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Abstract: Let  S G  be the subdivision graph of a graph  ,G V E . An edge dominating set D  of a sub 

division graph  S G   is an end edge dominating set if D  contains all end edges of  S G . The end edge 

domination number '

e
S G  of  S G  is the minimum cardinality of an end edge dominating set 

of  S G . In this paper, some bounds for   '

e S G  were obtained and exact values of   '

e S G for 

some standard graphs were also obtained. Further its relationships with other different domination parameters 

were obtained. Also we relate split domination and end edge domination numbers in G . 
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1. Introduction 

In this paper, we follow the notations of [1]. All the graphs considered here are 

simple, finite, non-trivial, undirected and connected. As usual p=V  and q= E  denote the 

number of vertices and edges of a graph G  , respectively. 

  In general, we use X  to denote the sub graph induced by the set of vertices X  

and  N v   and   N v  denote the open and closed neighborhoods of a vertex v, 

respectively.  

  The notation 0 G  ( 1 G ) is the minimum number of vertices (edges) in a 

maximal independent set of vertex (edge) ofG . Let deg (v) is the degree of vertex v and as 

usual G  ( G ) is the minimum (maximum) degree. The degree of an edge  e uv  of 

G  is defined by deg deg deg 2e u v    and ' G  ( ' G ) is the minimum (maximum) 

degree among the edges ofG . 

  A vertex of degree one is called a pendent vertex and its neighbor is called a 

support vertex. A vertex v   of V  is called a cut vertex if removing it from G  increases the 

number of components of G . 

  The subdivision graph  S G  of a graph G is the graph obtained by inserting a 

vertex of degree two to every edge ofG . 
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  A spider is a tree with the property that the removal of all end paths of length two 

of T  results in an isolated vertex, called the head of a spider. 

 A dominating set D V  is said to be a split dominating set ofG , if the induced sub 

graph  V D  is disconnected. The minimum cardinality of vertices in such a set is called 

the split domination number of G  and is denoted by
s
G . This concept was introduced 

by Kulli and Janakiram [3]. 

A 2-packing in a graph G  is a set of vertices of D  that are pair wise at distance at 

least 3 apart i.e., D  is 2-packing of G  if and only if  , 3d u v   for all distinct ,u v D . 

A set S E  in a graph G  is an edge dominating set if every edge in E S  is 

adjacent to at least one edge in S . The minimum cardinality of edges in such a set is called 

the edge domination number of G  and is denoted by ' G . Edge domination was 

introduced by S. Mitchell and S. T. Hedetniemi [4] and is now well studied in graph theory 

see [2]. 

An edge dominating set S E  is said to be an end edge dominating set of G , if S  

contains all end edges of  E G . The minimum cardinality of edges in such a set is called 

the end edge domination number of G  and is denoted by '
e G . This concept was 

introduced by Muddebihal and Sedamkar [5]. 

An edge dominating set D  of a sub division graph  S G   is an end edge 

dominating set if D  contains all end edges of  S G . The end edge domination number 
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'

e
S G  of  S G  is the minimum cardinality of an end edge dominating set of  S G . In 

this paper, some bounds for   '

e S G  were obtained and exact values of   '

e S G for 

some standard graphs were also obtained. Further its relationships with other different 

domination parameters were obtained. Also we relate split domination and end edge 

domination numbers inG . 

2. Results: 

We need the following Theorems to prove our later results. 

Theorem A.4 [5]: For any path pP  with 2p  vertices, 

  ' /3 1e pP p  , if 0 mod3p  

= /3p , otherwise. 

Corollary A [5]: For any connected graph G , let 1 2, ,..., , 1mA v v v m , be the set of 

vertices of degree one. If  A V G , then ' '
e G G . 

3. Main Results: 

We list out end edge domination number for subdivision of some standard graphs.  

Theorem 3.1:  
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Remark 3.2: Subdivision of star 
1, 1,, ( ), 3p pK S K p   is always a spider.  

  

We give the following Lemma to prove our next result. 

Lemma 3.3: For any tree  1, ( )T S T q 
.
 

Proof: To prove this result we use induction on .q  LetT e , ( ) 2 ,S T e   1 ( ) 1 .S T q    

Assume the result is tree for any tree with q  edges. Let T  be a tree with 1q   edges and 

'e  be an end edge of .T  Then by induction hypothesis,    1 1S T e q    , further 

      1 1 1S T S T e     and hence    1 S T q  . 

 

In the following theorem, we obtain an upper bound for  ( )e S G   in terms of 

number of edges of .G  

Theorem 3.4: For any connected ( , )p q - graph G  with 2p  ,  ( )e S G q   . 
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Proof: For  2, ( )ep S G q  . Let T  be a spanning tree of G . Then by Lemma 1,  

 1 ( )S T q   and any collection of q  - independent edges of ( )S T  is an end edge 

dominating set of ( ).S G  Hence  ( ) .e S G q    

 

Now we obtain one more upper bound for  ( )e S T   in terms of number of vertices 

of .T  

Theorem 3.5: For any tree T  with 3,p   ( ) 1e S T p    . Equality holds if and only if T  

is isomorphic to sub division of a spider or wounded spider or 4P  or 5.P  

Proof: Let  1 2, ,, mF e e e  be the set of all end edges in ( ).S T  Suppose 

 1 2,' ,, nF e e e  denote the set of edges which are adjacent to the edges of F  and 

 ( ) ' .E S T F I   Then H I  is a minimal edge dominating set of .I  Clearly, F H  is 

an edge dominating set of ( )S T  and .F H q   Also by Theorem 2,  ( ) 1.e S T p    

Suppose T  is not a spider or wounded spider or 4P or 5.P  since F H  is a e  - set 

of ( )S T , there exist at least one non end edge  ke N E F H    whose at most one end 

is adjacent to an edge of F H . Clearly | |F H q  , a contradiction. 

Conversely, if T  is isomorphic to a spider or wounded spider or 4P  or 5P . Then by 

Lemma 1, | |F H q   and hence ( ( )) 1e S T p    . 

 

The following theorem relates ( )e T   and ( ( ))e S T   in terms of vertices ofT . 
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Theorem 3.6: For any tree , ( ) ( ( )) 1e eT T S T p     . Equality holds if T  is isomorphic 

to path pP . 

Proof: Let S  be the e   -set of T . After the sub division of T , let  1 2, , , iS e e e    

denote the end edge dominating set of ( )S T . Since, there exists at least two end edges 

common to both T  and ( )S T , also by the Lemma 1, | | | | 2S S q    . Hence 

( ) ( ( )) 1e eT S T p     . 

 Suppose T  is isomorphic to path, then by Theorem [A.4], we have 
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and by 2 of Theorem 1, we have 
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By adding these two, the equality holds. 

 

 In the following Theorem, we provide characterization of   e S G   for some 

standard graphs. 

Theorem 3.7: 
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1)    1e pS K p    . 

2)    1e pS W p    . 

3)  ,( ) 1e m nS K p    . 

Proof: In view of Theorem 2, it is enough to prove that  ( ) 1e S G p    , where G  is 

either ,p pK W  or ,m nK  with m n p  . 

Case 1: Suppose G  is isomorphic to pK . Let  1 pV V K  after the subdivision, 

let     2 p pV V S K V K  . Further, let S  be any independent set of 2p   edges of 

 pS K  and S   be the set of vertices of  pS K  which are incident to the edges of S . 

Clearly, 1| | 2( 2), | | 2S p S V p       and 2| | 2S V p   . Hence there exist exactly tow 

vertices ,u v  in 1V S  . Now the edges ,uw wv , where  pw S K  that sub divides the edge 

uv  are not dominated by any edge of S . Hence    1pS K p    . Since by Corollary [A], 

e    , it follows that    1e pS K p    . 

Case 2: Suppose G  is isomorphic to pW . Let  1 pV V W  and kv  be the centre of pW . 

After the sub division of G , let     2 p pV V S W V W  . Further, let S  be any 

independent set of 2p   edges of  pS W  and S   be the set of vertices of  pS W  which 

are incident to the edges of S . 
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 Clearly, 1| | 2( 2),| | 2S p S V p       and 2| | 2S V p   . Hence there exists 

exactly two vertices ,u v  in 1V S  . If uv  is an edge in pW , then the edges uw  and wv  

where w  is the vertex of  pS W  that subdivides the edge uv  are not dominated by S . 

Suppose uv  is not an edge in pW . Let 1 2,w w  be the vertices of  pS W  which sub divide 

the edge 1 1,v u v v  respectively. Since S  is independent, at least one of the edges 1 1 1 2,v w v w  

does not belong to S . Suppose 1 1v w S , so 1w u  is not dominated by S . Thus 

   1e pS W p    . 

Case 3: Suppose G  is isomorphic to ,m nK  with m n p  . The proof of this case is similar 

to that of Case 2. 

  

The following Theorem relates end edge domination and split domination in G . 

Theorem 3.8: For any end edge dominating set S  ofG , if there exists at least one end 

edge e S . Then G  has a split dominating set. 

Proof: Let e uv S   be an end edge inG . Suppose v  is an end vertex of e  inG . Then 

there exist a cut vertex ( )u N v  inG . Let D  be a dominating set ofG . Further, ifu D , 

then D  is a split dominating set of G . Suppose u  is an end vertex, then v D  is a cut 

vertex. Hence 1 ( { }) { }D D v u     is a split dominating set of G. 
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Theorem 3.9: If G  is not a tree and S  is a e   -set of G . Then for some ie S  which are 

non-end edges, dominates the edges of ( )E G S  are also dominated by some iS e  edges. 

Proof: Let S  be the e   -set of G . If possible, assume that there exists at least one non end 

edge e S  such that e  does not satisfy the given condition. Then { }S S e    is an end 

edge dominating set of G , a contradiction. 

 Hence there exist at least one non end edge e S , which dominates at least one 

edge of ( )E G S  which is also dominated by some { }iS e  edges. 

  

The following Theorem relates  ( )e S T  and ( )e T  . 

Theorem 3.10: For any treeT ,  ( ) 2 ( )e eS T T    . Equity holds if T  is isomorphic to a 

spider. 

Proof: Let S  be the e   -set of T . Insert a vertex of degree two to each edge of T  to 

obtain ( )S T . Let  1 2, , , mF e e e   be the set of edges whose edge degree is one, which 

are incident to the support vertices and ( )F N F  in ( )S T . Suppose H  is a    -set of 

 ( )S T F F   , then F H  is an end edge dominating set of ( )S T . Since, each edge is 

sub divide, ( ( )) 2 ( )q S T q T   and number of end edges in both T  and ( )S T  are same, it 

follows that, | | 2 | |F H S  . Hence, ( ( )) 2 ( )e eS T T    . 

Corollary 3.11: For any treeT ,  ( ) ( ) 2 ( )e e eT S T T       . 
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 The following Theorem relates  ( )e S G   and independence number ofG . 

Theorem 3.12: For any connected ( , )p q  -graphG ,    1( ) 2e S G p    . Equity holds 

if G  is isomorphic to 2K . 

Proof: Suppose  1/1i iB u v i     be a maximum independent set of edges ofG . Then 

B  is an edge dominating set ofG . Let iw  be the vertex of ( )S G  which is adjacent to both 

iu  and iv . Let M  be the set of vertices of G  which are not incident with any edge of B . 

If M  , then ( ( ))S E S G  is an end edge dominating set of ( )S G  such 

that  1 1| | 2 2S p     . Hence  1( ( )) 2e S G p    . Suppose M  , let 

 1 2, , , nM x x x  . Since B  is an edge dominating set of ,G M   is independent. 

Furthermore, since G  is connected and M   is independent, each vertex ix  in M  is 

adjacent to some   or j j j kz z u v  in G . Let iy  be the vertex of ( )S G  which is adjacent 

to both ix  and iz  in ( )S G . Then another set 1 ( ( ))S E S G  forms an end edge dominating 

set of ( )S G  such that,  1 1 1| | 2 2 2S p    . Hence  1( ( )) 2e S G p    .  

 Suppose G  is isomorphic to 2K . In this case | | 2S p   and | | 1B  . Clearly 

 1| | 2S p    and hence  1( ( )) 2e S G p    . 
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