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Abstract: The paper analyses a two non-identical unit (unit-1 and unit-2) cold standby system model in respect 

of reliability and cost effectiveness indices. Unit-1 gets priority in operation and has two modes of operation- 

Normal and Quasi-normal (not as good as new). Two repairmen ordinary and skilled are always available with 

the system to repair and complete overhaul respectively. A repair machine is used to repair the unit-1 when it 

fails first time and after repair, it goes into quasi-normal mode. Again, when unit-1 fails from quasi-normal 

mode, it goes for complete overhaul and then it becomes as good as new. The unit-2 always needs complete 

overhaul upon its failure and becomes as good as new after this maintenance action. The repair time distribution 

of unit-1 (failed first time) is taken as general whereas the distributions of other random variables denoting 

failure and repair /complete overhaul of a unit or RM are taken exponential with different parameters.  

Keywords: Transition Probability, Regenerative-point, Absorbing state, Pre-emptive repeat repair, Mean 

sojourn time, Reliability. 
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1. Introduction 

The incorporation of redundancy is one of the measures to enhance the effectiveness of a 

system. Various authors analyzed the system models in the field of reliability theory by 

considering active and passive redundancies. The performance of repair maintenance is an 
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additional aspect to improve the reliability of a redundant system. Numerous authors have 

analyzed the redundant systems under different repair policies. Naidu and Gopalan [8] 

provided a cost benefit analysis of a two unit repairable system when an operating unit is 

subject to two types of failure and accordingly two types of repair were considered. Goel et al. 

[1] analyzed a redundant system comprising of two identical units in cold standby 

configuration in which each unit can be in either of three modes- normal, partial failure and 

total failure. They considered a single repairman who repairs the partially failed unit and 

minor and major repair of totally failed unit with fixed known probabilities p and q. Later, 

Goel et al. [3] analyzed a two unit cold standby system with two types of repair r₁ and r₂. The 

repair facility r₁ is cheaper but not immediately available at the time of failure of a unit while 

r₂ is instantaneously available always at a higher payment. Whenever a unit fails, the repair 

facility r₁ is intimated and the failed unit waits for a certain amount of time for getting the 

repairman available. Further, if r₁ is not available up to a maximum waiting time then the 

costlier repair facility r₂ starts the repair of failed unit. Whenever either type of repair facility 

is engaged and other unit also fails, it will be repaired by the same repair facility. In view of 

this both types of repairmen r₁ and r₂ can’t be engaged simultaneously in the system. Rander 

et al. [4] studied a two unit cold standby system with a perfect master repairman and an 

imperfect assistant repairman. First the failed unit is attended by assistant repairman and if he 

fails to repair during a prescribed period master repairman undertakes the failed unit for 

repair immediately. Both repairmen are instantaneously available. Later on, Tuteja and Taneja 

[7] studied a two server two unit warm standby system assuming that an operative unit can 

fail completely either directly from the normal mode or via a partial failure mode, while the 

warm standby unit fails completely due to even minor faults.. A regular repairman always 

remains available and an expert repairman is called from outside only whenever needed. Goel 

et al. [2] analyzed a stochastic model related to a two unit chargeable standby system with 

interchangeable units. The system can fail due to power fluctuations or due to operators 

inefficiency. A single repair facility is available to decide the type of failure so that 

appropriate type of repair may be performed. Recently Sridharan and Mohanavadivu [9] 

analysed the stochastic behaviour of a two-unit standby system with two types of repairmen 

and patience time. Gupta and Bansal [6] introduced the concept of quasi normal mode in a 
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three unit redundant system when shocks occur randomly on an operating unit i.e. due to 

occurrence of a shock its effect on the operating unit may be either of following types- (i) 

operating unit is not affected at all, (ii) the failure rate of the unit may increase and unit is 

said to work in quasi-normal mode and (iii) operating unit fails completely. Gupta and 

Chaudhary [5] analyzed the reliability characteristics of a two unit cold standby system under 

very practical assumption that a repair machine is needed to repair a failed unit which can 

also breakdown during its working.  

The present paper analyses a two non-identical unit standby system model with the 

concept of repair machine failure, quasi-normal mode and two types of repairman who can 

work simultaneously. The following measures of system effectiveness, useful to system 

designers and operations managers, are obtained by using regenerative point technique. 

i). Steady state transition probabilities and mean sojourn times. 

ii). Reliability of the system and Mean time to system failure (MTSF). 

iii). Point-wise and steady state availabilities of the system. 

iv). Expected busy period of the repairman in time interval (0, t]. 

v). Net expected profit earned by the system in time interval (0, t] and in steady state. 

2. System Description and Assumptions 

Following are the assumptions of the system: 

i). The system consists of two non-identical units: unit-1 and unit-2 with a repair machine 

(RM). Initially unit-1 is operative and unit-2 is kept into cold standby. The repair 

machine is initially good and is used to repair the unit-1 failed first time. RM cannot fail 

unless it becomes operative. 

ii). The unit-2 of the system and Repair Machine has two modes: Normal (N) and total 

failure (F). The unit-1 upon its first time repair enters into quasi-normal mode (not as 

good as new) with increased failure rate. 

iii). The unit-2 operates only when unit-1 fails completely i.e. unit-1 gets priority in operation 

in any operative mode. 
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iv). A switching device is used to put the standby unit into operation whenever the priority 

unit (unit-1) fails. The switching device is found always perfect and instantaneous 

whenever required. 

v). Two repairmen ordinary and skilled are always available with the system to do their jobs 

of repair and complete overhaul respectively. The repair of RM and repair of unit-1 after 

first failure are performed by ordinary repairman whereas the skilled repairman performs 

as complete overhauling of the failed unit-2 as well as the failed unit-1 from 

quasi-normal mode. 

vi). During the repair of failed unit-1, the RM may also fail. In this case the repair of RM is 

started superseding the repair of unit-1 as single ordinary repairman is available for these 

dual jobs. The re-started repair of unit-1 is of pre-emptive repeat type. 

vii). The failure and repair/complete overhauling time distributions of RM/unit-2 are taken as 

exponential with different parameters whereas the failure time distribution of unit-1 is 

taken as exponential and its repair time (failed from N-mode) is taken as general. The 

failure time distributions of unit-1 working in quasi-normal mode and its complete over 

hauling time distributions are also taken exponentials. 

3. Notations and States of the System 

3.1 Notations: 

E  : Set of regenerative states i.e. 0S to 8S . 

θ  : Constant failure rate of unit-1 working in normal mode. 

1α > θ  : Constant failure rate of unit-1 working in quasi-normal mode. 

1β  : Constant rate of complete over hauling of unit-1. 

2 2/α β  : Constant failure/complete over hauling rate of unit-2. 

/µ η  : Constant failure/repair rate of Repair Machine. 

( ) ( )G / g⋅ ⋅  : Cdf/pdf of repair time distribution of unit-1(failed from N-mode). 

( ) ( )ij ijQ / q⋅ ⋅  : Cdf/pdf of transition time from state iS to jS . 
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ijp  : Steady state probability that the system transits from state iS to jS . 

iψ  : Mean sojourn time in state iS . 

3.2  Symbols for the states of the system: 

iON    : Unit-i (i=1, 2) is in Normal mode and operative. 

'
1ON  : Unit-1 is in quasi-normal mode and operative. 

2SN     : Unit-2 is in Normal mode and kept into cold standby. 

1r 1wF / F    : Unit-1 is in failure mode and under repair/waiting for repair. 

1R 1wRF / F  : Unit-1 is under complete over hauling /waiting for complete over 

hauling. 

g O rRM / RM / RM : Repair Machine is good/operative/under repair. 

2RF   : Unit-2 is under complete over hauling.  

Using these symbols and keeping in view the above assumptions, the possible states 

of the system are shown in the transition diagram shown in fig.1. 

TRANSITION DIAGRAM 
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4. TRANSITION PROBABILITIES 

 Let ( )X t be the state of the system at epoch t, then ( ){ }X t ; t 0≥ constitutes a 

Markov-chain with state space E. The transition probability matrix (t.p.m.) of the embedded 

Markov Chain is 

 

( ) ( ) ( )
00 01 02 03 04 05 06 07 08

6 6 6
10 12 13 14 16 1811 15 17

20 21 22 23 24 25 26 27 28

30 31 32 33 34 35 36 37 38

40 41 42 43 44 45 46 47 48

50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68

70 71

p p p p p p p p p

p p p p p p p p p
p p p p p p p p p
p p p p p p p p p

P p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p

=

72 73 74 75 76 77 78

80 81 82 83 84 85 86 87 88

p p p p p p p
p p p p p p p p p

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

with non-zero elements- 

 01 23 83p p p 1= = =  

 ( )12 2p G= µ +α ,  
( ) ( )14 2

2
p Gµ  = µ + α µ + α

  

( )
( )

( )( )
( )

( )( )
( )

2 26 2 2
11

2 2 2 2

1 G 1 G
p

 − µ +β − µ +αα β  = −
α −β µ +β µ +α  

 

 

( )
( )

( )( )
( )

( )( )
( )

2 26 2
15

2 2 2 2

1 G 1 G
p

 − µ +β − µ +αα µ  = −
α −β µ +β µ +α  

 

 

( )
( ) ( ) ( )6 2

2 217
2 2

p G G
α  = µ +β − µ +α α −β

   

 ( )30 1 1 2p = β β +α ,  ( )38 2 1 2p = α β +α ,  ( )41 2p = η η+α ,  

( )45 2 2p = α η+α ,   ( )54 2 2p = β η+β ,  ( )56 2p = η η+β  

 
( ) ( )2

61 2
2

p 1 G
β  = − µ +β µ +β

 ,  
( ) ( )65 2

2
p 1 Gµ  = − µ +β µ +β

  

 ( )67 2p G= µ +β , ( )72 2 1 2p = β α +β   ( )78 1 1 2p = α α +β         (1-17) 

The other elements of t.p.m will be zero. 

It can be easily verified that 

( ) ( ) ( )6 6 6
12 1411 15 17p p p p p 1+ + + + = ,  30 38p p 1+ = ,  41 45p p 1+ = ,  



COST BENEFIT ANALYSIS                              7 

54 56p p 1+ =  61 65 67p p p 1+ + = , 72 78p p 1+ =         (18-23) 

The mean sojourn time iψ  in state iS  is defined as the expected time taken by the 

system in state iS  before transitioning into any other state. If random variable iU  denotes 

the sojourn time in state iS  then 

  [ ]i i
0

P U t dt
∞

ψ = >∫  

Therefore, its values for various regenerative states are as follows: 

 0 1ψ = θ   ( ) ( )1 2 21 G ψ = − µ +α µ +α 
  

 2 11ψ = α   ( )3 2 11ψ = α +β  

 ( )4 21ψ = α +η   ( )5 21ψ = β + η  

 ( ) ( )6 2 21 G ψ = − µ +β µ +β 
  ( )7 1 21ψ = α +β  

 8 21ψ = β                                    (24-32) 

5. ANALYSIS OF CHARACTERSTICS 

5.1 Reliability of the system and MTSF 

Let ( )iR t be the probability that the system is operative during (0, t] given that at t=0 

system starts from state iS E∈ . To obtain it we assume the failed states 5 6S , S  and 8S  as 

absorbing. By simple probabilistic arguments, the value of 0R (t) in terms of its Laplace 

Transform is given by 

 ( )
( ) ( )14 41 0 01 1 12 2 12 23 3 14 4

0
14 41 01 12 23 30

1 q q Z q Z q Z q q Z q Z
R s

1 q q q q q q

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗

− + + + +
=

− −
               (33) 

 ( ) ( )0Z t exp t= −θ ,  ( ) ( ) ( )1 2Z t exp t G t dt= − µ +α   , 

 ( ) ( )2 1Z t exp t= −α ,  ( ) ( )3 2 1Z t exp t= − α +β   , 

 ( ) ( )4 2Z t exp t= − η+α    

Taking the Inverse Laplace of (33) we can get the reliability of the system when it starts from 
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state 0S . 

MTSF is given by 

 ( ) ( ) ( ) ( ) ( )14 41 0 1 12 2 3 14 4*
0 0 0s 0 14 41 12 30

1 p p p p
E T R t dt lim R s

1 p p p p→

− ψ +ψ + ψ +ψ + ψ
= = =

− −∫            (34) 

 

5.2  Availability Analysis 

Let ( )1n
iA t , ( )

'1n
iA t and ( )2

iA t be the respective probabilities that the system is 

operative at epoch t due to the operation of unit-1 in normal mode, quasi-normal mode and 

unit-2 when system initially starts from iS E∈ . Using the regenerative point technique and the 

tools of L.T., one can obtain the values of ( )1n
0A t , ( )

'1n
0A t and ( )2

0A t in terms of their L.T. i.e. 

( )1n
0A s∗ , ( )

'1n
0A s∗ and ( )2

0A s∗ . 

The steady-state values of above three availabilities are given by 

 ( ) ( )1n 1n '
0 0 10 0s 0

A lim s A s U D 0∗

→
= = ψ   

Similarly, 

( ) ( )
'1n '

2 2 7 7 10A U U D 0= ψ + ψ   

( ) ( )2 '
0 1 1 3 3 4 4 1A U U U D 0= ψ + ψ + ψ                                (35-37) 

Where,  

 ( )
8

'
1 0 0 1 i i

i 2
D 0 U U n U

=
= ψ + + ψ∑   

and 

 ( ) ( )( ) ( )( )6 6
0 30 56 65 45 54 12 56 67 14 4517 15U p 1 p p p p p p p p p p p = − − + + +  

 

 ( )1 30 56 65 45 54U p 1 p p p p= − −  

 ( ) ( )( ) ( )( )6 6
2 30 56 65 45 54 12 72 56 67 72 14 4517 15U p 1 p p p p p p p p p p p p p = − − + + +  

 

 ( ) ( )( ) ( )( )6 6
3 56 65 45 54 12 56 67 14 4517 15U 1 p p p p p p p p p p p= − − + + +  

 ( ) ( )6
4 30 54 14 56 6515U p p p p 1 p p = + −  
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 ( )( )6
5 30 14 4515U p p p p= +  

 ( )( )6
6 30 56 14 4515U p p p p p= +  

 ( ) ( ) ( )( )6 6
7 30 56 65 45 54 56 67 14 4517 15U p p 1 p p p p p p p p p = − − + +  

 

 ( )( )( ) ( ){ } ( ) ( )6 6
8 38 56 65 45 54 14 41 56 65 45 61 56 41 54 61 5611 15U p 1 p 1 p p p p p p 1 p p p p p p p p p p = − − − − − + − +  

 

( ) ( ) ( )( )6 6
30 78 56 65 45 54 56 67 14 4517 15p p p 1 p p p p p p p p p + − − + +  

 

 
( )

( ){ }
( )

( ){ }
( )

2 2 2 2

2 2 2 2

1 G 1 G1n
 α − µ +β β − µ +α
 = −

α −β µ +β µ +α  

 

            (38)                                                           

The expected up (operative) time of the system during (0, t] due to the operation of 

unit-1 and unit-2 are given by 

 ( ) ( )
t

1n 1n
up 0

0

t A u duµ = ∫ ,  ( ) ( )
' '

t
1n 1n
up 0

0

t A u duµ = ∫   ( ) ( )
t

2 2
up 0

0

t A u duµ = ∫  

so that 

 ( ) ( )1n 1n
up 0s A s s∗ ∗µ = ,  ( ) ( )

' '1n 1n
up 0s A s s∗ ∗µ =     ( ) ( )2 2

up 0s A s s∗ ∗µ =  

 

5.3 Busy Period Analysis- 

Let ( )1r
iB t  and  ( )mr

iB t  be the respective probabilities that the ordinary repairman 

will be busy in repair of unit-1 and in the repair of repair machine at time t and ( )1R
iB t  and 

( )2R
iB t  be the respective probabilities that the skilled repairman will be busy in complete 

overhauling of unit-1 and unit-2, when system initially starts from iS E∈ . Using the 

regenerative point technique and the tools of L.T., one can obtain the values of above four 

probabilities in terms of their L.T. i.e. ( )1r
0B s∗ , ( )1R

0B s∗ , ( )2R
0B s∗ and ( )mr

0B s∗ . 

The steady state results for the above four probabilities are given by 

 ( ) [ ] ( )1r 1r* '
0 0 1 6 6 1s 0

B lim s B s nU U D 0
→

= = +ψ  

Similarly, 

( ) ( )mr '
0 4 4 5 5 1B U U D 0= ψ +ψ ,  
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( )1R '
0 3 3 1B U D 0= ψ ,  

( )
8

2R '
0 j j 1

j 5
B U D 0

=
= ψ∑                   (39-42) 

The expected busy periods of repairman due to repair, complete over hauling of either 

unit and RM during time (0, t] are respectively given by 

( ) ( )
t

1r 1r
b 0

0

t B u duµ = ∫ ,  ( ) ( )
t

mr mr
b 0

0

t B u duµ = ∫   

( ) ( )
t

1R 1R
b 0

0

t B u duµ = ∫ ,  ( ) ( )
t

2R 2R
b 0

0

t B u duµ = ∫  

So that 

 ( ) ( )1r 1r
b 0s B s s∗ ∗µ = ,  ( ) ( )mr mr

b 0s B s s∗ ∗µ = ,  

 ( ) ( )1R 1R
b 0s B s s∗ ∗µ = ,  ( ) ( )2R 2R

b 0s B s s∗ ∗µ =  

6. PROFIT FUNCTION ANALYSIS 

 We are now in the position to obtain the net expected profit earned by the system during 

(0, t] on considering the characteristics obtained in sections 5.2 and 5.3. Let us suppose, 

0 1K , K =  revenue per unit up-time by the system due to the operation of unit-1 in N and N’ 

mode respectively. 

2K =  revenue per unit up-time by the system due to the operation of unit-2. 

3 4K ,K =  payment to ordinary repairman per unit time when he is busy in the repair of unit-1 

and repair machine respectively. 

5 6K ,K = payment to skilled repairman per unit time when he is busy in complete overhauling of 

unit-1 and unit-2 respectively. 

Then the expected profit incurred in time interval (0, t] is 

 
'1n 1n 2 1r mr 1R 2R

0 up 1 up 2 up 3 b 4 b 5 b 6 bC(t) K (t) K (t) K (t) K (t) K (t) K (t) K (t)= µ + µ + µ − µ − µ − µ − µ  

The net expected profit per unit time in steady state is given by 

 ( ) ( )
'2 * 1n 1n 2 1r mr 1R 2R

0 0 1 0 2 0 3 0 4 0 5 0 6 0t s 0

C t
C lim lim s P s K A K A K A K B K B K B K B

t→∞ →
= = = + + − − − −  
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7. PARTICULAR CASES 

Case I: When repair time of unit-1 also follows exponential distribution i.e. 

( ) tg t e ; t 0−λ= λ ≥   and ( ) ( ) ( )*g s G s s= = λ + λ . 

In view of above, the changed values of transition probabilities and mean sojourn 

times will be as follows- 
( )

( )( )
6 2 2

11
2 2

p
α β

=
λ +µ +β λ +µ +α

,    
( )12

2
p λ

=
λ +µ +α

 

( )
( )( )

6 2
15

2 2
p

α µ
=

λ +µ +β λ +µ +α
,  

( )14
2

p µ
=

λ +µ +α
 

( )
( )( )

6 2
17

2 2
p

α λ
=

λ +µ +β λ +µ +α
,  

( )
2

61
2

p
β

=
λ +µ +β

,   

( )65
2

p µ
=

λ +µ +β
,  

( )67
2

p λ
=

λ +µ +β
 

 
( )1

2

1
ψ =

λ +µ +α
, 

( )6
2

1
ψ =

λ +µ +β
 

 The value of n becomes 

 
( ) ( ) ( )

2 2

2 2 2 2

1n
 α β

= −  α −β λ +µ +β λ +µ +α 
 

 

Case II: When repair time of unit-1 follows Lindley distribution i.e.
 

( ) ( )
2

tg t 1 t e
1

−λλ
= +

+ λ
 

and ( ) ( ) ( )
( )( )

2
*

2
s 1

g s G s
1 s

+ λ + λ
= =

+ λ + λ
 .  

In this regard, the changed expressions of transition probabilities and mean sojourn times will 

be as follows- 

 
2

2
12

2
p 1

1
 µ + α λ = +   + λ λ +µ +α  

,  
( )

2
2

14
2 2

p 1 1
1

  µ + αµ λ  = − +   µ + α + λ λ +µ +α    
, 

 ( )
( )

( )
( )

( )2 2
2 26 2 2

11
2 2 2 2 2 2

1 1p 1 1 1 1
( ) 1 1

    α β µ +β µ + α     λ λ    = − + − − +         α −β µ +β + λ λ + µ +β µ + α + λ λ + µ + α            
 

 
( )

( )
( )

( )2 2
2 2 2(6)

15
2 2 2 2 2 2

1 1P 1 1 1 1
( ) 1 1

    α µ µ +β µ + α     λ λ    = − + − − +         α −β µ +β + λ λ + µ +β µ + α + λ λ + µ + α            
 

( ) ( )2 2
2 2 2(6)

17
2 2 2 2

P 1 1
( ) 1 1

 α µ µ +β µ + α     λ λ = + − +     α −β + λ λ + µ +β + λ λ + µ + α       
 



12                  RAKESH GUPTA, SWATI KUJAL AND PANKAJ KUMAR 

 
( )

2
2 2

61
2 2

p 1 1
1

  β µ +β λ  = − +   µ +β + λ λ +µ +β    
, 

( )

2
2

65
2 2

p 1 1
1

  µ +βµ λ  = − +   µ +β + λ λ +µ +β    
 

2
2

67
2

p 1
1

 µ +β λ = +   + λ λ +µ +β  
,  

( )

2
2

1
2 2

1 1 1
1

  µ + α λ  ψ = − +   µ + α + λ λ +µ +α    
 

 
( )

2
2

6
2 2

1 1 1
1

  µ +β λ  ψ = − +   µ +β + λ λ +µ +β    
 

( ) ( ) ( )

2 2
2 2 2 2

2 2 2 2 2 2

1n 1 1 1 1
1 1

       α µ +β λ β µ + α λ       = − + − − +          α −β µ +β + λ λ + µ +β µ + α + λ λ + µ + α             
  

 

Case III: If repair time of unit-1 follows gamma distribution i.e. ( )
t 1e tg t

− λ−
=

Γλ
 and 

( ) ( ) ( )g s G s 1 s −λ∗ = = +  

Thus the following changes are observed in (k)
ij iijp , p ,ψ  and n. 

( )12 2p 1 −λ= +µ +α ,    
( ) ( )14 2

2
p 1 1 −λµ  = − +µ +α  µ + α

, 

( )
( ) ( ) ( ){ } ( ) ( ){ }6 2 2

2 211
2 2 2 2

1 1p 1 1 1 1−λ −λ α β
= − +µ +β − − +µ +α 

α −β µ +β µ +α  
, 

( )
( ) ( ) ( ){ } ( ) ( ){ }6 2

2 215
2 2 2 2

1 1p 1 1 1 1−λ −λ α µ
= − +µ +β − − +µ +α 

α −β µ +β µ +α  
, 

( )
( ) ( ) ( )6 2

2 217
2 2

p 1 1−λ −λα  = +µ +β − +µ +α  α −β
,  

( ) ( )2
61 2

2
p 1 1 −λβ  = − +µ +β  µ +β

 

( ) ( )65 2
2

p 1 1 −λµ  = − +µ +β  µ +β
,    ( )67 2p 1 −λ= +µ +β  

( ) ( )1 2
2

1 1 1 −λ ψ = − +µ +α µ + α
,  

( ) ( )6 2
2

1 1 1 −λ ψ = − +µ +β µ +β
 

( ) ( ) ( ){ } ( ) ( ){ }2 2
2 2

2 2 2 2

1n 1 1 1 1−λ −λ α β
= − +µ +β − − +µ +α 

α −β µ +β µ +α  
 

 

Case IV: When repair time of unit-1 follows Inverse Gaussian distribution i.e. 

( ) ( ) ( ) ( )21 2 t 2 t3g t 2 t e
− − −λ λ= π  and  

( ) ( ) ( )1 21 2G s g s exp 1 1 2s∗ −  = = λ − + λ    
  

In this case the changed expressions will be as follows- 
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( )12 2p Gα= µ +α ,   
( ) ( )14 2

2
p 1 Gα

µ  = − µ +α µ + α
 , 

( )
( ) ( ) ( ){ } ( ) ( ){ }6 2 2

2 211
2 2 2 2

1 1p 1 G 1 Gβ α
 α β

= − µ +β − − µ +α 
α −β µ +β µ +α  

  , 

( )
( ) ( ) ( ){ } ( ) ( ){ }6 2

2 215
2 2 2 2

1 1p 1 G 1 Gβ α
 α µ

= − µ +β − − µ +α 
α −β µ +β µ +α  

  , 

( )
( ) ( ) ( )6 2

2 217
2 2

p G Gβ α
α  = µ +β − µ +α α −β

  ,  
( ) ( )2

61 2
2

p 1 Gβ
β  = − µ +β µ +β

  

( ) ( )65 2
2

p 1 Gβ
µ  = − µ +β µ +β

 ,  ( )67 2p Gβ= µ +β   

( ) ( )1 2
2

1 1 Gα ψ = − µ +α µ + α
 ,   

( ) ( )6 2
2

1 1 Gβ ψ = − µ +β µ +β
  

( ) ( ) ( ){ } ( ) ( ){ }2 2
2 2

2 2 2 2

1n 1 G 1 Gβ α
 α β

= − µ +β − − µ +α 
α −β µ +β µ +α  

   

Where, 

( ) ( )( )1 21 2
2 2G exp 1 1 2−

α
  µ + α = λ − + µ +α λ    

  

( ) ( )( )1 21 2
2 2G exp 1 1 2−

β
  µ +β = λ − + µ +β λ    

  

 

Case V: Let the random variable X denotes the failure time of p-unit (from N-mode) and Y 

its repair time. Considering their joint distribution as Bi-variate exponential with pdf  

( ) ( ) ( ) ( )
( )

j
x y

2
j 0

rxy
f x, y 1 r e

j!

∞
− θ +λ

=

θλ
= θλ − ∑  ; x, y 0; , 0 and 0 r 1.≥ θ λ > ≤ <   

Where, r is the correlation coefficient between X and Y. The marginal distributions of random 

variables X and Y will be exponential having the pdf 

( ) ( ) ( )1 r xh x 1 r e−θ −= θ −  and ( ) ( ) ( )1 r yk y 1 r e−λ −= λ −  

As the repair time of the p-unit (from N-mode) depends upon its failure time, therefore, the 

conditional pdf of Y for given X is given by 

( ) ( ) ( )
( )

j
y rx

2
j 0

rxy
g y x e

j!

∞
− λ +θ

=

θλ
= λ ∑  

So that the value of its Laplace Transform is 

( ) ( )r s x sg s x e
s

− θ +λ∗ λ
=

+ λ
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The unconditional Laplace Transform of ( )g y x will be 

( ) ( ) ( ) ( ) ( )
( )

* 1 r
g s G s g s | x .h x dx

s 1 r
∗ λ −

= = =
+ λ −∫  

Then the changed expressions will be as given under- 

( ) ( )' '
12p 1 r 1 r= − λ − λ ,   

( ) ( ) ( )' '
14

2
p 1 1 r 1 rµ  = − − λ − λ µ + α

, 

( )
( ) ( )

( )
( )

( )" '
6 2 2

11 " '
2 2 2 2

1 r 1 r1 1p 1 1
1 r 1 r

    − λ − λα β     = − − −   
α −β µ +β µ +α − λ − λ       

, 

( )
( ) ( )

( )
( )

( )" '
6 2

15 " '
2 2 2 2

1 r 1 r1 1p 1 1
1 r 1 r

    − λ − λα µ     = − − −   
α −β µ +β µ +α − λ − λ       

, 

( )
( )

( ) ( )" '
6 2

17 " '
2 2

1 r 1 r
p

1 r 1 r

 − λ − λα
= − 

α −β − λ − λ  
,  

( )
( ) "

2
61 "

2

1 r
p 1

1 r

 − λβ
= − 

µ +β − λ  
 

( )
( ) "

65 "
2

1 r
p 1

1 r

 − λµ
= − 

µ +β − λ  
,   ( ) "

67 "
1 r

p
1 r

− λ
=

− λ
 

( ) 1
0 1 r −

ψ = θ −   ,  ( ) 1
1 2 1 r −

ψ = µ +α + λ −   , 

( ) 1
6 2 1 r −

ψ = µ +β + λ −    

( )
( ) ( )" '

2 2
" '

2 2 2 2

1 r 1 r1n 1 1
1 r 1 r

    − λ − λα β    = − − −   
α −β β +µ α +µ− λ − λ        

 

Where, 

( )'
2λ = λ λ +µ +α   ( )''

2λ = λ λ +µ +β  

8. CONCLUSIONS 

The curves for MTSF and Profit function are drawn for all the five particular cases (i) 

to (v) discussed in section 7 in respect of different parameters. In case (i) when repair time 

follows exponential distribution, Fig. 1(a) and Fig. 1(b) depicts the variation in MTSF and 

steady state profit with respect to failure parameter θ for three different values of repair 

parameter λ(=0.40, 0.60, 0.80). We may clearly observe that MTSF decrease with the 

increase in θ and increases with increase in λ.  The same trends are observed for the graph of 

steady state profit in respect of λ and θ. Further from fig. 1(b) we observed that system is 

profitable only if θ is less than 0.05, 0.065 and 0.0725 for λ= 0.40, 0.60 and 0.80 respectively 
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for fixed values of α₁=0.09, β₁=0.80, α₂=0.25, β₂=0.40, η=0.60, μ=0.50 K₀=120, K₁=100, 

K₂=80, K₃=260, K₄=350, K₅=400 and K₆=300. 

In case (ii) when repair time follows Lindley distribution, Fig. 2(a) and Fig. 2(b) 

depicts the variation in MTSF and steady state profit with respect to failure parameter θ for 

three different values of repair parameter λ(=0.40, 0.60, 0.80). We may clearly observe that 

MTSF decrease with the increase in θ and increases with increase in λ.  The same trends are 

observed for the graph of steady state profit in respect of λ and θ.  

In case (iii) when the repair time follows gamma distribution, Fig 3(a) and Fig 3(b) 

represent the curves for MTSF and Profit with respect to θ and varying values of failure rate 

α₂ (=0.30, 0.50, 0.80) instead of repair parameter λ=0.70. The trend is that both MTSF and 

profit decrease with the increase in α₂ and θ and other parameters are fixed as α₁=0.09, 

β₁=0.80, λ=0.70, β₂=0.40, η=0.60, and μ=0.50.   

In case (iv) when the repair time follows Inverse Gaussian distribution, Fig. 4(a) and 

Fig. 4(b) represent the plot for MTSF and Profit function with respect to θ and varying values 

of repair parameter of repair machine say η. The trend reveals that MTSF and Profit function 

decreases with the increase in θ and increase with increase in η. From Fig. 4(b), we observe 

that our system is profitable if θ is less than 0.06, 0.12, and 0.24 when η=0.20, 0.45 and 1.00 

respectively for fixed value of the other parameters as α₁=0.09, β₁=0.80, α₂=0.25, β₂=0.40, 

λ=0.70, μ=0.50 and K₀=120, K₁=100, K₂=80, K₃=260, K₄=350, K₅=400 and K₆=300 for all 

five cases. 

In case (v), when failure and repair times are correlated random variables and follow 

bi-variate exponential distribution, in this situation, the failure parameter θ change to θ(1-r) 

where r is the correlation coefficient. We draw the curves for MTSF and Profit with respect to 

the correlation coefficient r for varying values of repair parameter λ. From Fig. 5(a), we see 

that MTSF increases slowly with r and λ while, when r>0.80, it increases rapidly. From Fig. 

5(b), its clear that the profit increases with increase in r and λ for fixed values of other 

parameters.  
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Graphs for MTSF and Profit with respect to θ for particular Case (a) when α₁=0.09, 

β₁=0.80, α₂=0.25, β₂=0.40, η=0.60, μ=0.50 and 0 1 2K 120,K 100,K 80,= = =  

3 4 5K 260,K 350,K 400,= = = 6K 300= . 

  
Fig. 1(a) 

  
Fig. 1(b) 



18                  RAKESH GUPTA, SWATI KUJAL AND PANKAJ KUMAR 

Graphs for MTSF and Profit with respect to θ for particular Case (b) when α₁=0.09, 

β₁=0.80, α₂=0.25, β₂=0.40, η=0.60, μ=0.50 and 0 1 2K 120,K 100,K 80,= = =  

3 4 5K 260,K 350,K 400,= = =  6K 300= . 

  
Fig. 2(a) 

 

  
Fig. 2(b) 
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Graphs for MTSF and Profit with respect to θ for particular Case (c) when α₁=0.09, 

β₁=0.80, λ=0.70, β₂=0.40, η=0.60, μ=0.50 and 0 1 2K 120,K 100,K 80,= = =  

3 4 5K 260,K 350,K 400,= = =  6K 300= . 

  

Fig. 3(a) 

  
Fig. 3(b) 
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Graphs for MTSF and Profit with respect to θ for particular Case (d) when α₁=0.09, 

β₁=0.80, α₂=0.25, β₂=0.40, λ=0.70, μ=0.50 and 0 1 2K 120,K 100,K 80,= = =  

3 4 5K 260,K 350,K 400,= = =  6K 300= . 

  
Fig. 4(a) 

 

  
Fig. 4(b) 
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Graphs for MTSF and Profit with respect to r for particular Case (e) when α₁=0.09, 

β₁=0.80, α₂=0.25, β₂=0.40, η=0.60, μ=0.50, θ=0.05 and 0 1 2K 120,K 100,K 80,= = =  

3 4K 260,K 350,= =  5 6K 400,K 300= = . 

  
Fig. 5(a) 

  

Fig. 5(b) 


