease control.

For Thailand, it is essential to provide basic healthcare that includes additional treatments for
HIV patients, such as symptom-based care plans or reduced costs for doctor visits. By doing
so, individuals can live normal lives while remaining aware of their condition and preventing

the transmission of HIV to others.
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7. CONCLUSION

We have developed a mathematical model for HIV infection based on data from Thailand,
using both theoretical and numerical approaches. The model captures the dynamics of the
disease through a system of five nonlinear differential equations.

Additionally, we analyzed the epidemic and endemic dynamics of the model, focusing on the
local and global stability properties determined by the basic reproductive number (Ry). Specif-
ically, when Ry < 1, the disease dies out, and the disease-free equilibrium is stable.

When Ry > 1, the disease persists, and the disease-free equilibrium becomes unstable. We
conducted numerical simulations using two sets of control costs. The first set represents the
current situation in Thailand, and the results indicate that the number of new infections predicted
by our model closely aligns with actual data.

Building on this, we extended our simulations to predict the number of new infections from
2025 to 2050. The results suggest a significant decline in yearly new infections, with Thailand
projected to have only about 200 new HIV cases by 2050. This trend is expected to continue as
long as no major factors, such as increased infections among young people who lack awareness
of prevention methods, trigger a resurgence.

Nevertheless, both our simulations and the real-world data demonstrate a positive outlook for
Thailand. The country is on track to maintain the current infection rate and could potentially

reduce it to approximately 100 new cases annually by 2050.
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