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Abstract : The aim of this paper is the study of the influence of the viscosity on the oscillations of a 

heterogeneous liquid in a container. Above all, it is proved that the presence of viscosity removes the essential 

spectrum which appears in the case of a heterogeneous inviscid liquid.  From the equations of the system 

container-liquid, we deduce the variational equation of the problem, and then an operatorial equation in a suitable 

Hilbert space. The study of the normal oscillations is reduced to the study of an operator bundle whose kind is well 

known. We obtain an infinity of a periodic damped motions and, for sufficiently small viscosity, a finite number of 

oscillatory damped motions. The existence and uniqueness of the associated evolution problem are then proved 

using the weak formulation. 
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1. Introduction 

Studying small oscillations of a container, partially filled by a heavy liquid is a subject of a 

great interest in engineering for example: construction of tanks, of trucks for the companies 

of transport of liquids, double-skin construction of ships, etc. 

The theoretical results are very important for numerical and experimental calculations of 

hydroelastic properties and dynamic characteristics of such structures. 

The case of an immovable container with homogeneous and viscous heavy liquid has been 

studied by many authors: [1], [2], [9]. 

The problem of a heterogeneous ideal heavy liquid was studied at first by Rayleigh by 

considering the density of the liquid in equilibrium under the form   3

0 3

x
x ke

 
 [10]. 

It seems that the problem has been considered next by a limited number of authors [10], [7], 

[3], [4]. 

Moreover, Capodanno and his collaborators have studied the problem when the liquid is 

inviscid and " almost homogeneous”, ( i.e its density in the equilibrium position is a linear 

function of the depth,  which a little from a constant )  [5], [6]. This problem is more 

complicated because, in this case, an essential spectrum appeare, in contrast to the case of a 

homogeneous liquid, where the spectrum is entirely discrete. 

The aim of this work is to prove that the presence of the viscosity removes the essential 

spectrum. 

After writing the general equations of motion of the liquid, we linearize the problem 

assuming small displacements from an equilibrium postion. We reformulate the equations as 

a variational problem and finally as an operatorial problem involving non bounded linear 

operators on suitable function spaces. 

In this way, we reduce the problem to the study of a well-known operator bundle. There are 

an infinity of aperiodic damped motions and, for a sufficiently small viscosity, an at most 

finite number of oscillatory damped motions. 

Finally, using the weak formulation, we give an existence and uniqueness theorem for the 

solution of the evolution problem.  
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2. Position of the problem 

                    

           Figure 1                    Figure 2 

 

Let assume that a heavy heterogeneous liquid fills partially an immovable container and in 

the equilibrium state occupies a domain   that is bounded by the solid boundary S  and 

the free surface  .   is a plane that is orthogonal to the acceleration g of the gravitation 

field. As usual, we choose the system of coordinates 1 2 3Ox x x  such that 3g g x and its 

center O is located on the equilibrium surface   (Figure1).  

We are going to study the small oscillations of the liquid about its equilibrium position, 

obviously in linear theory. 

As usual, we are considering that the linearized velocities and accelerations are “true” 

velocities and accelerations, in order to avoid writing needless formulas in the following 

calculations. 

 

3. Equations of the motion  

We denote with  ,x tu the small displacement of a particle of the liquid which occupies the 

position x at the instant t  from its equilibrium position.  ,x t
,  ,P x t

are 

respectively the density and pressure. 

The coefficient of viscosity of the liquid at constant temperature   is function of the 

density   , we have       . 

The equations of the motion of the liquid can be written in the form: 
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 

 

ij

i i3

j

,
                    (i 1,2,3)

div 0                          in  (incompressibility) ,

P
u g

x
  



 
 
   




 

u

u

      (3.1) 

where  ij ,P  u are the components of the stress tensor and 
ij indicates the Kronecker’s 

symbol.  

We add the laws between the stresses and the velocities of deformation: 

 

     ij ij ij, 2P P          u u ,              (3.2) 

where    ji
ij

j i

uu1

2 x x


 
     

u  are the components of the tensor of the velocities of 

deformation. 

We write the linearized Navier-Stokes equation of the motion of the liquid in the 

following form: 

    

 

i ij i3

j i

2      (i 1,2,3)

div 0                          in    (incompressibility) ,

P
u g

x x
     


     

      



 

u

u

      (3.3)  

We must add the continuity equation   

 div 0        in 
t







  


u                   (3.4) 

Since  div 0 u , the equation (3.4) becomes 

0       in 
t







   


u grad                    (3.5) 

On the other hand, in linear theory, we can integrate the equation  div 0 u  from the date 

of the equilibrium position to the instant t , and we obtain 

 div 0          in  u                 (3.6) 

 

 Now we consider the boundary conditions: 
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i) The no-slip condition at the rigid wall S is: 

0
S
u ; 

in the same way, we can replace it by 

 0
S
u ;                         (3.7) 

In the following we denote by  n  the unit vector of the external normal to  . 

 

ii)  In order to write the dynamic conditions, we consider the linearized 

equation 3 n
ux


  of  the free moving surface t  (Figure2), then we must have 

 
j jt t, n = nij aP p u  on  t                 (3.8) 

where ap is the atmospheric pressure, which is assumed to be constant. 

Taking into account the equation (2.3), the equation (3.8) becomes 

 
j iij ij t t2 n n

t aP p   


    
 

u  on t                 (3.9) 

This equation can be be written, since the coefficients of the 
jtn are small: 

   i ij jn 2 n 0
t aP p   

   u  on                    (3.10) 

On  , we have 1 2n n 0  , 3n 1 , and from (3.10), we can deduce 

   

     

13 23

33

0,  0

2 0
t aP p

 

    



  

   

u u

u
  on                (3.11) 

 We are going to study the equilibrium of the system: 

If 0 and stP are the density and the pressure of the liquid in the equilibrium position, we have 

0 3 stP g grad x , 

so that stP and 0 are functions of 3x  , with 

 3
0 3

3

d ( )

d

stP x
x g

x
  ,                      (3.12) 
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We have  

 
3

0
0

d
x

st aP g w w p    

Setting 

3

0 3 0
0

( ) ( )d
x

R x w w  ,                     (3.13) 

we can write 

 0 3st aP gR x p   ,                     (3.14) 

and     0 (0) 0R  ,  0 3 0 3( ) ( )R x x  
 

 

 Finally the Navier - Stokes equations take the form: 

  i

i 0 3 i3

j

u x g
x


    


  


j
 in              (3.15) 

where    , , stp x t P x t P  , is the dynamic pressure, and  ij ij ij2p      u . 

The equations (3.15), (3.5), (3.6), (3.7), (3.11) are the equations of the small motions of the 

system. 

From these equations we want to deduce the variational equation of the problem. 

 

4. Formal variational formulation of the problem 

i) For a formal calculation, we introduce the space of the admissible  

displacements: 

  / div 0,  0
S

W   v v v , 

with  v  sufficiently smooth. This space will be précised later. 

By multiplying the i-th Navier-Stokes equation (3.15) for iv , by adding with respect to i, and 

by integrating on , we obtain 

 ij

i 0 3 3

j

v d v dd x g
x


   

  


          u v  

But 
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 ij i
i ij i ij

j j j

v
v d v d d

x x x


 

  

 
     

     , 

and the Green formula gives 

 ij i ij j i

j

v d n v d
Sx

  
 


   

   

From (3.11), we deduce 13 23 0    on ,  

on the other hand, we have 

 

33 33

0 3

2

     

     

     

t t

t

a

ast

p

p P p

P p

gR

  








 





  

   

 

  u

 

 

Taking into account that 0
S
v , we get easily 

   ij i ij j i 0 33

j

v d n v d u v dgR
x

 
  


       

    

As 
ij  are symmetric,  

 ji i
ij ij ji ij ij

j j i

vv v1
d d d

2x x x
    

  

  
          

   v  

therefore 

    i
ij ij ij ij

j

v
d 2 dp

x
    

 


    

  u v  

But  

     ij ij ii div 0    v v v , 

Finally, we have 

     i
ij ij ij

j

v
d 2 d

x
     

 


  

  u v

 

 

Therefore, we obtain the variational equation 
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       
 

ij ij 0 3 3

0 3 3

d 2 d u v d

v d 0

gR

x g

    

 

  

   





    


      

  



u v u v
 (4.1) 

 W v . 

ii) Reciprocally, we are proving that, from the equation (4.1), we can deduce the  

equations of motion and the dynamic boundary conditions of the problem. 

We take ( )xv sufficiently smooth in  , such that 0
S
v , but not verifying div 0v . 

Then, introducing a multiplier 0  associated to the constraint div 0v , we replace the 

equation (4.1) by 

       
 

ij ij 0 3 3

0 3 3 0

d 2 d u v d

v d div d 0

gR

x g

    

  

  

   



 

    


       

  

 

u v u v

v
     (4.2) 

Setting 

 ij ij ij
ˆ 2p      u

 

Taking into account that 
ij̂  are symmetric, we have 

 

    

i
ij ij ij

j

0 ij ij ij

v
垐 d d

                     2 d

x
  

    

 






  



  

 



v

u v

 

and therefore 

   i
ij 0 ij ij

j

v
ˆ d div d 2 d

x
    

  


   

  v u v  

Then the equation (4.2) becomes 

 

 

i
ij 0 i3 i3

j

0 3 i3 i

v
ˆd d u v d

v d 0

gR
x

x g

  

  



  






    


      

  



u v

    (4.3) 

On the other hand, and by applying the Green formula 

  ij i
i ij i ij

j j j

ˆ v
垐v d v d

x x x


 

 

  
      

    
   
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i
ij j i ij

j

v
垐 n v d d

S x
  

 


   

   

Taking into account that 0
S
v , the equation (4.3) bocomes 

   ij

i 0 3 i3 i ij j 0 i33 i

j

ˆ
ˆu v d n u v d 0x g gR

x


      

  

 
              

  (4.4) 

We take  
3

   v D (according to 0
S
v ), and we have 

 ij

i 0 3 i3 i

j

ˆ
u v dx g

x


    



 
        

 ,  
3

    v D  

therefore  

 ij

i 0 3 i3

j

ˆ
u 0x g

x


    


     

,  in   D ;  (i,j=1,2,3) 

Also, we deduce from (4.4)  

 ij j 0 i33 i
ˆ n u v dgR 

 

  
  , for every admissible v , 

then for arbitrary 


v .  

 We obtain 

 ij j 0 i33
ˆ n u 0gR 


   on  . 

Taking into account the definition of 
ij̂ , we have 

   0 i ij j 0 i33
n 2 n u 0gR   


  u   on   

Now for i=1, i=2,  we have respectively  

   13 230;  0  u u    on   

On the other hand, for i=3, we obtain 

   32 00 3
2 u 0gR  

 
  u . 

Setting 
0

p

   [15], we find the equations of motion and the dynamic boundary 

conditions. 

 

iii) In order  to give the variational equation in the case of the small motion, we  
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set: 

   0 3 , ...x x t       

 is the first order with respect to the amplitude of the oscillations and the dots indicate terms 

of higher order. 

The continuity equation is, at the first order 

  0 3div 0x
t





 


u  

or taking into account of  div 0 u : 

 0 3 0x
t





  


u grad  in  

Integrating from the instant of the equilibrium to the instant t , we obtain the linearized 

continuity equation  

 3 0 3u x                  (4.5) 

Since  ij u  is the first order, we can replace, in linear theory, the term 

     by   0 3x 
. 

On the other hand, we have the following equations 

       

     

03 3 3

0 3 3 0 3

0 ' 0 ... 0 ...;

, ... ...

R R R

x x t x



   

  



    

     

u u u

u

 

Since 
3 n

u u
 
 , we deduce the final variational equation of the problem 

        

   

0 3 0 3 ij ij

0 0 3 3 3n n

d 2 d

0 u v d u v d 0

x x

g g x

    

 



 

 

   



     

 

 Γ Γ

u v u v
         (4.6) 

W v . 

 

5.  Variational formulation of the problem 

Theorem 5.1.  The exact variational formulation of the problem is: to find Vu such that: 

       0 0 3 3 3n n
, , 0 u v d u v d 0

H V
g g x 

 
      Γ Γ

u v u v , V v     (5.1) 

Proof. 



MATHEMATICAL ANALYSIS OF THE SMALL OSCILLATION               11 

In the following, we shall assume that  0 3x ,  0 3x  and   0 3x 
 are sufficiently 

smooth functions. 

In this paragraph we are giving the exact variational formulation of the problem. For this 

reason we introduce the space (of the admissible displacements of the liquid): 

    
3

1 1 ;  div 0,  0
S

V H        u u u , 

equipped with the scalar product 

         
1/2

0 3 ij ij, 2
V

x d   


 u v u v

 

Its associated norm  . 
V

 is equivalent to the classical norm 
1

 . of  1   by virtue of  

Korn inequality and under the hypothesis about   0 3x 
 . 

We denote with H the functional completion of V for the norm associated with the scalar 

product 

   0 3,
H

x d


  u v u v
 

It is easy to see that the norme 
H

u is equivalent to the classical norm 
 2u

L
of 

   
3

2L    
2L . 

The embedding of V into H is, obviously, dense, continuous and it is compact (by virtue of 

Rellich theorem). 

Then, we can deduce from (4.6) the variational equation (5.1). 

 

6. Operatorial equation 

Theorem 6.1.  The operatorial equation is: 

 to find    H U such that 

 1 1/2 1/2 1/2 1/2

0A 0 A T A A K A 0g g       
n

U U U U ;    (6.3)          

where all the operators are bounded. 

Proof. 

In order to deduce an operatorial equation of the problem with bounded operators, we want to 

substitute the equation (5.1) with an equation on the space H . 
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 Classically [11], if A is the unbounded operator of H which is associated to the 

sesquilinear form  ,
V

u v and to the pair  ,V H , we have 

   , A ,
V H
u v u v ,    ,  A   D V H V    u v       (a.6) 

 For every     2 2 , d 0X L w L w


       , we can write 

   
2

2n n
v d v

L L
X X

  
  , V v  

By virtue of a trace theorem, we obain 

 21n
v d

L V
X c X

 
  v ,  1 0c   

so that, by  using a Riesz  theorem, there exists a bounded operator T from  2L  into 

V such that: 

 n
v d T ,

V
X X


  v , V v  

then, we have 

   nn n n
u v d T u , T ,

VV


  
   v u v , ,   V u v          (b.6) 

where n is the restriction of the application normal trace (    1 2L    ) to V . 

In the same manner, we can write 

   0 3 3 3u v d K ,
H

x


   u v ,  ,   H u v            (c.6) 

where K  is a non negative self-adjoint bounded operator from H  into H . 

Finally, from (a.6), (b.6), (c.6), we can write the variational equation of the problem:  

to find    V u  

         0, A , 0 AT , K , 0
H HH H

g g    
n

u v u v u v u v , V v      (6.1) 

 This variational equation is equivalent to the operatorial equation 

  0A 0 T K 0g g    
n

u u u u , Vu .             (6.2) 

In order to eliminate the unbounded operator, setting 
1/2A H u U and applying the 

operator 1/2A , we obtain a final operatorial equation (6.3) of the problem. 
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Now, we are going to study  the different  operators which appears in the precedent 

operatorial equation (6.3). 

i)  it is well known that the operator  1A is compact of H in H , self adjoint and 

positive definite; 

ii)  We consider the two operators :  
1/2A2

compact bounded
L V H

 

  n ;    

   
1/2A T 2

bounded bounded
H V L   , 

we have,  for every   2X L   and HU : 

   

 

 
 

 
 

 
 

2

2

2

1/2 1/2 1/2

1/2

A T , A T ,A

                        T ,

                        ,

                       ,

                       , A                      

HH

V

L

L

L

X X

X

X

X

X
























n

n

n

U u

u

u

u

U
 

Then, the operators 1/2A 

n
 and 1/2A T are mutually adjoint,   1/2A 

n
is compact from 

H in  2L  . By virtue of a Schauder’s theorem, 1/2A T is compact too from  2L  into 

H .

 

iii) Setting 1/2 1/2B A T A 
n

,  it is easy to see that B is a self-adjoint and  

compact operator from  2L  in  2L  . 

We have  

 
 2

2
1/2B , A 0

LH
 


 nU U U  

From  B , 0
H
U U , we deduce 

n
u 0  n Γ

u , and then u belongs to a space which 

contains  

    1 1

0 ;  div 0,  0J


     u v u , 

therefore, B is non negative. 

iv) We have, 
1/2 1/2A K A

compact bounded compact
H H H H

 

   , therefore 

1/2 1/2A KA   is self-adjoint, non negative and compact operator from H into H . 
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7. Operator bundle of the problem and existence of the eigenvalues 

Theorem 7.1. The problem has a countably eigenvalues  with real part positive admitting 

0  e   for points of accumulation. 

There are countably aperiodic motions arbitrary strongly damped (  realk
  ) and 

countably aperiodic motions arbitrary weakly damped (  real 0k
  ). 

1) If 1

04 A B 1  , all eigenvalues are real and there are no oscillatory motions ( it is 

the case in which  is sufficiently great) 

2) If 1

04 A B 1  , there is at most a finite number of complex eigenvalues, in the 

circular ring 
01

1
2 B

2 A



  ; oscillatory damped motions correspond to these 

eigenvalues. 

Proof. 

We are finding solutions of the equation (6.3) under the form: 

   , tx t e xU U ,   ; 

we obtain  

 2 1 1/2 1/2

0A 0 B A K A 0g g         U U U           (7.1) 

From the equation   1/2 1/2

0 0 B A K A 0g g     U  and taking into account of the 

properties  of  the operators B and K , we deduce  

3,   0,   0
n

V u u  
Γ

u ,  

so that u belongs to a space containing  1

0J  .  

Consequently 0  is an eigenvalue with infinite multiplicity. 

Now, we eliminate this case, and setting  

  1/2 1/2

0 0B 0 B A K Ag        

We obtain 

   1 1

0L I A B 0H      U U ,     HU      (7.2) 
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The equation (7.2) is of the kind considered by Askerov, krein, Laptev [1], i.e  

1
P Qf f f


  ,   f H  

with  

1P A  and 0Q B  

It is proved in paragraph 5 that P is self adjoint, compact, positive definite operator and Q  

is a self adjoint, compact and non negative operator. 

We have the theorem 7.1. 

 

8. Conclusions 

i) The presence of viscosity removes the continuous spectrum which appears in the case 

of a heterogeneous inviscid liquid.  

ii) The problem is reduced to the study of a classical Askerov, Krein, Laptev  pencil. The 

small motions of the system depend on the viscosity coefficient. There are always 

damped motions, but damped oscillatory motions can appear only for weak viscosity 

coefficient. 

 

9. Existence and uniqueness theorem 

Theorem 9.1.  If the initial data verify: 0 0;   V H w w , the problem:  

to find  t Vw  such that 

     
d

, , , 0
d

c b a
t

  w v w v w v ,  V v              

has one and only one solution such that  

 2L 0, ;T Vw  ;  2L 0, ;T Vw  ;  

where T  is a positive constant. 

Proof. 

Setting teu w , the variational problem (5.1) is equivalent to: 
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To find  . Vw  such that  

     
         0

, , 2 ,

, , 0 T , K , 0

H V H

nV H V H
g g 

  

    

w v w v w v

w v w v w v w v
        V v    (9.1) 

We define the sesquilinear forms in V V [8,664-665] 

    , ,
H

c w v w v , 

     , , 2 ,
V H

b  w v w v w v , 

           0, , , 0 T , K ,nV H V H
a g g    w v w v w v w v w v

 

The imbedding V H is continuous, we have: 

0 0c   ; such that  0H V
cv v . As the trace application is continuous from V  into 

 2L   , we get  

   
     2 22 1n n n n

T , w , v  w  vn V VV L LL
c

    
    w v w v  

1  is a constant 0c   , 

then the last sesquilinear forms are continuous in V V  

On the other hand, we have:  , V V  w v
 

  ,t a w v  is a   1 0,C T ,    , ,a aw v v w  and  
2

,
V

a v v v , 

  ,t b w v  is a   1 0,C T ,    , ,b bw v v w  and  
2

,
V

b v v v , 

  ,t c w v  is a   1 0,C T ,    , ,c cw v v w  and  
2

,
H

c v v v . 

From (9.1), we deduce the following problem: 

to find  t Vw  such that 

     
d

, , , 0
d

c b a
t

  w v w v w v ,  V v             (9.2) 

Therefore, by virtue of a known theorem [8, pp 664-670], we have the proof of theorem 9.1. 
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