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Abstract. In this paper, we investigate the problem of finding common elements of the set of solutions of a

general system of variational inequalities for relaxed cocoercive mappings and of the set of fixed points of a strict

pseudo-contraction based on iterative methods. Strong convergence theorems are established.
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1. Introduction-Preliminaries

Variational inequalities, which include many important problems in nonlinear analysis and

optimization such as the Nash equilibrium problem, complementarity problems, vector opti-

mization problems, fixed point problems, saddle point problems and game theory, recently have

been studied as an effective and powerful tool for studying many real world problems which

arise in economics, finance, image reconstruction, ecology, transportation, and network; see

[1-8] and the references therein.

Let C be a nonempty closed and convex subset of a real Hilbert space H and PC the metric

projection of H onto C. Let A : C→ H be a mapping.
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Recall that A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

(2) A is said to be r-strongly monotone if there exists a constant r > 0 such that

〈Ax−Ay,x− y〉 ≥ r‖x− y‖2, ∀x,y ∈C.

(3) A is said to be γ-cocoercive if there exists a constant γ > 0 such that

〈Ax−Ay,x− y〉 ≥ γ‖Ax−Ay‖2, ∀x,y ∈C.

(4) A is said to be relaxed γ-cocoercive if there exists a constant γ > 0 such that

〈Ax−Ay,x− y〉 ≥ (−γ)‖Ax−Ay‖2, ∀x,y ∈C.

(5) A is said to be relaxed (γ,r)-cocoercive if there exist two constants γ,r > 0 such that

〈Ax−Ay,x− y〉 ≥ (−γ)‖Ax−Ay‖2 + r‖x− y‖2, ∀x,y ∈C.

Given nonlinear mappings A : C→ H and B : C→ H, consider the problem of finding an

x ∈C such that

〈x−Bx+λAx,y− x〉 ≥ 0, ∀y ∈C, (1.1)

where λ > 0 is a constant. We see that an element x ∈ C is a solution to the problem (1.1)

if and only if x ∈ C is a fixed point of the mapping PC(B− λA). This equivalence plays an

important role in this work. If B = I, the identity mapping, then the problem (1.1) is reduced to

the classical variational inequality problem: find an x ∈C such that

〈Ax,y− x〉 ≥ 0, ∀y ∈C. (1.2)

In this work, we use V I(C,A) to denote the solution set of the problem (1.2). For given z ∈ H

and x ∈ C, we see that the following inequality holds 〈x− z,y− x〉 ≥ 0,∀y ∈ C, if and only if

x = PCz. Let A,B, Â, B̂ : C→ H be four nonlinear mappings. Next, we consider the following

problem of finding (x∗,y∗) ∈C×C such that
〈x∗−By∗+λAy∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈y∗− B̂x∗+ λ̂ Âx∗,x− y∗〉 ≥ 0, ∀x ∈C,

(1.3)
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where λ̂ > 0 and µ > 0 are two constants. (1.3) is said to be a general system of variational

inequalities involving four nonlinear mappings.

If B = B̂ = I, then the problem (1.3) is reduced to the following.

Find (x∗,y∗) ∈C×C such that
〈x∗− y∗+λAy∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈y∗− x∗+ λ̂ Âx∗,x− y∗〉 ≥ 0, ∀x ∈C,

(1.4)

where λ > 0 and λ̂ > 0 are two constants. The problem (1.4) was considered by many authors,

see, for example, Chang et al. [9], Cho and Qin [10], Huang and Noor [11], Qin et al. [12] and

the references therein.

If B = B̂ = I and A = Â, then the problem (1.3) is reduced to the following.

Find (x∗,y∗) ∈C×C such that
〈x∗− y∗+λAy∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈y∗− x∗+λAx∗,x− y∗〉 ≥ 0, ∀x ∈C,

(1.5)

where λ > 0 is a constant. The problem (1.5) was introduced by Verma [13] in 1999.

Further, if we add up the requirement that x∗= y∗, then problem (1.3) is reduced to the general

variational inequality (1.1).

Recall that a mapping R : C→C is said to be nonexpansive if

‖Rx−Ry‖ ≤ ‖x− y‖, ∀x,y ∈C.

The mapping R : C→ C is said to be strictly pseudo-contractive if there exists a constant k ∈

[0,1) such that

‖Rx−Ry‖2 ≤ ‖x− y‖2 + k‖(I−R)x− (I−R)y‖2, ∀x,y ∈C.

For such a case, R is said to be a k-strict pseudo-contraction. The mapping R : C→C is said to

be pseudo-contractive if

‖Rx−Ry‖2 ≤ ‖x− y‖2 +‖(I−R)x− (I−R)y‖2, ∀x,y ∈C.
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Clearly, the class of strict pseudo-contractions falls into the one between classes of nonexpan-

sive mappings and pseudo-contractions.

Recently, many authors studied the problem of finding a common element of the set of fixed

points of nonexpansive mappings and the set of solutions of the variational inequality problem

(1.2) in the framework of real Hilbert space.

In this paper, we investigate the problem of finding common elements of the set of solutions

of a general system of variational inequalities for relaxed cocoercive mappings and of the set

of fixed points of a strict pseudo-contraction based on iterative methods. Strong convergence

theorems are established. In order to prove our main results, we need the following lemmas and

definitions.

Lemma 1.1 . For given x∗ ∈C and y∗ ∈C, (x∗,y∗) is a solution of the problem (1.3) if and only

if x∗ is a fixed point of the mapping T : C→C defined by

T x = PC
(
BPC(B̂x− λ̂ Âx)−λAPC(B̂x− λ̂ Âx)

)
, ∀x ∈C.

Lemma 1.2 Let {xn} and {yn} be bounded sequences in a real Hilbert space H and {βn} a

sequence in [0,1] with

0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1.

Suppose that xn+1 = (1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.

Lemma 1.3 Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(a) ∑
∞
n=1 γn = ∞;

(b) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.
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Lemma 1.4 Let H be a real Hilbert space, C a nonempty closed and convex subset of H and

R : C→C a nonexpansive mapping. Then I−R is demiclosed at zero.

The following lemma is a corollary of Bruck’s result.

Lemma 1.5. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let

R1 and R2 be two nonexpansive mappings from C into C with a common fixed point. Define a

mapping R : C→C by

Rx = ρR1x+(1−ρ)R2x, ∀x ∈C,

where ρ is a constant in (0,1). Then R is nonexpansive and F(R) = F(R1)∩F(R2).

Lemma 1.6 Let C be a nonempty closed and convex subset of a real Hilbert space H and

S : C→ C a k-strict pseudo-contraction. Define R : C→ C by Rx = αx+(1−α)Sx for each

x ∈C. Then, as α ∈ [k,1), R is nonexpansive such that F(R) = F(S).

2. Main results

Theorem 2.1. Le A : C→H be a relaxed (γa,ra)-cocoercive and µa-Lipschitz continuous map-

ping, Â :C→H a relaxed (γ̂a, r̂a)-cocoercive and µ̂a-Lipschitz continuous mapping, B :C→H a

relaxed (γb,rb)-cocoercive and µb-Lipschitz continuous mapping, B̂ : C→H a relaxed (γ̂b, r̂b)-

cocoercive and µ̂b-Lipschitz continuous mapping and S : C→C a nonexpansive mapping with

a fixed point. Assume that F := F(S)∩F(T ) 6= /0, where T is defined as Lemma 1.1. Let {xn}

be a sequence generated in the following manner:

x1 = u ∈C,

zn = PC(B̂xn− λ̂ Âxn),

yn = PC(Bzn−λAzn),

xn+1 = αn f (xn)+βnxn + γn[ρSxn +(1−ρ)yn], n≥ 1,

where f : C→C be a contractive mapping, ρ ∈ (0,1), λ and λ̂ are positive constants and {αn},

{βn}, {γn} and {δn} are sequences in (0,1). Assume that the following restrictions are satisfied

(a) αn +βn + γn = 1,∀n≥ 1;
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(b) limn→∞ αn = 0,∑∞
n=1 αn = ∞;

(c) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(d)
√

1−2λ ra +λ 2µ2
a +2λγaµ2

a +
√

1−2rb +µ2
b +2γbµ2

b ≤ 1;

(e)
√

1−2λ̂ r̂a + λ̂ 2µ̂2
a +2λ̂ γ̂aµ̂2

a +
√

1−2r̂b + µ̂2
b +2γ̂bµ̂2

b ≤ 1.

Then the sequence {xn} converges strongly to x̄ = PF u and (x̄, ȳ) is a solution of the problem

(1.3), where ȳ = PC(B̂− λ̂ Â)x̄.

Proof. Letting x∗ ∈ F(S)∩F(T ), we find that Sx∗ = x∗ = PC
(
BPC(B̂x∗− λ̂ Âx∗)−λAPC(B̂x∗−

λ̂ Âx∗)
)
. Putting y∗ = PC(B̂− λ̂ Â)x∗, we obtain that x∗ = PC(B−λA)y∗.

Next, we show that the mappings B−λA and B̂− λ̂ Â are nonexpansive, respectively. Indeed,

for any x,y ∈C, we have

‖(B−λA)x− (B−λA)y‖ ≤ ‖(x− y)− (Bx−By)‖+‖(x− y)−λ (Ax−Ay)‖. (2.1)

Note that

‖(x− y)−λ (Ax−Ay)‖ ≤
√

1−2λ ra +λ 2µ2
a +2λγaµ2

a‖x− y‖. (2.2)

We also have

‖(x− y)− (Bx−By)‖ ≤
√

1−2rb +µ2
b +2γbµ2

b‖x− y‖. (2.3)

Substituting (2.2) and (2.3) into (2.1) yields that

‖(B−λA)x− (B−λA)y‖

≤
(√

1−2λ ra +λ 2µ2
a +2λγaµ2

a +
√

1−2rb +µ2
b +2γbµ2

b

)
‖x− y‖.

In view of the condition (d), we obtain that B−λA is nonexpansive, so is B̂− λ̂ Â. On the other

hand, we have

‖zn− y∗‖= ‖PC(B̂xn− λ̂ Âxn)−PC(B̂− λ̂ Â)x∗‖ ≤ ‖xn− x∗‖,

from which it follows that ‖yn−x∗‖ ≤ ‖zn−y∗‖ ≤ ‖xn−x∗‖. Put tn = Sxn +(1−ρ)yn,∀n≥ 1.

It follows that
‖tn− x∗‖ ≤ ρ‖Sxn− x∗‖+(1−ρ)‖yn− x∗‖

≤ ρ‖xn− x∗‖+(1−ρ)‖xn− x∗‖

= ‖xn− x∗‖.
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From the algorithm, we arrive at

‖xn+1− x∗‖ ≤ αn‖ f (xn)− x∗‖+βn‖xn− x∗‖+ γn‖tn− x∗‖

≤ αn‖u− x∗‖+βn‖xn− x∗‖+ γn‖xn− x∗‖

≤ (1−αn(1−α)‖xn− x∗‖+αnα‖ f (x∗)− x∗‖

which implies that the sequence {xn} is bounded. Consequently, {yn}, {zn}, {wn} and {tn} are

bounded. Notice that

‖yn+1− yn‖= ‖PC(Bzn+1−λAzn+1)−PC(Bzn−λAzn)‖

≤ ‖zn+1− zn‖

= ‖PC(B̂xn+1− λ̂ Âxn+1)−PC(B̂xn− λ̂ Âxn)‖

≤ ‖xn+1− xn‖.

It follows from (2.4) and (2.5) that

‖tn+1− tn‖ ≤ ρ‖Sxn+1−Sxn‖+(1−ρ)‖yn+1− yn‖

≤ ‖xn+1− xn‖.
(2.4)

Next, we show that

lim
n→∞
‖xn+1− xn‖= 0. (2.5)

Put

xn+1 = (1−βn)ln +βnxn, ∀n≥ 1. (2.6)

Now, we compute ln+1− ln. Notice that

‖ln+1− ln‖ ≤
αn+1

1−βn+1
‖ f (xn+1)− tn+1‖+

αn

1−βn
‖tn− f (xn)‖+‖tn+1− tn‖. (2.7)

Substituting (2.4) into (2.7), we arrive at

‖ln+1− ln‖−‖xn+1− xn‖ ≤
αn+1

1−βn+1
‖ f (xn+1)− tn+1‖+

αn

1−βn
‖tn− f (xn)‖.

It follows from the conditions (b) and (c) that

limsup
n→∞

(
‖ln+1− ln‖−‖xn+1− xn+1‖

)
≤ 0.

From Lemma 1.2, we obtain that

lim
n→∞
‖ln− xn‖= 0. (2.8)
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Thanks to (2.6), we see that xn+1−xn = (1−βn)(ln−xn), which combines with (2.8), we obtain

that (2.5) holds. Note that xn+1− xn = αn( f (xn)− xn)+ γn(tn− xn). It follows from (2.5) and

the condition (b) and (c) that

lim
n→∞
‖tn− xn‖= 0. (2.9)

Next, we show that

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉 ≤ 0, (2.10)

where x̄ = PF f (x̄). To show (2.10), we can choose a sequence {xni} of {xn} such that

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉= lim
i→∞
〈 f (x̄)− x̄,xni− x̄〉. (2.11)

Since {xni} is bounded, we see that there exists a subsequence {xni j
} of {xni} which converges

weakly to w. Without loss of generality, we may assume that xni ⇀ w. Next, we show that

w ∈ F(T )∩F(S). In fact, define a mapping J : C→C by

Qx = ρSx+(1−ρ)PC(B−λA)PC(B̂− λ̂ Â)x, ∀x ∈C.

From Lemma 1.5, we see that Q is a nonexpansive mapping such that

F(Q) = F(R)∩F(PC(B−λA)PC(B̂− λ̂ Â)) = F(S)∩F(T ).

From (2.9), we obtain that

lim
n→∞
‖Qxn− xn‖= 0. (2.10)

It follows from Lemma 1.4 that w ∈ F(Q) = F(S)∩F(T ). In view of (2.11), we arrive at

limsup
n→∞

〈 f (x̄)− x̄,xn− x̄〉= 〈 f (x̄)− x̄,w− x̄〉 ≤ 0. (2.11)

In view of Lemma 1.3, it is not hard to draw the desired conclusion easily. This completes

the proof.
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