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Abstract. In this article, we investigate an iteration for nonexpansive-type mappings. Strong convergence theorems

are established in the framework of Banach spaces.
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1. Introduction-Preliminaries

Let E be a smooth Banach space. Consider the functional defined by

φ(x,y) = ‖x‖2−2〈x,Jy〉+‖y‖2 for x,y ∈ E. (1.1)

Observe that, in a Hilbert space H, (1.1) is reduced to φ(x,y) = ‖x−y‖2, x,y ∈H. The general-

ized projection ΠC : E→C is a map that assigns to an arbitrary point x ∈ E the minimum point

of the functional φ(x,y), that is, ΠCx = x̄, where x̄ is the solution to the minimization problem

φ(x̄,x) = min
y∈C

φ(y,x)
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existence and uniqueness of the operator ΠC follows from the properties of the functional φ(x,y)

and strict monotonicity of the mapping J. In Hilbert spaces, ΠC = PC. It is obvious from the

definition of function φ that

(‖y‖−‖x‖)2 ≤ φ(y,x)≤ (‖y‖+‖x‖)2, ∀x,y ∈ E.

Let E be a Banach space with the dual E∗. We denote by J the normalized duality mapping

from E to 2E∗ defined by

Jx = { f ∗ ∈ E∗ : 〈x, f ∗〉= ‖x‖2 = ‖ f ∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. A Banach space E is said to be strictly

convex if ‖ x+y
2 ‖ < 1 for all x,y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly

convex if limn→∞ ‖xn− yn‖ = 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ =

‖yn‖ = 1 and limn→∞ ‖ xn+yn
2 ‖ = 1. Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then

the Banach space E is said to be smooth provided that lim
t→0

‖x+ty‖−‖x‖
t exists for each x,y ∈UE .

It is also said to be uniformly smooth if the limit is attained uniformly for x,y ∈UE . It is well

known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E. It is also well known that if E is uniformly smooth if and only if E∗ is

uniformly convex.

Recall that a Banach space E has the Kadec-Klee property if for any sequence {xn} ⊂ E and

x∈ E with xn ⇀ x and ‖xn‖→ ‖x‖, then ‖xn−x‖→ 0 as n→∞ for more details on Kadec-Klee

property. It is well known that if E is a uniformly convex Banach spaces, then E enjoys the

Kadec-Klee property.

Let C be a nonempty closed and convex subset of a Banach space E and T : C→C a mapping.

The mapping T is said to be closed if for any sequence {xn} ⊂C such that limn→∞ xn = x0 and

limn→∞ T xn = y0, then T x0 = y0. A point x ∈C is a fixed point of T provided T x = x. In this

paper, we use F(T ) to denote the fixed point set of T and use → and ⇀ to denote the strong

convergence and weak convergence, respectively.

Recall that the mapping T is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈C.
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It is well known that if C is a nonempty bounded closed and convex subset of a uniformly convex

Banach space E, then every nonexpansive self-mapping T on C has a fixed point. Further, the

fixed point set of T is closed and convex.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and

PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually

characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces.

In this connection, Alber recently introduced a generalized projection operator ΠC in a Banach

space E which is an analogue of the metric projection in Hilbert spaces.

Let C be a nonempty closed convex subset of E and T a mapping from C into itself. A point

p in C is said to be an asymptotic fixed point of T [20] if C contains a sequence {xn} which

converges weakly to p such that limn→∞ ‖xn−T xn‖ = 0. The set of asymptotic fixed points of

T will be denoted by F̃(T ). A mapping T from C into itself is said to be relatively nonexpansive

if F̃(T ) = F(T ) 6= /0 and φ(p,T x)≤ φ(p,x) for all x ∈C and p ∈ F(T ). The mapping T is said

to be quasi-φ -nonexpansive if F(T ) 6= /0 and φ(p,T x)≤ φ(p,x) for all x ∈C and p ∈ F(T ).

Recently, fixed point iterations of relatively nonexpansive mappings and quasi-φ -nonexpansive

mappings have been considered by many authors; see, for example [1-12] and the references

therein. In 2005, Matsushita and Takahashi [12] considered fixed point problems of a single

relatively nonexpansive mapping in a Banach space. To be more precise, They proved the fol-

lowing theorem:

Theorem MT. Let E be a uniformly convex and uniformly smooth Banach space, let C be a

nonempty closed convex subset of E, let T be a relatively nonexpansive mapping from C into

itself, and let {αn} be a sequence of real numbers such that 0≤ αn < 1 and limsupn→∞ αn < 1.
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Suppose that {xn} is given by

x0 = x ∈C,

yn = J−1(αnJxn +(1−αn)JT xn),

Hn = {z ∈C : φ(z,yn)≤ φ(z,xn)},

Wn = {z ∈C : 〈xn− z,Jx− Jxn〉 ≥ 0},

xn+1 = PHn∩Wnx0, n = 0,1,2, . . . ,

where J is the duality mapping on E. If F(T ) is nonempty, then {xn} converges strongly to

PF(T )x, where PF(T ) is the generalized projection from C onto F(T ).

In this paper, motivated by Theorem MT, we investigate an iteration for quasi-φ -nonexpansive-

type mappings. Strong convergence theorems are established in the framework of Banach s-

paces.

Lemma 1.1 [1] Let C be a nonempty closed convex subset of a smooth Banach space E and

x ∈ E. Then, x0 = ΠCx if and only if

〈x0− y,Jx− Jx0〉 ≥ 0 ∀y ∈C.

Lemma 1.2 [1] Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty

closed convex subset of E and x ∈ E. Then

φ(y,ΠCx)+φ(ΠCx,x)≤ φ(y,x) ∀y ∈C.

Lemma 1.3 [12] Let E be a strictly convex and smooth Banach space, C a nonempty closed

convex subset of E and T : C→ C a hemi-relatively nonexpansive mapping. Then F(T ) is a

closed convex subset of C.

Lemma 1.4 Let E be a uniformly convex Banach space and Br(0) be a closed ball of E. Then

there exists a continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0

such that

‖λx+µy+ γz‖2 ≤ λ‖x‖2 +µ‖y‖2 + γ‖z‖2−λ µg(‖x− y‖)
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for all x,y,z ∈ Br(0) and λ ,µ,γ ∈ [0,1] with λ +µ + γ = 1.

2. Main results

Theorem 2.1. Let E be a uniformly smooth and uniformly convex Banach space and C a

nonempty closed and convex subset of E. Let T : C→C and S : C→C be two closed and quasi-

φ -nonexpansive mappings such that F = F(T )∩F(S) is nonempty. Let {xn} be a sequence

generated in the following manner:



x0 ∈ E chosen arbitrarily,

C1 =C,

x1 = ΠC1x0,

yn = J−1(βn,0Jxn +βn,1JT xn +βn,2JSxn),

Cn+1 = {z ∈Cn : φ(z,yn)≤ φ(z,xn)},

Qn = {z ∈C : 〈xn− z,Jx− Jxn〉 ≥ 0},

xn+1 = ΠCn+1x0,∀n≥ 0,

where {βn,0}, {βn,1} and {βn,2} are real sequences in [0,1] satisfying the following restrictions:

(a) βn,0 +βn,1 +βn,2 = 1;

(b) liminfn→∞ βn,0βn,1 > 0 and liminfn→∞ βn,0βn,2 > 0.

Then {xn} converges strongly to ΠF x0, where ΠF is the generalized projection from E onto

F .

Proof. First, we show that Cn is closed and convex for each n ≥ 1. It is obvious that C1 = C

is closed and convex. Suppose that Ch is closed and convex for some h. For z ∈ Ch, we see

that φ(z,yh)≤ φ(z,xh) is equivalent to 2〈z,Jxh− Jyh〉 ≤ ‖xh‖2−‖yh‖2. It is to see that Ch+1 is

closed and convex. Then, for each n≥ 1, Cn is closed and convex. Now, we are in a position to

show that F ⊂Cn for each n ≥ 1. Indeed, F ⊂C1 = C is obvious. Suppose that F ⊂Ch for
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some h. Then, for ∀w ∈F ⊂Ch, we have

φ(w,yh)≤ ‖w‖2−2βh,0〈w,Jxh〉−2βh,1〈w,JT xh〉−2βh,2〈w,JSxh〉

+βh,0‖xh‖2 +βh,1‖T xh‖2 +βh,2‖sxh‖2

= βh,0φ(w,xh)+βh,1φ(w,T xh)+βh,2φ(w,Sxh)

≤ βh,0φ(w,xh)+βh,1φ(w,xh)+βh,2φ(w,xh)

= φ(w,xh).

(2.1)

which shows that w ∈ Ch+1. This implies that F ⊂ Cn for each n ≥ 1. On the other hand,

we obtain from Lemma 1.2 that φ(xn,x0) = φ(ΠCnx0,x0) ≤ φ(w,x0)− φ(w,xn) ≤ φ(w,x0),

for each w ∈ F ⊂ Cn and for each n ≥ 1. This shows that the sequence φ(xn,x0) is bound-

ed. We see that the sequence {xn} is also bounded. Since the space is reflexive, we may,

without loss of generality, assume that xn ⇀ x̄. Note that Cn is closed and convex for each

n ≥ 1. It is easy to see that x̄ ∈ Cn for each n ≥ 1. Note that φ(xn,x0) ≤ φ(x̄,x0). It fol-

lows that φ(x̄,x0) ≤ liminfn→∞ φ(xn,x0) ≤ limsupn→∞ φ(xn,x0) ≤ φ(x̄,x0). This implies that

limn→∞ φ(xn,x0) = φ(x̄,x0). Hence, we have ‖xn‖→ ‖x̄‖ as n→ ∞. In view of the Kadec-Klee

property of E, we obtain that xn→ x̄ as n→ ∞.

Next, we show that x̄ ∈ F(T ). By the construction of Cn, we have that Cn+1 ⊂ Cn and

xn+1 = ΠCn+1x0 ∈ Cn. It follows that φ(xn+1,xn) ≤ φ(xn+1,x0)− φ(xn,x0). Letting n → ∞,

we obtain that φ(xn+1,xn)→ 0. In view of xn+1 ∈Cn+1, we arrive at φ(xn+1,yn)≤ φ(xn+1,xn).

It follows that limn→∞ φ(xn+1,yn) = 0. It follows that limn→∞ ‖xn− yn‖ = 0. Since J is uni-

formly norm-to-norm continuous on any bounded sets, we have limn→∞ ‖Jxn− Jyn‖ = 0. Let
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r = max{supn≥1{‖xn‖},supn≥1{‖T xn‖},supn≥1{‖Sxn‖}}. Fixing q ∈F , we have from Lem-

ma 1.6 that

φ(q,yn) = φ
(
q,J−1(βn,0Jxn +βn,1JT xn +βn,2JSxn)

)
= ‖q‖2−2〈q,βn,0Jxn +βn,1JT xn +βn,2JSxn)〉

+‖βn,0Jxn +βn,1JT xn +βn,2JSxn‖2

≤ ‖q‖2−2βn,0〈q,Jxn〉−2βn,1〈q,JT xn〉−2βn,2〈q,JSxn〉

+βn,0‖Jxn‖2 +βn,1‖JT xn‖2 +βn,2‖JSxn‖2−βn,0βn,1g(‖Jxn− JT xn‖)

= βn,0φ(q,xn)+βn,1φ(q,T xn)+βn,2φ(q,Sxn)−βn,0βn,1g(‖Jxn− JT xn‖)

≤ βn,0φ(q,xn)+βn,1φ(q,xn)+βn,2φ(q,xn)−βn,0βn,1g(‖Jxn− JT xn‖)

= φ(q,xn)−βn,0βn,1g(‖Jxn− JT xn‖).

It follows that βn,0βn,1g(‖Jxn−JT xn‖)≤ φ(q,xn)−φ(q,yn). limn→∞ g(‖Jxn−JT xn‖)= 0. This

implies that limn→∞ ‖JT xn−Jx̄‖= 0. That is, limn→∞ ‖T xn− x̄‖= 0. It follows from the closed-

ness of T that T x̄ = x̄. This shows that x̄ ∈F .

Finally, we show that x̄ = ΠF x0. From xn = ΠCnx0, we have 〈xn−w,Jx0− Jxn〉 ≥ 0,∀w ∈

F ⊂Cn. Taking the limit as n→ ∞, we obtain that 〈x̄−w,Jx0− Jx̄〉 ≥ 0,∀w ∈F , and hence

x̄ = ΠF(T )x0 by Lemma 1.1. This completes the proof.
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