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Abstract. Many mathematical models describing the evolution of infectious diseases underestimate the effect of

the Spatio-temporal spread of epidemics. Currently, the COVID-19 epidemic shows the importance of taking into

account the spatial dynamic of epidemics and pandemics. In this paper, we consider a multi-region discrete-time

SIRS epidemic model that describes the spatial spread of an epidemic within different geographical zones assumed

to be connected with the movements of their populations (cities, towns, neighbors...).

Judging by the fact that there are several restrictions in medical resources and some delay in decision-making,

the authorities and health decision-makers must define a threshold of infections in order to determine if a zone

is epidemic or not yet. We propose a new approach of optimal control by defining new importance functions

to identify affected zones and then the need for the control intervention. This optimal control strategy allows

to reduce the infectious individuals and increase the number of recovered ones in the targeted domain and this

with an optimal cost. Numerical results are provided to illustrate our findings by applying this new approach in

the Casablanca-Settat region of Morocco. We investigate different scenarios to show the most effective scenario,

based on thresholds’ values.
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1. INTRODUCTION

A quarter to a third of all deaths in the world are due to infectious diseases, as reported by

the World Health Organization (WHO). It also noted that infectious diseases made up four to

five of the ten leading causes of death in 2008 [1].

In the fields of mathematical biology [2] and mathematical epidemiology (ME) [3], it is found

that mathematical models have been an important tool in the analysis of the epidemiological

characteristics of infectious diseases since the pioneering work of Kermack and McKendrick

[1], I.e. the construction and analysis of mathematical models describing the spread and control

of infectious diseases, epidemics and pandemics, which have a considerable influence. National

and international health agencies often use mathematical models of epidemics in the evaluation

of public health policies. Recently, an important number of articles in ME sector are published

by high-profile research medical journals [4, 5, 6, 7, 8]. The evolution analysis of the epidemics

from their population systems [9] and in different geographical areas [10, 11, 12] has become

feasible thanks to epidemiological modeling. That allowed these last to undergo a big evolution

over the past decades.

One of the main assumption in many mathematical models of epidemics is that the population

can be divided into an ensemble of separate states. These states are defined according to the

state of the disease. The simplest model, which calculates the theoretical number of people

infected with a contagious disease in a closed population over time, described by Kermack and

Mckendrick (1927), consists of three components: susceptible (S), infected (I) and recovered

(R). The disease states are defined as follows:

• Susceptible: Individuals that have never been infected and can thus contract the disease.

Once infected, they move to the infected state.

• Infected: Individuals that can transmit the disease to susceptible individuals. The time that

individuals spend in the infected state is the infectious period; then they enter the recovered

state.

• Recovered: Individuals in recovery are assumed to be immune for life [13].

Susceptible-Infected-Susceptible (SIS) epidemic models have been applied to situations in

which it is supposed that an infected population could move immediately to the susceptible
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compartment after being recovered from an infection due to the lack of immunization. This

kind of compartmental models is also useful to model the evolution of many phenomena in

different situations, see as examples, subjects treated in [14, 15]

Susceptible-Infected-Removed-Susceptible (SIRS) epidemic models have been applied to

situations in which it has been supposed that a removed population could move to the susceptible

compartment after being healed from an infection due to the loss of its immunity. This kind

of compartmental models is very useful to model the evolution of many phenomena, see as

examples, subjects treated in [16, 17, 18].

Different from the SIR model, the SIRS model also considers ”short-term immunity”. The

so-called ”short-term immunity” is that the immune individual becomes susceptible individual

after a while. [19]

Mathematical models have become important tools in analyzing the spread and control of

infectious diseases. The model formulation process clarifies assumptions, variables and parameters.

There have been many studies that have mathematically analyzed infectious diseases and several

optimization approaches have been proposed to prove their effectiveness in the control of certain

diseases, mainly, HIV, Ebola [11, 20, 21, 22, 23], ZIKA Virus [24], Malaria [25, 26], Influenza

Pandemic [9, 27], Cancer [28, 29], Tuberculosis [30, 31], COVID-19 [32] and even in other

areas of research [33, 34, 35, 36, 37].

In the history of all these diseases, we can notice their spread from one region to another, and

recently the COVID-19 pandemic from its epicenter of Wuhan in China has spread to all parts

of the world, which makes taking into account the spatial spread of diseases more important

during modeling processes.

The authors in [10] present the first work in the modeling and control of spatio-temporal

spread of an epidemic using a multi-region SIR discrete-time model, as a generalization of

the concept of classical models and aiming at a description of the evolution of pandemics,

Zakary et al proposed a new approach of modeling of the spread of epidemics from one area

to another using finite-dimensional models for the Spatio-temporal propagation of epidemics as

an alternative of the partial derivatives models which are of infinite dimension. The authors also

suggested some control strategies such as awareness-raising, vaccination, and travel-restriction



4 BOUTAYEB HAMZA, BIDAH SARA, ZAKARY OMAR, AGMOUR IMANE, RACHIK MOSTAFA

approaches that could prevent specific infectious diseases such as HIV / AIDS, Ebola, or other

epidemics in general [10, 12, 20, 11, 14], other researchers have shown the power and effectiveness

of educational workshops and awareness programs in reducing the number of infected individuals

[38, 39, 21].

In this paper, we propose a new optimal control approach mainly based on a multi-regions

discrete-time system and a new form of multi-objective optimization criteria with importance

indices and which is subject to multi-points boundary value optimal control problems. With

more clarifications and essential details, we devise here a multi-regions discrete model for the

study of the spread of an epidemic in M different regions, and analyze the effectiveness of

vaccination (or awareness) optimal control strategies when vaccination (or awareness) campaigns

are organized in infected zones. Here, we study the case when controls are applied to people

who belong to all those regions and which are supposed to be reachable for every agent (nurse,

doctor or media) who is responsible for the accomplishment of control strategies followed

against the disease.

We consider an area as an infected zone if its number of infected individuals exceeds a

threshold defined by the health decision-makers. Therefore, by varying the values of this

threshold and then simulating the infection situation for different values of these thresholds

shows that it is necessary to think about reducing the time between the first infection and

the implementation of the control strategy. Unexpected results that in some situations the

neighboring regions infected and its number of infections exceeds the threshold before the

number of infections of the region source. This makes the implementation of the control

strategies in the neighboring zones more important.

In our modeling approach we divided the studied area Ω into different zones that we call

cells. A cell C j ∈Ω can represent a city, a country or a larger domain. These cells are supposed

to be connected by movements of their populations within the domain Ω. We define also a

neighboring cells Ck of the cell C j all zones connected with C j via every transport mean, thus

a cell C j ∈ Ω can have more than one neighboring cell. Here, we suppose that a cell can be

infected due to movements of infected people which enter only from its neighboring zones.
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We carry out the map of the studied area and then we use different threshold values in the

controlled multi-region SIRS model to simulate the epidemic spread within the Casablanca-

Settat region illustrated in the Fig.1, by combining the ArcGIS and Matlab programs.

The paper is organized as follows: Section 2. presents the discrete-time multi-region SIRS

epidemic system. In Section 3., we announce theorems of the existence and characterization

of the sought optimal controls functions related to the optimal control approach we propose.

Finally, in section 4., we provide simulations of the numerical results applied to the Casablanca-

Settat region as domain of interest.

FIGURE 1. The geographical studied zone Ω: (a) Discretization on two regions

Casablanca-Settat . (b) Discretization of the whole studied zone on provinces

with names.
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2. MODEL DESCRIPTION AND DEFINITIONS

Based on same modeling assumptions of Reference [10], we assume that there are M geographical

regions denoted C j (sub-domains) of the domain studied Ω

Ω =

M⋃
j = 1

C j
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where C j can represent a city, a country or a larger domain. We note by V (C j), the vicinity set,

composed by all neighboring cells of C j given by

V (C j) =
{

Ck ∈Ω /C j∩Ck 6= /0
}

where C j∩Ck 6= /0 means that there exists at least one mean of transport between C j and Ck. Note

that this definition of V (C j) is more general where it defines a more general form of vicinity

regardless the geographical location of zones.

For example, in the Table 1 we can see that the studied area consists of 9 zones.

The multi-regional discrete-time SIR model associated to C j with ε
C j
i = 0 (no control is

introduced yet in C j) is then

SC j
i+1 = SC j

i − ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i +

(
NC j

i −SC j
i

)
d j +θ jR

C j
i(1)

IC j
i+1 = IC j

i + ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i − γ jI

C j
i −d jI

C j
i −α

C j IC j
i(2)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i(3)

where the disease transmission coefficient β
Ck

j > 0 is the proportion of adequate contacts in

domain C j between a susceptible from C j ( j = 1, ...,M) and an infective from another domain

Ck, d j is the birth and death rate and γ j is the recovery rate ans αC j is the proportion of mortality

due to the disease. The biological background requires that all parameters be non-negative. θ j is

the proportion that a recovered becomes again a susceptible. SC j
i , IC j

i and RC j
i are the numbers of

individuals in the susceptible, infective, and removed compartments of C j at time i, respectively,

and NC j
i = SC j

i + IC j
i +RC j

i is the population size corresponding to domain C j at time i. It is clear

that the population size is not constant for all i≥ 0.

Nb Zone Population Nb Zone Population Nb Zone Population

1 BEN SLIMANE 233123 4 Casablanca 3359818 7 Nouaceur 333604

2 Berrechid 484518 5 Mediouna 172680 8 El Jadida 786716

3 Settat 634184 6 Mohammadia 404648 9 Sidi Bennour 452448
TABLE 1. Populations of the regions: Casablanca-Settat
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3. THE MODEL WITH VACCINATION

3.1. Presentation of the model with the control. In this section, we introduce a control

variable uC j
i that characterizes the effectiveness of the vaccination in the above mentioned model

(1-3). This control in some situations can represent the effect of the awareness and media

programs [11, 20].

In almost all infectious diseases, the authorities determine the threshold of risk based on

many factors, such as availability of medical equipment, budgets, and medical personnel ...

Thus, they can wait some time to see the course of events before the intervention. If the number

of casualties exceeds this limit, decision-makers have no choice but to start trying to control

the situation. This motivate us to define a Boolean function ε
C j
i = fC j(I) (εC j

i = 1 or ε
C j
i = 0)

associated to domain C j, that will be called the importance function of C j. Where ε
C j
i is either

equaling to 1, in the case when the number of infected of the cell C j at instant i is greater than

or equal to the threshold I C j defined by the authorities and health decision-makers, or ε
C j
i = 0

otherwise. Therefore, we define the importance function ε
C j
i by the Heaviside step function H

as follows

ε
C j
i = H

(
IC j
i −I C j

)
=


0 IC j

i < I C j

1 IC j
i ≥I C j

Then for a given domain C j ∈Ω, the model is given by the following equations

SC j
i+1 = SC j

i − ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i +

(
NC j

i −SC j
i

)
d j +θ jR

C j
i

−ε
C j
i uC j

i SC j
i(4)

IC j
i+1 = IC j

i + ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i − γ jI

C j
i − jIC j

i −α
C j IC j

i(5)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i + ε

C j
i uC j

i SC j
i(6)

Our goal is obviously to try to minimize the population of the susceptible group and the cost

of vaccination in all affected regions. Our control functions taking values between uC j
min and

uC j
max, where uC j

min,u
C j
max ∈ ]0,1[ , ∀C j ∈Ω.
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3.2. An optimal control approach. We devise in this paper an optimal control approach for

each region with different importance functions ε
C j
i , j = 1, ...,M. We characterize an optimal

control that minimize the number of the infected people and maximize the ones in the removed

category for all affected regions. Then, we are interested by minimizing the functional

(7) J(u) =
M

∑
k=1

ε
Ck
i JCk(uCk)

where JCk(uCk) is given by

JC j(uC j) =
(

α
C j
I IC j

N −α
C j
R RC j

N

)

+

N−1

∑

i = 0

(
α

C j
I IC j

i −α
C j
R RC j

i +
AC j

2
(uC j

i )2
)

(8)

where AC j > 0, α
C j
I > 0, α

C j
R > 0 are the weight constants of control, the infected and the

removed in region C j respectively, and u =
(
uC1, ....,uCM

)
where uC j =

(
uC j

0 , ...,uC j
N−1

)
.

Here, our goal is to minimize the number of infected people, minimize the systemic costs

attempting to increase the number of removed people in each C j (with ε
C j
i = 1). In other words,

we are seeking an optimal control u∗ such that

J(u∗) = min{J(u)/u ∈U}

where U is the control set defined by

U = {u =
(

uC1, ....,uCM
)
/uC j ∈UC j , ∀C j ∈Ω}

with

UC j = {uC j measurable/uC j
min ≤ uC j

i ≤ uC j
max, i = 0, ...,N−1}

where uC j
min ∈ ]0,1[ and uC j

max ∈ ]0,1[ , ∀C j ∈ Ω. The sufficient condition for existence of

an optimal control for the problem follows from theorem 1 . At the same time, by using

Pontryagin’s Maximum Principle [42] we derive necessary conditions for our optimal control

in theorem 2. For this purpose, we define the Hamiltonian as
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H =

M

∑

j = 1

ε
C j
i

(
α

C j
I IC j

i −α
C j
R RC j

i +
AC j

2
(uC j

i )2
)

+

M

∑

j = 1

ε
C j
i

ζ
C j
1,i+1

SC j
i − ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i

+
(

NC j
i −SC j

i

)
d j− ε

C j
i uC j

i SC j
i +θ jR

C j
i

]
+ ζ

C j
2,i+1

IC j
i + ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

SC j
i

−γ jI
C j
i −d jI

C j
i −α

C jIC j
i

]
+ ζ

C j
3,i+1

[
RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i + ε

C j
i uC j

i SC j
i

]]
(9)

Theorem 1. (Sufficient conditions) For the optimal control problem given by (7) along with the

state equations (4-6), there exists a control u∗ ∈U such that

J(u∗) = min{J(u)/u ∈U}

Proof. See Dabbs, K [[40], Theorem 1]. �

Theorem 2. (Necessary Conditions)

Given the optimal control u∗ and solutions SC j∗, IC j∗ and RC j∗, there exists ζ
C j
k,i , i= 1...N, k =

1,2,3, the adjoint variables satisfying the following equations

∆ζ
C j
1,i = −ε

C j
i

[(
1− ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

−d j− ε
C j
i uC j

i

)
ζ

C j
1,i+1

+ ∑
Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

ζ
C j
2,i+1 + ε

C j
i uC j

i ζ
C j
3,i+1

]
(10)

∆ζ
C j
2,i = −ε

C j
i

[
α

C j
I −β

C j
j

SC j
i

NC j
i

ζ
C j
1,i+1

+

(
1+β

C j
j

SC j
i

NC j
i

− γ j−d j−α
C j

)
ζ

C j
2,i+1 + γ jζ

C j
3,i+1

]
(11)

∆ζ
C j
3,i = −ε

C j
i

[
−α

C j
R +(1−d j−θ j)ζ

C j
3,i+1 +ζ

C j
1,i+1θ j

]
(12)
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where ζ
C j
1,N = 0,ζC j

2,N = ε
C j
i α

C j
I ,ζ

C j
3,N =−ε

C j
i α

C j
R are the transversality conditions. In addition,

u∗ =
(

uC1∗, ...,uCM∗
)

where uC j =
(

uC j
0 , ...,uC j

N−1

)
, is given by

uC j∗
i = min

max

uC j
min,

(
ζ

C j
1,i+1−ζ

C j
3,i+1

)
SC j

i

ACpq

 ,uC j
max

 , if ε
C j
i = 1(13)

uC j∗
i = 0, otherwise(14)

Proof. Using Pontryagin’s Maximum Principle [41] and for j ∈ IC, we obtain the following

adjoint equations

∆ζ
C j
1,i =− ∂H

∂S
Cj
i

= −ε
C j
i

[(
1− ∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

−d j− ε
C j
i uC j

i

)
ζ

C j
1,i+1

+

(
∑

Ck∈V (C j)

β
Ck

j
ICk
i

NC j
i

ζ
C j
2,i+1 + ε

C j
i uC j

i ζ
C j
3,i+1

)]

∆ζ
C j
2,i =− ∂H

∂ I
Cj
i

= −ε
C j
i

[
α−β

C j
j

SC j
i

NC j
i

ζ
C j
1,i+1

+

(
1+β

C j
j

SC j
i

NC j
i

− γ j−d j−α
C j

)
ζ

C j
2,i+1 + γpqζ

C j
3,i+1

]

∆ζ
C j
3,i =− ∂H

∂R
Cj
i

= −ε
C j
i

[
−α

C j
R +(1−d j−θ j)ζ

C j
3,i+1 +ζ

C j
1,i+1θ j

]
with ζ

C j
1,N = 0,ζC j

2,N = ε
C j
i α

C j
I ,ζ

C j
3,N =−ε

C j
i α

C j
R . To obtain the optimality conditions we take the

variation with respect to control uCpq
i and set it equal to zero and ε

C j
i = 1:

∂H

∂uC j
i

= AC juC j
i −ζ

C j
1,i+1SC j

i +ζ
C j
3,i+1SC j

i = 0

Then, we obtain the optimal control

uC j
i =

(
ζ

C j
1,i+1−ζ

C j
3,i+1

)
SC j

i

AC j

And

uC j
i = 0, if ε

C j
i = 0
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By the bounds in U (and UC j) of the control, it is easy to obtain uC j∗
i in the following form

uC j∗
i = min

max

uC j
min,

(
ζ

C j
1,i+1−ζ

C j
3,i+1

)
SC j

i

ACpq

 ,uC j
max

 , if ε
C j
i = 1

uC j∗
i = 0, otherwise

�

4. NUMERICAL RESULTS.

Parameter Description Value

β Infection rate 1×10−3

d Birth and death rate 1×10−5

γ Recovery rate 1×10−5

α Death due to the infection 1×10−4

θ loss of immunity 1×10−6

TABLE 2. Parameters values of β ,d,θ , α and γ utilized for the resolution of

all multi-regions discrete systems and then leading to simulations obtained from

Fig.2 to Fig.19, with the initial populations given in Table 1.

In this section, we present numerical simulations associated to the above mentioned optimal

control problem. We write a code in MAT LABT M and simulated our results for several scenarios.

The optimality systems is solved based on an iterative discrete scheme that converges following

an appropriate test similar the one related to the Forward-Backward Sweep Method (FBSM).

The state system with an initial guess is solved forward in time and then the adjoint system is

solved backward in time because of the transversality conditions. Afterwards, we update the

optimal control values using the values of state and co-state variables obtained at the previous

steps. Finally, we execute the previous steps till a tolerance criterion is reached.

4.1. Area of interest. We chose the Casablanca-Settat region as the studied area Ω in this

paper because we are convinced that we can find some useful data to support our work. They

are the most populated and dynamic regions of Morocco, which contain They contain also the
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Casablanca city as the economic and industrial capital of Morocco because with its demographic

growth and continuous development of the industrial sector, and the 14 other provinces (see

Fig.1), in order to illustrate the objective of our work.

Fig.1 illustrates an example of discrete geographical zones of Casablanca-Settat regions

(Morocco) where M = 9, this image was originally made based on information from [43].

4.2. Geographical vicinity. A shape-file is a simple, non topological format for storing the

geometric location and attribute information of geographic features. Geographic features in a

shape-file can be represented by points, lines, or polygons (areas). The workspace containing

shape-files may also contain database tables, which can store additional attributes that can

be joined to a shape-file’s features [44]. ArcMap is a central application used in ArcGIS

software, where we can view and explore GIS database for our study area, and where we assign

symbols and create map layouts for printing or publication. In this application we can represent

geographic information as a set of layers and other elements in a map. Common map elements

of a map include the data frame containing the map layers for a given extent [45]. Neighborhood

tools create output values for each cell location based on the location value and the values

identified in a specified neighborhood [46]. We use this tool to create the neighborhood V (C j)

of each separated zone C j within the area of interest Ω. For instance

V (C4) = {C5,C6,C7}

Without loss of generality, we set the same infection threshold for all zones, therefore,

hereafter we noteIC jas Imin.

4.3. Scenario 0: Simulation of the multi-region model without any control. In all the rest

geographical figures, we consider four time steps (a) i = 0, (b) i = 40, (c) i = 80, and (d)

i = 120, (e) i = 160 and (f) i = 200. Dark color represents the highest values. Geographical

figures show the transmission of infection between different zones while associated graphs show

states’ changes over time.

*
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FIGURE 2. Susceptibl without any control
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FIGURE 3. Susceptible without any control
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Fig.3(a), (b), (c),(d),(e) and (f) indicate the geographical distribution of susceptible people in

the 9 regions without any control strategy at the moments i = 0, i = 40, i = 80, i = 120, i = 160

and i = 200 respectively.

While we see in Fig.2 and 3 represent the evolution of the susceptible individual without

controls in the different regions.

We see from Fig.2 and 3 that the number of susceptible people from all regions except C9 are

constant until the instant i = 150 then decreases betwin 3.8 103 and 7.7 104 person at the end.

In regions C2, C3 and C10 the number of susceptible people is almost constant the number of

susceptible C9 is constant until i = 160 and decreases about 104.
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FIGURE 4. infected without any control
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FIGURE 5. Infected without any control
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Fig.4 and Fig.5 represent the evolution of the infected without controls in the different regions.

In the Fig.4, we note that at the beginning, all the regions did not record any infection until

moment i = 120 and from the moment i = 120, the number of infected increases exponentially,

and we see it clearly in the Fig.5 which has kept the same display in the four first maps (Fig.5

(a), (b), (c) and (d)) which means that the number of infected did not exceed 9600 in all regions.

In the instant i= 160, the region of Casablanca (C4) and the neighboring regions C1,C2,C5,C6,C7

exceeded the 9600 infected. The final state i = 200 has seen strong evolution, all the regions

have exceeded 19200 infected except C9 which has just reached 105, regions C2 and C5 have

exceeded 67300 infected.
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FIGURE 6. Romoved without any control
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FIGURE 7. Removed without any control
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Fig.7 and Fig.6 show the development of the recovered population without controls in the

provinces of Casablanca-Settat .

We note that the numbers of the recovered, like the case of the infected, only change from the

instant i = 100 and gradually increase to reach for the regions C4 and C6, C5, C7 and C2 which

surrounds the city of Casablanca, small values between 20 and 40 recovered cases .

In the final state i = 200 the C4 region and his neighboring regions were able to reach values

between 130 and 200. In the other regions which are geographically further from C4 have do

not exceed the 100 cases at the time i = 200.
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These simulation show the necessity of some intervention to avoid these huge numbers of

infections, especially in the epicenter of the epidemic and the surrounding zones.

FIGURE 8. Susceptibl with the Vaccination control after detecting 200 infections
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FIGURE 9. Susceptible with the Vaccination control after detecting 200 infections
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4.4. Scenario 1: Application of the Vaccination control after detecting 200 infections

(Imin = 200). Fig8 and Fig.9 show the evolution of susceptible individuals in the 9 regions by

applying the vaccination strategy in a zone after detecting 200 infected people from all regions.

The regions C1, C2, C4,C5 and C6 surrounding the Casablanca region decrease rapidly after

the moment i = 50. The regions which are less distant from C4 remain constant, then decrease

rapidly towards 0.

For regions C3 and C8, the susceptible decrease very rapidly towards 0 from the moment

i = 100. Finally, the regions C9, which remain constant until i = 150, then converge towards 0.
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After neglecting the weak presence of susceptible in the different regions, which does not

exceed 104 in Casablanca C4, and 103 in the other regions (less than 1 of the total population of

each region), we can say that after the introduction of a vaccination control after the detection of

200 infected, leads to an almost total disappearance of susceptible from all regions, the evolution

of Susceptible in the presence of control from 200 infected (maximum number of regional

infected 252 infected) is less important compared to infected in the absence of vaccination

control (between 9600 and 76800 infected).

FIGURE 10. infected with the Vaccination control after detecting 200 infections
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FIGURE 11. Infected with the Vaccination control after detecting 200 infections
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Fig.11 and Fig.10 show the evolution of infected individuals in the 9 regions by applying the

vaccination strategy in a zone after detecting 200 infected.
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We see in Fig.10 that the number of infected increases up to its maximum value which

exceeds 200 infected people from all regions after that it starts to decrease.

The introduction of the control after the ditection of 200 infected, leads to decrease the

infection and to keep the number infected always lower than 252 infected. It is quite clear

in card Fig.11 that the infection that started from casablanca has spread to the farthest regions.

The evolution of infected in the presence of control from 200 infected (maximum number

regional is 252 infected) is less important compared to infected individual in the absence of

vaccination control (between 9600 and 76800 infected)

Through the map Fig.11, we note that the disease spreads from the affected region and crawls

in the direction of the surrounding regions.

FIGURE 12. romoved with the Vaccination control after detecting 200 infections
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FIGURE 13. Removed with the Vaccination control after detecting 200 infections
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Fig.12 and Fig.13 show the geographical progression and graphs of the cases recovered in the

9 regions by applying the vaccination strategy from 200 infected. We observe that the regions

closest to C4 begin to grow from the moment i = 120 reach their maximum values.

We show the geographical progression and graphs of the cases recovered in the 9 regions

by applying the vaccination strategy from 200 infected. We observe that the regions closest to

C4 begin to grow from the moment i = 50 and reach their maximum values between 1.5 105

and 7 105 while the region C4 reaches the maximum of the recovered value about 3.3 106, the

regions less far from C4 only grow from the moment i = 60 with maximum values between

1.5 105 and 5 105. On the other hand, the end region begins to grow at the instant i = 80. Once

the number of infected exceeds 200 cases in a region after reaching a certain time, the number

of recovered increases very quickly to reach a maximum value and remains constant after this

value which exceeds 1.5 105 cases, however without control it does not exceed 200 boxes.

The evolution of Recovered in the presence of control from 200 infected (maximum regional

number recovered at the final time i= 200 is greater than 10,000 Recovered) is greater compared

to the recovered individual in the absence of vaccination control (maximum regional value of

200 infected), so we can say that the introduction of vaccine control caused a disappearance of

susceptible that we can say that they all became Removed if we neglect the small number of

infected.

4.5. Scenario 2: Application of the Vaccination control from the beginning of the epidemic

(Imin = 0). In this scenario we assume that the epidemic is well known in other places, thus, we

apply the control interventions from the declaration of such epidemic.

FIGURE 14. Susceptible with the Vaccination control after detecting 0 infections
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FIGURE 15. susceptible with the Vaccination control after detecting 0 infections
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Fig.14 and Fig.15 represent the evolution of susceptible individuals in the 9 regions when

applying the vaccination strategy without setting a threshold for infected cases. We note that

all the regions except the metropolitan region C4 know an extreme fall of the susceptible

populations, which is canceled very quickly from the instant i = 25. For the region C4 remains

at the beginning constant with a value of 3.3 106, then decreases from the instant i = 10 and

is canceled by the instant i = 25. Without the threshold for infected people, the susceptible

decreases very quickly towards zero, however for the other strategies, the infected must reach

the threshold set to begin to decrease.

FIGURE 16. infected with the Vaccination control after detecting 0 infections
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FIGURE 17. Infected with the Vaccination control after detecting 0 infections
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Fig.16 and Fig.17 show the evolution of the infected in the 9 regions by applying the vaccination

strategy from the beginning of the epidemic. The number of infections in all regions except

regions C4, C5, C6 and C7 remains almost zero throughout the vaccination period. In the regions

C5, C6 and C7 the number of infected increases from 0 without exceeding 6 infected from the

moment i = 10 decrease until the end of the vaccination. For region C4 the number of infected

rises from 100 cases to 113 at time i = 20 and then decreases slightly to reach the value of 100

cases at the end. The infected in the region have a weak growth of 13 cases from times i = 10

and decrease until the end. Without the threshold of infected, the number of infected does not

exceed 130 cases, but the cost will be very high than of the other scenario.

FIGURE 18. romoved with the Vaccination control after detecting 0 infections
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FIGURE 19. Removed with the Vaccination control after detecting 0 infections
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Fig.19 and Fig.18 show the geographical evolution and graphs of the recovered populations in

the 9 regions by applying the vaccination strategy without setting any threshold of infection. All

regions except the region C4 recognize a progression of these recoveries from the start to reach

maximum values at the instant i = 15 and remain constant throughout the period of control.

On the other hand, for C4 it remains almost zero at the beginning until the time i = 10 to starts

to grow and reaches its maximum value about 3.3 106 at the instant i = 35, and then remains

constant until the end of the period of vaccination. Without the infected threshold, the recovered

quickly grows towards its maximum value, however for the other scenario take some time to

increase.

5. CONCLUSION

In this paper, we devised a novel optimization approach that represents an extension of

the optimal control approach studied in the work of Zakary et al. in the paper [12]. We

applied this new approach to a multi region discrete epidemic model SIRS which has been

firstly proposed in [10]. We suggested in this article, a new analysis of infection dynamics

in M regions which we supposed to be accessible for health authorities. By defining new

importance functions to identify affected zones and then will be treated. We investigated the

effectiveness of optimal vaccination control approach, we introduced into the model, control
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functions associated with appropriate control strategies followed in the targeted regions by mass

vaccination campaigns by considering different scenarios. Based on our numerical simulations,

we showed the geographical spread of the epidemic and the influence of each region on another

and then we deduced the effectiveness of each strategy followed. We concluded that the last

scenario of optimal control approach when Imin = 0 has given better results than the other cases

regarding the maximization of the number of removed individuals and minimization of the

spread of infection in all regions studied, but this is clearly the most expensive scenario. Thus,

as a result, it is necessary to define small thresholds to control the situation as much as possible.
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