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1. INTRODUCTION 

The generalizations of metric space is Menger space introduced in 1942 by Menger [2] who used 

distribution functions instead of nonnegative real numbers as values of the metric. The notion of 

probabilistic metric space correspond to situations when we do not know exactly the distance 

between the two points but we know probabilities of possible values of this distance. A 

probabilistic generalization of metric spaces appears to be interest in the investigation of physical 

quantities and physiological threshold. It is also a fundamental importance in probabilistic 

functional analysis. Schweizer and Sklar [4] studied this concept and then the important 

development of Menger space theory was due to Sehgal and Bharucha-Reid [5]. 

Huang and Zhang [1] generalized the concept of metric spaces, replacing the set of real numbers 

by an ordered Banach space, hence they have defined the cone metric spaces. They also 

described the convergence of sequences and introduced the notion of completeness in cone 

metric spaces. They have proved some fixed point theorems of contractive mappings on 

complete cone metric space with the assumption of normality of a cone. Subsequently, various 

authors have generalized the results of Huang and Zhang and have studied fixed point theorems 
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for normal and non-normal cones. This principle has been extended kind of contraction 

mappings by Sumitra, V.R., Uthariaraj,R. Hemavathy [6]. 

 

2. PRELIMINARY  

Definition 2.1 A probabilistic metric space (FPM space) is an ordered pair (X,F) consisting of a 

nonempty set X and a mapping F from XxX into the collections of all distribution functions .For 

x, y  X we denote the distribution function F(x,y) by Fx,y and Fx,y (u) is the value of Fx,y at u in 

R. The functions Fx,y assumed to satisfy the following conditions: 

2.1.1  Fx,y (u) = 1  u > 0 iff x = y, 

2.1.2  Fx,y   (0) = 0  x , y in X, 

2.1.3  Fx,y   = Fy,x    x , y in X, 

2.1.4   If Fx,y    (u) = 1 and   Fy,z   (v) = 1 then Fx,z (u+v) = 1  x ,y, z in X and u, v>0  

Definition 2.2A  commutative,  associative  and  non-decreasing  mapping t: [0,1]  [0,1] [0,1] 

is a t-norm if and only if t(a,1) = a a[0,1] , t(0,0)=0 and t(c,d)  t(a,b) for c  a, d  b. 

Definition 2.3 A Menger space is a triplet (X,F,t), where (X,F) is a PM-space,t is a t-norm and 

the  generalized triangle inequality for all x, y, z in X u, v> 0 . 

Fx,y (u+v)  t (Fx,z (u), Fz,y (v))   

Definition 2.4: Let (E, τ) be a topological vector space and P a subset of E, P is called a  cone if 

1. P is non-empty and closed, P ≠{0}, 

2. For  x, y ∈ P and  a, b ∈ R ⟹ ax + by ∈ P where a,b≥ 0 

3. If x ∈  P  and –x ∈ P ⟹x = 0  

For a given cone P ⊆ E, a partial ordering ≥with respect to P is defined  by x ≥ y if and only if x 

− y ∈ P, x > y if x ≥ y and x ≠ y, while x≫y  will  stand for x − y ∈ int P, int P denotes the  

interior of P. 

Definition 2.5: Let M be a nonempty set and the mapping d: M  → X  and P⊂ X be a cone, 

satisfies the following conditions: 
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Definition 2.5 Let (X,F,t) be a Menger cone space. If  xX,  > 0 and c (0,1) then (,c)  - 

neighborhood of x, called Ux  (,c), is defined by  

Ux (,c) = {yX: F(x,y)()>(1-c)} 

An  (,c)-topology in X is  the  topology  induced by  the  family  {Ux (,c): x  X,  > 0, c(0,1)} 

of neighborhood. 

Remark: If t is continuous, then Menger cone space (X,F,t) is a Housdroff space in (,c)-

topology. 

Let (X,F,t) be a complete Menger cone space and AE. Then A is called a bounded set  

if for u>0  lim    inf Fx,y (u) =1. 

                  u    x,yA 

Definition 2.6 A sequence {xn} in (X,F,t) is said to be convergent to a point x in X if for every 

>0and  c>0, there exists an integer N=N(,c) such that xn Ux(,c) for all n  N  or equivalently 

F xn, x () > 1-c for all n  N. 

Definition 2.7  A sequence {xn}in (X,F,t)  is said to be cauchy sequence  if for every  > 0 and  

c > 0, there exists an integer N=N(,c) such that F(xn,xm)( ) > 1-c n, m  N. 

Definition 2.8 A Menger cone space (X,F,t) with the continuous t-norm is said to be complete if 

every Cauchy sequence  in X converges to a point in X . 

Lemma 1 Let {xn} be a sequence in a Menger cone space  (X,F,t), if there exists a constant k(0,1) 

such that p > 0 and nN  

F xn,xn+1 (kp)  Fxn-1,xn(p), 

then {xn} is cauchy sequence. 

Definition 2.10: Implicit Relation  

 be the family of real continuous function  : (R+)4  R satisfying the properties 

(Gh)  for every u  0, v  0 with (u,v,u,v) 0 or (u,v,v,u) 0 we have u  v. 

(Gu)  (u,u,1,1)  0 implies that  u  1 

 

3. MAIN RESULTS 

Theorem 3.1 :Let (X,F,t) be a complete Menger cone metric space and let M be a nonempty 

separable closed subset of menger cone metric space X and let A, B , S and T be continuous 

mapping defined on M satisfying contraction.  
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(I)    A(X)T(X) and B(X)S(X); 

(II) the pair (A,S) is semi compatible and (B,T) is weak compatible; 

(III)  one of A or S is continuous; 

for some , there exist k(0,1) such that for all x, yX and p>0 

(IV) (FAx,By(kp), FSx,Ty(p),FAx,Sx(p), FBy,Ty(p))  0; 

then A, B, S and T have unique common fixed point in X. 

Proof: Proof: Let x0 be any arbitrary point of X, as A(X)T(X) and B(X)S(X) there exists x1,x2 in X 

such that Ax0=Tx1, Bx1=Sx2. Inductively, construct sequences {yn}, and {xn} in X such that y2n+1 = Ax2n = 

Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2, for n = 0,1,2,….. . 

Now by (IV) 

(FAx2n,Bx2n+1(kp),FSx2n,Tx2n+1(p)),FAx2n,Sx2n(p),  FBx2n+1,Tx2n+1(p))  0 

 (Fy2n+1, y2n+2(kp), Fy2n, y2n+1(p), Fy2n+1, y2n(p), Fy2n+2, y2n+1 (p))  0 

By implicit relation 

Fy2n+2, y2n+1(kp)   Fy2n+1, y2n(p) 

Fy2n+2, y2n+1(kp)  Fy2n+1, y2n(p) 

Again putting x = x2n+2  and y = x2n+1 in (IV), we have  

F y2n+3, y2n+2 (kp)  F y2n+2, y2n+1(p) 

Hence by closeness of M and completeness of X. Therefore {yn} converge to u in X. Therefore its 

subsequences {Ax2n}, {Tx2n+1}, {Bx2n+1}, {Sx2n+2} also converge to u. 

Case 1 If S is continuous, we have  

SAx2n  Su ,  SSx2n  Su 

So, weak compatibility of the pair (A,S) gives ASx2n  Su as n   

Step (i) By putting x = Sx2n , y = x2n+1 in (IV) , we obtain that  

(FASx2n, B x2n+1(kp), FSSx2n, T x2n+1(p), FASx2n, SSx2n( p),FBx2n+1, T x2n+1(p))  0 

Now letting n   and by the continuity of the t- norm, we have 

(FSu, u( kp), FSu, u(p),FSu, Su (p), Fu, u (p))  0 

 (FSu, u (p), F Su, u  (p), 1,1)  0 

Now as  is non-decreasing in the first argument, we have  

 (F Su, u (p), F Su, u ( p), 1,1)  0 

Using (Gu), we get FSu, u( p)  1, for all p>0, which gives F Su, u( p) =1 

(Su, u)extP but (Su, u)P ,therefore Su=u. 

 Su = u 
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Step (ii) By putting x = u and y = x2n+1 in (IV) , we obtain that 

(FAu, Bx2n+1( kp), FSu, Tx2n+1(p),FAu,Su (p), F B x2n+1,T x2n+1(p))  0 

On taking limit n   and as Su = u & Bx2n+1,T x2n+1  u, we get  

(FAu, u (p), 1, FAu, u (p), 1)  0 

Now as  is non-decreasing in the first argument, we have 

(FAu, u (p), 1, FAu, u (p), 1)  0 

Using (Gh), we get FAu, u (p)  1, for all p>0, which gives FAu, u (p) =1,  

(Au, u)extP but (Au, u)P ,therefore Au=u. 

 Au = u = Su. 

Step (iii) By (I) A(X)  T(X), there exists w in X such that Au= u=Su =Tw. 

By putting x = x2n and y = w in (IV), we obtain that   

(FAx2n,Bw (kp), F Sx2n,Tw (p),  F Ax2n,Sx2n (p), FBw,Tw(p))0 

On taking limit n   and as Ax2n, Sx2n  u, we get  

(Fu,Bw (kp), 1, 1, F Bw, u (p))  0 

By using (Gh), we get Fu,Bw  (kp) 1, for all p > 0, which gives Fu,Bw(p) =1,  

(u, Bw)extP but (u, Bw)P ,therefore u=Bw. 

Therefore Bw = Tw = u. Since (B,T) is weak compatible, we get TBw = BTw, it implies Bu = Tu. 

Step (iv) Now putting x = u and y = u in (IV) and as Au= u = Su & Bu = Tu 

We get that  

(FAu, Bu (kp), FSu, Tu (p), FAu, Su (p), FBu, Tu (p))  0 

(FAu, Bu (kp), FSu, Tu (p), 1, 1)   0  

Now as  is non-decreasing in the first argument, we have  

 (FAu, Bu (p), F Au, Bu (p), 1,1)  0 

Using (Gu), we get FAu,Bu (p) 1, for all p>0, which gives FAu, Bu (p) =1  

(Au, Bu)extP but (Au, Bu)P ,therefore Au=Bu. 

Thus u = Au = Su = Bu = Tu. 

Case 2 If A is continuous i.e. ASx2n  Au. Also the pair (A,S)  is semi-compatible, therefore ASx2n  

Su . By the uniqueness of the limit Au = Su. 

Step (v) By putting x = u and y = x2n+1 in (IV), we get  

  ( FAu, Bx2n+1 (kp), FSu, Tx2n+1 (p), FAu, Su (p), FBx2n+1,Tx2n+1 (p))  0 

On taking limit n   and as Bx2n+1, Tx2n+1  u, we get  

(FAu, u (kp), 1, FAu, u (p), 1)  0. 
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Now as  is non-decreasing in the first argument, we have  

(FAu, u (p), 1, FAu, u (p), 1)  0. 

Using (Gh), we have FAu, u (p)  1 for all p>0, which gives (Au,u)extP but (Au,u)P ,therefore Au=u. 

The rest of the proof follows from step (iii) onwards of the case 1. 

Example: Let M=R and P={x∈M:x≥0} Let X = [0,) and metric d is defined by  

d(x,y) =




yx

yx

1
. For each p define F(x, y, p) =

1 .

( ) .

for x y

H p for x y






 ,  

where H(p) = 

0 0

. ( , ) 0 1

1 1

if p

p d x y if p

if p

 


 




  

Clearly, (X, F, p) is a complete probabilistic space where t is defined by  t(p,p)  p.  

The sequence {xn} is defined as xn = 
n2

1
2  . Tx = 

0 1

4
1

2

x x

x
x

 

 




,     

we see the all conditions of Theorem 3.1 are satisfied and hence 1 is the common fixed point in 

X. 
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