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Abstract: Diagnostic chest radiography is one of the most common imaging tests performed in medical practice. A 

radiology workflow goal is to detect, diagnose, and manage diseases using chest radiography in an automated, timely, 

and accurate manner. Radiography data have proved very effective for assessing COVID-19 patients, particularly for 

treating overcrowded emergency departments and hospitals. The use of Deep Learning (DL) methods in Artificial 

Intelligence (AI) has become dominant in detecting diseases via chest X-rays. This study utilized the COVID-19 

Radiographic Database and the National Institutes of Health (NIH) Chest-Xray to study pre-training fine-tuning of the 

DL model on chest radiographic images. We investigate the robust network architecture in detail: DenseNet-121, in 

this dataset dual technique to improve insight into the different methods and their application to chest X-ray 
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classification. Consequently, this dual dataset technique is able to provide better detection results for each cluster of 

lung diseases. AUC results obtained using DenseNet-121 reached an average of 82.16 percent, with the highest AUC 

reaching 99.99% in the cluster containing Viral Pneumonia lung disease. 

Keywords: chest radiography; lung disease; deep learning; image augmentation; transfer learning. 

2010 AMS Subject Classification: 93A30, 65D18. 

 

1. INTRODUCTION 

Corona Virus Disease 19 (COVID-19)  [1]–[3], a disease that has become a serious health 

concern for the entire world, can cause respiratory problems, heart infections, and even death [4]. 

In response to intensified travel between countries, the World Health Organization (WHO) 

declared the disease a global pandemic on March 11, 2020 [5], [6]. COVID-19 causes lungs to 

deteriorate and mutate before treatment is administered to patients based on a diagnosis. Therefore, 

lung examinations by radiologists are important for people who are experiencing COVID-19 

complications [7], [8]. Only 1,578 of the approximately 41,000 specialist doctors in Indonesia are 

radiologists, according to the chairman of the MKKI IDI, David S. Perdanakusuma in 3,000 

hospitals and 10,000 community health centers [9]. Nevertheless, there are still discrepancies in 

the distribution of specialists with the provinces of Papua, Maluku, Nusa Tenggara, Sulawesi, and 

DIY, North Sulawesi, reporting the highest disparity levels. Therefore, there are not as many 

specialists as there are hospitals in Indonesia [10]. 

A diagnostic tool based on advanced technology is absolutely necessary for today's era [11]. 

Physicians who specialize in radiology are known as radiologists and use imaging techniques to 

detect, diagnose, and treat disease by using imaging procedures, like X-rays, CT scans, magnetic 

resonance imaging (MRI), nuclear medicine, and ultrasound [12]. Boosting the number of 

radiologists is crucial to solving the problem of the increased technology of medical devices 

without also increasing the number of radiologists. This is especially true since radiology is often 

crucial for diagnosis [13], [14]. 

Worldwide, approximately one billion radiation studies are conducted each year [15]. 

Additionally, physicians are often in agreement that medical imaging should be led by radiology 
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[16]. In this way, the right diagnosis is important for the success of therapeutic or treatment action, 

since misdiagnosis can lead to ineffective treatments or even death if the diseases are not correctly 

diagnosed. 

A solution to the uneven distribution of specialists in Indonesia can be using artificial 

intelligence (AI) technology in hospitals [17]. Recent decades have seen technological advances 

in healthcare [15]. It has been demonstrated that AI is capable of improving healthcare delivery 

and management, clinical decision support, and personalized medicine [16]. A possible future 

application of AI in medicine is working alongside doctors [18]. 

Additionally, AI can help reduce and eliminate factors that cause a human error, such as fatigue 

[19], and increases the accuracy of doctors' diagnoses. To assist radiologists, a lung disease 

detection information system with AI technology has been created. A doctor can use this 

information system to support their diagnosis by automatically detecting lung disease. In addition 

to using the results to determine which patients are worth a more thorough examination, the results 

will also be employed as an initial screening tool for doctors. A deep learning [20] model was 

developed for increasing the accuracy and consistency of early detection [18]. 

Infections caused by COVID-19 can be quickly assessed using medical images and artificial 

intelligence (AI) [21]. Hence, with limited data, an AI technique is urgently needed to classify 

COVID-19 images in a short time period. Its power for image classification has been demonstrated 

with superhuman accuracy and depth by deep learning. The availability of large datasets with 

quality ground-truth annotations is one major challenge in the medical domain. This problem can 

often be overcome by the transfer learning approach [13], [22], [23]. 

A chest radiograph classification task with two datasets is assessed as part of this paper. Image-

based classification is the only measure we use to compare algorithms and radiologists. 

DenseNet121 [24], a deep Convolutional Nueral Network (CNN) [25] architecture, was trained 

and validated on training and validation sets, and then evaluated on the test set based on the 

attending radiologists' labels. The performance of the model was evaluated using receiver 

operating characteristic (ROC), AUC, and precision-recall (PR) curves, and confusion matrix 

analysis. In this study, we present a relatively simple but robust performance finding of 
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DenseNet121 that could enhance the accuracy of classifying COVID-19 Radiographs and the 

National Institutes of Health (NIH) Chest X-Ray Database using minimal training. 

 

2. RELATED WORK 

The medical field has shown impressive performance with Deep Learning (DL) models [14], 

[26], [27]. Therefore, the main purpose of DL is to detect lung disease infections in multiple ways. 

Several researchers have employed CNN to speed up the analysis of lung disease infected images 

[18]. An artificial intelligence (AI)-based model was developed by using chest radiographs, 

followed by testing it on an independent cohort, and achieving 0.973 screening accuracy for 

pneumoconiosis and 0.927 staging accuracy for pneumoconiosis, respectively [28]. Systemic 

sclerosis patients with interstitial lung disease can be diagnosed using deep learning methods 

similar to those used by radiologists [29]. Deep learning-based algorithms can also be developed 

to detect chest radiographs that indicate major thoracic diseases and exhibit high and consistent 

performance [30]. A new hybrid deep learning framework called VDSNet was successfully used 

to detect lung diseases from X-ray images with a validation accuracy score of 73% without having 

to extend training time [31]. 

Initially, COVID-19 labeled datasets were suitable for practical implementation by downloading 

from open access repository [32], [33]. Chest X-Ray 14 is a dataset made publicly available that 

includes fifteen classes: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, 

Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, 

Hernia, and No Finding images. Machine learning and deep learning are used to analyze data and 

to create models for diagnosing patients [33]. Using the well-known pre-trained model for CNN, 

we can make the best prediction possible about patients based on their X-rays. 

Refer. [26] describes comprehensive studies on the detection of consolidation using 

DenseNet121 and VGG 16 [34]. Clinically significant pulmonary masses/nodules can be detected 

on chest X-ray images by a deep learning-based Computer Aided Design (CAD) system. 

Furthermore, an approach based on deep learning is also described in Ref. [28] where several 

methods have been applied, such as DenseNet121, AlexNet [35], Inception V3 [36], etc., to 
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diagnose pneumonia [37]. Nevertheless, implementing the methods of these methods is extremely 

complex in terms of parameter tuning. The accuracy rate of DensNet-121 for lung lesions was 

98.88%. With the traditional DenseNet-121 method for lung lesions, which uses ReLU and SGD, 

this accuracy rate is higher—81.06%, 81.14%, 80.74%, and 80.86% respectively. A traditional 

DenseNet-121 method produced false predictions for 8 images showing an image of a normal 

condition and 8 images showing an image of a lung disease. However, true predictions included 

224 images of a normal condition and 340 images of lung disease  [38].  

The data is not preprocessed or augmented because of the large training loss. It is based on an 

image augmentation model. Due to proper augmentation and weighted losses, the model is more 

accurate overall than our former best model [39]. 

 

3. MATERIAL AND METHODS 

3.1. Dataset 

Our study used a combined dataset from two public databases (Kaggle) to classify images. 

Firstly, we provide another chest X-ray dataset named COVID-19 Radiography Database [40]. 

Through the Kaggle API, we were able to extract the data directly from Kaggle. In this dataset, 

3616 COVID-19 positive cases are represented along with 10,192 normal and 6012 lung opacities 

(non-COVID lung infections), as well as 1345 cases of viral pneumonia. Figure 1 shows the 

example of chest X-ray images of COVID-19, lung opacity, viral pneumonia, and normal subjects 

provided by the COVID-19 Radiography Database. 

FIGURE 1. Example of Chest X-Ray Images of (a) COVID-19, (b) Lung Opacity, (c) Viral 

Pneumonia, and (d) Normal. 

 

 



6 

MULJO, PARDAMEAN, PURWANDARI, CENGGORO 

 In the second dataset, National Institutes of Health (NIH) Chest X-rays [41] have been 

analyzed according to 14 different lung conditions. A total of 112,000 chest X-ray images taken 

on more than 30.000 unique patients are available through NIH Chest X-rays. An example of a 

Chest X-ray obtained from the NIH Chest X-rays Dataset is shown in Figure 2. 

FIGURE 2. Variation Chest X-Rays of Lung Disease from NIH Chest X-Rays Dataset 

 

Our DenseNet121 model was trained on three categorizations of the dataset. First, the images 

were categorized using a combination of images taken from COVID-19 Radiography and the NIH 

Chest X-rays dataset (133.280 observations). Further, the second category consists of the original 

COVID-19 Radiography dataset (21.165 observations), while the third category pertains to the 

original NIH Chest X-rays dataset (112.115 observations). 

3.2. Data Preparation 

By altering the original training set image, augmentation contributes to increasing the diversity 

of the training data set. Ultimately, this allows the model to more accurately predict new images 

and expands the size of the training data set. This x-ray dataset is trained with augmentation data, 

including random horizontal flip, scaling of 224 pixels, center crop of 224, normalization with 

mean = [0.485, 0.456, 0.406] and standard deviation = [0.229, 0.224, 0.255]. In the meantime, the 

data validation and testing are done with the same augmentation data as the training data, but do 

not follow the random horizontal flip augmentation process. 

 Each process loads image data according to the fold specified in the dataset. During training, 

testing, and validation, every category of data is loaded by the data loader. A data loader tool makes 

it possible to load data regularly from the front. 
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3.3. Deep Learning 

In this study, pre-training for DenseNet121 was selected. DenseNets are beneficial, as they 

reduce the missing gradient problem, strengthen feature propagation, stimulate feature reuse, and 

reduce the number of parameters. DenseNet121 transfer learning architecture and parameters are 

schematically depicted in Figure 3. 

FIGURE 3. DenseNet Structure Concept 

 

In a composite function operation, an output from one layer becomes an input from another. 

There are four components to this composite operation: a convolution layer, a pooling layer, a 

batch normalization layer, and a non-linear activation layer. Direct connections of this type are 

defined as having L(L+1)/2 connections. In architecture, L is the number of layers. Several 

versions of DenseNet exist, such as DenseNet-121, DenseNet-160, or DenseNet-201. Numbers 

indicate the number of layers in a neural network. In order to compute 121, follow these steps: 

DenseNet-121:  5 + (6+12+24+16)*2 = 121 

   5 – Convolution and Pooling Layer 

    3 – Transition Layers (6,12,24) 

   1 – Classification Layer (16) 

   2 – DenseBlock (1x1 and 3x3 conv) 

In any case, the addition or concatenation of layers requires the same dimensions in the feature 

map. DenseNet consists of DenseBlocks, each with a number of filters, but dimensions within the 



8 

MULJO, PARDAMEAN, PURWANDARI, CENGGORO 

block are the same. Downsampling is applied in the Transition Layer to achieve batch 

normalization; it's an essential step in CNN. Figure 4 illustrates the DenseBlock inside and the 

transition within it.  

FIGURE 4. DenseNet with DenseBlock and Transition Layer for Chest X-Ray Classification 

 

By changing the filter count, the channel size increases between the DenseBlocks. It is 

important to generalize the first layer by using the growth rate (k) as shown in equation (1). 

Essentially, it decides how much info to add to each layer. 

𝑘[𝑙] = (𝑘[0] + 𝑘(𝑙 − 1))                                     (1) 

 X-ray images of the chest were converted to RGB images and finally resized so they would 

fit into each pre-trained CNN. For the training option, stochastic gradient descent with momentum 

optimizer is used, where momentum value = 0.9; weight decay = 0.0001; minimum batch size = 

50; a maximum number of epochs = 100; early learning level = 0.01; constant learning rates are 

used throughout; randomizing the training and validation data is performed before each training 

period. 

3.4. Evaluation Metrics 

 1. Confusion Matrix 

Confusion matrices and contingency tables are two types of structures used to explain 

classification decisions. There are four categories of confusion matrix: True positives (TP), 

which are example of positives classified correctly. Positive examples mistakenly labelled as 

negatives are known as false positives (FPs). A true negative (TN) is a negative that was 
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correctly classified. Finally, false negatives (FN) refer to positive examples that have been 

improperly labeled as negative. ROC space or PR space can be constructed by using the 

confusion matrix [42]. 

2.  Area Under Curve (AUC) 

Generally, an AUC > 50% indicates a performance better than chance, while an AUC closer 

to 100% indicates a model that performs as well as possible. AUC values are generally used 

as a way to assess the accuracy of diagnostic tests. AUC values within the range of 0–1 can 

be considered as accurate [43].  

AUC values that approach 1 indicate that the diagnostic test is improving. Based on the 

accuracy values interpreted in the table, there are five accuracy categories: values 50% - 60% 

(very weak), 60% - 70% (weak), 70% - 80% (moderate), 80% - 90% (strong), 90% - 100% 

(very strong). Accordingly, AUC values are: >50% - 60% (very weak), >60% - 70% 

(weak), >70% - 80% (moderate), >80% - 90% (good), >90% - 100% (very good).  A positive 

predictive value is a measure of the likelihood that a person will develop disease if they test 

positive. People who test negative for disease have a negative predictive value, which indicates 

there is no disease present. Clinical interpretation of a test result requires the presence of 

positive predictive value. Values based on sensitivity and specificity are influenced by other 

factors as well, such as prevalence (prior probability), which varies with different situations. 

Additionally, likelihood ratios can be used as a measure of examination accuracy [44]. 

3.  Receiver Operating Characteristic (ROC) Curve 

ROC analysis is used to describe, organize, and classify several categories in a statistical 

model based on their results. Through diagnostic testing, ROC curves are used in the medical 

field to analyze decision-making. The ROC graph displays the relationship between True 

Positive Rate (TPR), also known as Sensitivity (Y-axis), and False Positive Rate (FPR), also 

known as Specificity (X-axis). An unbiased probability value (0,0) on the ROC graph means 

that it never shows a positive result, meaning that the classification never produces false 

positives or true positives [45]. 

4.  Precision-Recall (PR) Curve 

Precision-Recall Curve can be used as a method of drawing performance curves for classes 
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with positive attributes (which are typically found on minority scales). Using the confusion 

matrix, a formula is developed to produce the curve. This value is used to calculate precision 

and recall. When dealing with unbalanced classes, it is critical to focus on positive class 

performance. In PR, reaching the top right corner (1,1) is the goal. Accordingly, the top right 

corner indicates that 100% of the positives (Remember = 1) equal zero Positive False, and the 

true positives (Precision = 1) equal zero Positive True [46]. 

 

4. EXPERIMENTAL SETUP 

4.1. Dataset Splitting 

Pareto ratio-based testing was applied to 20% of the whole dataset. Another split of the remaining 

datasets has been done using Pareto principle for training and validation (80% is training, 20% is 

validation). 

4.2. Pre-processing 

A small dataset usually overfits DL models. To achieve good generalization and effective training, 

there must be enough data. By incorporating multiple variations in the base dataset, data 

augmentation is an effective method of improving the generalization of the learning model. 

Different types of transformations are applied to the training samples in this study, including 

horizontal and vertical reflections, rotations, and shears. 224x224x3 images have been resized 

before being assigned to CNN for training. 

4.3. Model Implementation Detail 

An end-to-end method was used to train deep CNN models. For reducing the cross-entropy loss, a 

stochastic gradient descent (SGD) algorithm was employed. Identifying class probabilities was 

achieved using Softmax. Piecewise learning rate scheduler was used for this training with an initial 

value of 0.0001 and a momentum of 0.95. On NVIDIA GPU Tesla P100, the training time for 1 

epoch was 1 hours. For each of the three datasets, the implemented models were trained and 

evaluated on an unseen test set. 

4.4. Working Environment 

Pytorch was used to build CNN models, and the DL library was used to simulate the models. The 

experiments were performed on a NVIDIA Tesla P100 computer which has 149 GB RAM, along 

with a CUDA enabled GPU. 
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5. RESULT 

This lung classification was based on multi-class results. DenseNet121 predicts the results for 

each class by a probability. Based on this X-ray dataset, it can be said that the best classification 

result would be that with the highest probability. Table 1 displays that the "effusion" class received 

the highest results compared with the rest. 

Lung Disease Predicted Probability 

Cardiomegaly 0.2747 

Emphysema 0.0132 

Effusion 0.4216 

Hernia 0.2046 

Infiltration 0.0336 

Mass 0.0156 

Nodule 0.0141 

Atelectasis 0.0265 

Pneumothorax 0.1044 

Pleural_Thickening 0.0268 

Pneumonia 0.0211 

Fibrosis 0.0038 

Edema 0.0195 

Consolidation 0.0002 

Viral Pneumonia 0.0009 

Normal 0.0005 

Lung_Opacity 0.0024 

COVID 0.0042 

TABLE 1. Probability prediction of combined X-ray dataset. 
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Using a combined dataset, Figure 5 shows the training processes of transfer learning. As 

illustrated in Figure 6, the training process of transfer learning applies to the CXR Dataset, while 

Figure 7 shows the transfer learning process using the COVID-19 Dataset. Learning curves 

calculated from a training dataset provide an indication of how well the model is learning, as well 

as those calculated from a hold-out validation dataset providing an indication of how well the 

model generalizes. 

Typically, two learning curves are created during the training of a machine learning model on 

both the training and validation data. This shows that overfitting occurred when the DenseNet121 

model was used for learning the data. 

FIGURE 5. Learning Curve of CXR Dataset and COVID-19 Dataset 

 

FIGURE 6. Learning Curve of CXR Dataset 
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FIGURE 7. Learning Curve of COVID-19 Dataset 

 

 

Table 2 shows the results of AUC in each dataset categorization. Results in most classes have 

significantly increased with the use of original NIH Chest X-rays dataset compared with a 

combination of both, with the exception of Cardiomegaly. Nevertheless, there have been increased 

examinations using a combination of COVID-19 and the radiography dataset in all subjects. 

Additional datasets with varied classes have been used to prove the DenseNet121 model's success. 

Lung Disease AUC of NIH 

Chest X-rays 

AUC of COVID-19 

Radiography Database 

AUC of NIH Chest X-rays + 

COVID-19 Radiography Database 

Atelectasis 0.733637 - 0.754644 

COVID - 0.999272 0.999897 

Cardiomegaly 0.837207 - 0.829576 

Consolidation 0.707358 - 0.732540 

Edema 0.823728 - 0.835363 

Effusion 0.796364 - 0.812568 

Emphysema 0.773421 - 0.817715 

Fibrosis 0.752721 - 0.772040 

Hernia 0.742819 - 0.791765 
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Infiltration 0.671275 - 0.712099 

Lung Opacity - 0.983737 0.999177 

Mass 0.718600 - 0.757600 

Module 0.673160 - 0.702578 

Normal - 0.982174 0.998693 

Pleural Thickening 0.705496 - 0.739807 

Pneumonia 0.687467 - 0.709697 

Pneumothorax 0.800954 - 0.824159 

Viral Pneumonia - 0.998409 0.999947 

TABLE 2. Comparison of AUC of Three Dataset Categorizations Using 100 Epochs. 

 

In both "Emphysema" and "Viral Pneumonia", the drain was chosen as the main feature. We 

have visualized the heatmap of the factors most responsible for the final prediction. As seen in 

Figure 8(a) and 8(b), the highest activations are found around the drain in the sample test set from 

"Emphysema" and "Viral Pneumonia", respectively. Hence, DenseNet121 has been trained to 

detect both an acute Emphysema and a Viral Pneumonia as well as chest drains.  Typically, our 

proposed model can be found at the location of the lung abnormality that warrants a diagnostic 

assessment. It is located in the part of the lung that changes from white to black when a patient has 

emphysema. Those suffering from Emphysema typically suffer from swelling of small air sacs 

within the lungs (alveoli). Emphysema conditions cause more than just swelling to the alveoli, as 

their elasticity can be lost. Additionally, Emphysema can also be classified as an obstructive 

chronic lung disease [47]. A viral pneumonia disorder occurs when the lungs become infected with 

certain microorganisms, and the alveoli that should be filled with air become filled with fluid or 

pus. Fluid buildup can cause white patches on the lungs in several locations as a result of lung 

changes [48]. 
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FIGURE 8. Result of Grad-CAM from Emphysema (a) and Viral Pneumonia Class (b) 

 

FIGURE 9. Precision-Recall of Each Class 
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On the basis of Figure 9, it is shown that the class curves of 14,15,16, and 17 achieve a balance 

between recall and precision of 0.998, 0.989, 0.966, and 0.999, respectively. Perfectly skilled 

models are represented as points at coordinates (1,1). Using the DenseNet121 model, the PR curve 

appears to produce the same results as the ROC curve. 

FIGURE 10. ROC of Each Class 

 

The 18 curves in figure 10 demonstrate sequential colour degradation, from dark blue to dark 

red. By interpreting the image above, it can be concluded that the orange, orange, bright red and 

dark red curves have superior performances than the others, namely classes 14, 15, 16, and 17 

(viral pneumonia, normal lung, lung opacity, and COVID areas). Using this approach, the 

DenseNet121 model can be used to determine whether or not the techniques used to solve cases of 

lung disease classification are appropriate. Additionally, if you want to compare the curve's 

performance value numerically, the area under the curve (AUC) can be used. Clearly, the AUC is 
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the same as that found in table 2 judging from Figure 10. 

FIGURE 11. Confusion Matrix Result 

 

Despite our proposed network architecture achieving high AUC values in several categories 

of the NIH Chest X-ray dataset and all categories of the COVID-19 Radiography dataset, its 

usefulness in a clinical setting depends greatly on the availability of training and evaluation data. 

Specifically, the NIH dataset has significant label noise and the manner in which the label is 

interpreted by doctors. It has been noted that in the ChestX-ray14 dataset, the class 

"pneumothorax" is sometimes used for cases that have already been treated (i.e. the image shows 

the drain used to treat the pneumothorax). According to the confusion matrix in Figure 11, many 
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classes in the NIH dataset are predicted to be "Viral Pneumonia" lung diseases. It can be stated 

that "Viral Pneumonia" corresponds to a variety of lung diseases. 

 

6. DISCUSSION 

Providing evidence for the effectiveness of CNN-based transfer learning with DenseNet121 

and dual datasets to diagnose lung diseases is the main objective of this study. These architectures 

have the biggest benefit of alleviating the vanishing gradient problem, strengthening feature 

propagation, encouraging feature reuse, and reducing the number of parameters.  Additionally, 

CNN architectures based on transfer learning have become increasingly popular because of their 

increased accuracy. Therefore, it is increasingly common for machine learning methods to be 

combined with different pre-trained models [49]. 

Deep learning generally has the disadvantage that generalizations are heavily reliant on 

training data. COVID-19 has infected millions of people around the world today. Therefore, it is 

not certain whether the proposed deep learning-based studies will be successful on CT images 

from a different patient. By using millions of images during the training process, this uncertainty 

can be overcome. A data augmentation technique can increase the number of CT images and the 

accuracy of classifying them. However, these results do not provide as much learning as real-life 

examples do. For a general and real success, there should be an increase in image data and training. 

Data limitations make it impossible to obtain a true picture of success. In addition to requiring a 

more powerful computer, adding more data increases the training time. Despite its high success, 

the DenseNet121 structure proposed in this study uses transfer learning as its infrastructure. 

Additionally, ANN-based segmentation performed in the application does not separate the lungs 

from each other. Although the extracted features more accurately represent the infection than the 

raw images, segmenting both lung images by region would provide a more accurate estimate of 

the infection. 

A model that has overfitted may have learned the training dataset too well, despite the statistical 

noise or random fluctuations in the dataset. An overfitted model will have more difficulty 
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generalizing to new data the more specialized it becomes to the training data, increasing the 

generalization error. The performance of the model on the validation dataset can be used to 

measure the increase in generalization error. It has been shown that more and more specialized 

models require greater generalization errors as they become less able to generalize to new data as 

they become more specialized to training data. The performance of the model on the validation 

dataset can be used to measure the increase in generalization error. As a result, too much flexibility 

may result when the model has more capacity than what is needed for the problem. An overly long 

training period can also result in this. Training could be halted at the point at which the validation 

loss inflection point occurs, as the dynamics of overfitting are evident after that point [50], [51]. 

 

7. CONCLUSION 

An automated analysis of chest X-ray data and a COVID-19 chest X-ray dataset was 

developed in this work to detect lung diseases. The X-ray images we used for this study were 

publicly available and consisted of 133,280. DenseNet121 trained on images 224*224*3 to ensure 

accurate classification. 82.16 % of lung diseases can be detected by this model. For more accurate 

identification of lung diseases, we intend to investigate chest X-rays and combine them with other 

models to perform experiments. In order to prevent the spread of lung disease to others, it is 

extremely important to detect lung disease as early as possible. COVID-19 chest X-rays were used 

with four classes and general chest X-rays with 14 classes in this study. 

Having a DenseNet learning structure with the residual concept in it is the reason the proposed 

model has this learning structure. A chest X-ray image can be used to diagnose COVID-19 disease 

using an automatic model that allows for the detection of lung diseases without the need for 

handcrafted feature extraction techniques. Fast, stable, and easy-to-use software can therefore help 

the radiographer make better decisions. Consequently, the radiologists' workload is reduced, and 

misdiagnoses are prevented. 

In future research, even though the dual dataset method is successful, a more advanced deep 

learning method will be proposed for lung disease detection. In the first study, more datasets will 



20 

MULJO, PARDAMEAN, PURWANDARI, CENGGORO 

be collected to increase efficacy. As is common knowledge, deep learning success is strongly 

influenced by the quantity of labeled data available. So this research will combine generative 

adversarial networks (GANs) with deep neural networks (DNNs). A study is also planned to 

develop a more robust CNN-based lung segmentation. 
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