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Abstract. In this paper, using generalized Salagean operator, we introduce a new subclass of analytic functions.
Coefficient inequalities and distortion theorems and extreme points are studied. Furthermore, we discuss certain

application of fractional derivatives for f € TSV}'(a,,7).
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1. Introduction

Let A denote the class of functions of the form
f@)=z+Y a7, (a;>0), (1.1)
j=2

which are analytic in the open disc A = {z: |z| < 1} and normalized by f(0) =0, f'(0) = 1. Let

S be the subclass of A consisting of univalent functions f(z) of the form (1.1) Further denote by
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T the subclass of A consisting of functions of the form

Q) =2~ Ya, (a;>0) (12
j=2
We recall the Al-Oboudi operator (see [1]) denoted by D, (n € N;A > 0) given by D% : A —
A,
Dj f(z) = f(2), (1.3)
D} f(z) = (1-A)f(z) + Azf'(z) = D f(z), A >0, (1.4)
D} f(z) = D (D} ' f(2)). (1.5)
From (1.4) and (1.5), we see that
ff@) =z+ Y. 1+ (i — 1A,z (1.6)
j=2

It is of interest to note that for A = 1, we have Salagean operator [11].

Remark 1.1. If f €T, f(z) =z—

ajzj, aj >0, then
=2

af(@)=2— i[l +(j— DA]"a;2.
j=2

Further we recall the well-known subclasses of S, the class consisting of functions starlike of
order (0 < o < 1) denoted by S*() and convex of order @(0 < o < 1), denoted by K ().
For convenience, we write $*(0) = §* and K(0) = K. Silverman [12] investigated functions in
the classes T*(a) = TNS*(a) and C(a) = T NK(c). In 1991, Goodman [3, 4], introduced
the classes UCV and UST of uniformly convex and uniformly starlike functions respectively.
Further Ma and Minda [5] and Ronning [9] independently gave the one-variable characterization
for the classes UCV and UST as given below.

A function f(z) of the form (1.1) is in UCV if and only if

m(Hﬁﬂ@>>zﬂw
f'(z) f'(z)

Ronning (see [9, 10]), introduced the class S, consisting of starlike functions zf’(z), f € UCV

, ZEA.

and the class S, (o) of functions of the form (1.1) for which

()
<

fo

, ve[—1,1),z€A.
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Ronning [10] also defined the class UCV (), of uniformly convex functions of order ¢ for
which zf’ € S,(o). Subramanian et al. [16] introduced the classes 7S,(ct) and TV (@), o €
[—1,1) as follows: A function f(z) of the form (1.2) isin T'S,(ax), a € [—1,1) if

/@)
andisin TV (o) if zf € TS, ().

In this paper, using the operator D’} f(z), we define the following new class motivated by

Murugusundaramoorthy and Magesh [6].

Definition 1.2. The function f(z) of the form (1.1) is in the class SV}'(¢t, B,7) if it satisfies the

inequality

ADLF(2)) B
e { (1= D% F(2) + 72D} (f D))’ “}

2D} f(2))
D f(z) +vz(D} (f(2))

Al |
for0§y<l,—1§oc<l,B20,7LzO.
Further we define TSV} («,,7) = SV} (o, B,y)NT

Remark 1.3.
(1) TSVQ(a,B,0) = TS(a,B) (Bharathi et al. [2]).
(2) TSVY(,0,1) = T*(a) (Silverman [12]).
(3) TSVY(,1,0) = TS, () (Subramanian et al. [16]).
(

(4) TSVY(a,B,y) = TSy(a,B,Y) (Murugusundaramoorthy and Magesh [6]).

For f € TSVf(Oc, B,7) we obtain coefficient characterization ,Distortion theorems , extreme
points and modified hadmard product results. Furthermore, we discussed certain application of

fractional derivatives for f € TSV} (a,,7).
2. Properties of the class TSV} («,f3,7)

Theorem 2.1. The function f(z) of the form (1.1) is in TSV} (o, B,7) if

i L+ (= DAL +B) = (o +B) (1) — 7+ Dla; < 1 —a. (2.1)
]
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Proof. It suffices to show that

(D} f(2)) B 1‘
(1=7)D} f(z) +vz(D} (f(2))

Re (D} f(2) -
: {( —VDLS (@) + v2(D5 (f(2) a}

d

<l-—a.

Now we consider

2D} f(2)) B 1’
(1=7Dj f(2) + v=(D5 (f(2))
Re «(Dj f(2) B
: {( =)D} f(2) +v2(D} (f(2) a}
2D f(2))
(1=9)D; f(2) +vz(D5 (f(2))

(1+B) Z 1+ G — DAy —vi+j—1)aj||z "

Y

d

<(+8)| -1

<
1- Z[l + (= DA (vj = v+ Dlajl |2l
=2

which is bounded above by (1 — ) if
Z 1+ =DA A +B) = (a+B)(vi—r+Da; <1-a.

Hence the proof is completed.

Theorem 2.2. A function f(z) of the form (1.2) is in TSV} (&, B, y) if and only if

il“‘ (J—DA"[j(A+B)— (a+B)(yj—y+Daj <1—a.
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Proof. We only need to prove the necessary condition. If f(z) € TSV)'(a,B,y) and z is real,

then

o]

1= Y [T+ (= DA jae ™!

j=2 —a
— L0+ =DA (= v+ Dla™!
j=2
Y 1+ (= DA (yj—y—j+DlajZ ™!
>[3 —

Z [+ (= DAY (vj = v+ Dae ™!

Letting z — 1 along real axis, we obtain

Y [+ =DA(1+B) = (e +B)(vi—v+1)]a; < 1 -«
j=2
and the proof is completed.

Remark 2.3. If f(z) € TSV} (., B,7), then

11—« .
G GO+ B) (@t By i) P =R Y
and equality holds for
-« ; .
MO = I GO B - @ By ) TR 2

Theorem 2.4. Let the function f(z) defined by (1.2) be in the class TSV} (e, B,7). Then for

Iz <r=1,

l-a 0 -«
200+ B) — (a+B)(y+ 1)r2 S D s S B — e Byt 1)r2' 24)

The result is attained for the function f(z) given by (2.3) for z = +r.

Proof. By Theorem 2.1, we have

il+1—1 AP+ B) — (ot B)(ri— 7+ 1)]a; < 1 —a
P
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Then we get
(A2 +B)— (a+B)(y+1)] iz’
-
< 22 (14— DAP[(1+B) — (a+B) (i — v+ 1a;
<l—a.
Therefore
ia‘< 1—o
ST (1A 201+ B) — (e +B)(v+ )]
Hence
DL F()| < <]+ PO A)” iz
-
§r+r2(1+l)"iaj
j=2
<r—|—r2 1—a
=TT RO+B) = (a+B)(r+ 1)
and
; ) 1—«
DA = e B @ By 1))
Thus
1—a "
T e Ty U LG
<4 11—« 7‘2
=TT B — (e By 1)

Further, we have

(DL < 1+2r(1+A)" ia,-
j=
<1+ 2(1_a) r
— 2(14B)—(a+B)(y+1)]

and also

2(1—a) i
2(1+B)—(a+B)(r+ 1)~

(D3 f(2) =1~
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The result is sharp for the function f(z), defined by

11—«

20 +B) = (a+p)(r+1)]

r2, z==r.

fl@)=z2—

This completes the proof.

The determination of the extreme points of a family of univalent functions enables us to solve

many extremal problems.

Theorem 2.5. Let f1(z) = z and

-«
. . . Z
1+ =DAPj(1+B) = (a+B)(vi—v+1)]
forall j=2,3,4,.... Then f(z) € TSV}(,B,7) if and only if f(z) can be expressed in the

form f(z) = Z uifi(z) where pj > 0 and Z pj=1.
= =1

J

ﬁ&%=[

Proof. Suppose f(z) can be written in the form

> > l—o :
= LM LM G B = (s B =1+ |

J= J=2
Then
y H(1l-a) o L+B)—(a+B)(vj—v+1)]
S U+B)—(a+B)(vi—r+1)] (1-a)
= ;zuj
=1—py
<1

In view of Theorem 2.1, this shows that f(z) € TSV}!(a,B,7). Conversely, suppose that f(z) €
TSVy(a,B,y). Then

1—o .
GETF G- DAL+ B) (@t Byt 177

Putting

[1+ (= DAP"[i(1+B) — (a+B)(vj—y+1)]
11—

1= aj, j=2,34,...
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n
and,ul—l—Zuj,weseethatf Z“Jfl
J=2 Jj=1

Definition 2.6. For two functions f(z),g(z) € T, f(z) = z— Z ajz’ (aj > 0) and g(z) =

7— Z bz (b; > 0) the modified Hadamard product f * g is defined by
j=2

(f+g)(z —Z—Za, 2.

Theorem 2.7. Let f(z) =z— Y ajz/ € TSV}(a,B,7), (a; > 0) and g(z) € T with g(z) =
j=2

Z—ijz e TSV (a, B,7), (b; >0), @ € [-1,1), A >0, >0, ¥>0. Then f(z) xg(z) €
TSVl(oc B,7)-

Proof. Since f(z),g(z) € TSV} (a,B,7), we have
Y [+ (= DAL+ B) — (a+ B) (7 — 7+ Dla; < 1 —a
j=2

and

o>}

Y U+ G=DA(+B) = (a+B)(vj—y+ Db <1—a

j=

\e}

We know that f(z) xg(z) =z— Y7, ajb;z/. From g(z) € T, we have Z jbj <1 and we notice
=2
that b; <1 for j=2,3,.... Thus

[}

Y [+ = DA[j(1+B) = (a+B)(vi— v+ Dlajb;
=2

(o]

< Y [+ =DA[(1+B) = (e +B)(vj = v+ Dla;

j=2

This implies that f(z) xg(z) € TSV}(a, B, 7).

3. Application of the Fractional Calculus
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We begin with the statements of the following definitions of fractional calculus (that is, frac-
tional derivatives and fractional integrals) which were defined by Owa ([7, 8]) and were used

by many researchers ([13, 14, 15]).

Definition 3.1. The fractional integral of order J is defined for a function f(z), by

sy Lot f)
D: f(z)_m)/o et (320, (3.1)

where f(z) is analytic in a simply connected region of the z-plane containing the origin, and the
multiplicity of (z—7)%~! is removed by requiring log(z — 1) to be real when (z —1) > 0.

Definition 3.2. The fractional derivative of order § is defined for a function f(z), by

1 d R
fo(z)_md—zfo ot (0<8<1), (3.2)

where f(z) is as in Definition 3.1.
Definition 3.3. (Under the condition of Definition 3.2) The fractional derivative of order k + 0

(k=0,1,2,...) is defined by

k

DE f(e) = 2D (), (08 <1) (33)

From Definitions 3.1 and 3.2 by applying simple calculation, we get

e L s e TU+HD s
D, f(z)_r(era)Z j_zzr(j+1+5)“fzj ' (3.4)

L s e TG
fo(z)—le 5—;maﬂ’+5. (35)

Now making use of (3.4) and (3.5), we state the following theorems.

Theorem 3.4. Let f(z) € TSV} (a,B,7). Then

S 26+ 21— a)
DTS P sy [H(2+5)(1+/1)"[2(1+l3)—(a+B)(7+1)] 'Z'] (3.6
and
s 26+ 21— a)
SCNICIES SONw ) [l‘<2+5><1+z>"[2<1+ﬁ>—<a+ﬁ><v+1>]‘z']’ 3.7

for 8 > 0 and z € A. The result is sharp.
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Proof. Using (3.4), we have

. 1 = T(+1) .
p-9 _ 6+1 _ LIt
. f(2) NERWIE jgrj+1+3ajz

= F(2+6)Z6 [z—j;izﬁ(j,é)ajzj] )
I'(j+ DI(2+8)

where ¢(j,6) = TG+1+0)

. We have

0<((j.8) <t(2.8) = 5. (3.9)

In view of Theorem 2.1, we have

(1+2)"2(1+B) — (a+B)(y+1)] izaj
=

< (4G~ DAL+ B) @ BT 7+ Dl

<l—a,
which evidently yields

Za l—o
ST (1A 20 +B) — (a+B)(y+ 1)

(3.10)

Using (3.8) and (3.10), we have

|Z|(S 2
z|+4(2,0)|z a;

21
T(2+36) |

D°f(z)| <

2(1—a) }
2+8)(1+A)"2(1+B) - (a+B)(y+1)]

IN

IZI +1zf?

or

2%+ 2(1-a)

-5
DTS Frsy {” C+8)(1+A) R0 +B)— (@+B)(r+1)] "7"}

We also have

|z {1_ 2(1— o) |Z@
[(2+96) 24+8)(1+A)"2(1+B)—(ax+B)(y+1)] |

This completes the proof.

‘8+1

D70 f(z)] >
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Theorem 3.5. Let f(z) € TSV}, B,7y). Then

2'~° 2(1-a)

1)
PO g5 |+ i v+ ) B

and

2! ~® 2(1-a)

) —
DT = 7 ) {1 <2—5><1+x>n[2<1+ﬁ>—<a+ﬁ>w+1>]'z'] ’

for0< 6 < 1andz € A. The result is sharp.

Proof. Using (3.5), we have

-8 o -

Z F]+1 i+S
Dd =)y it
/1) I'(2-9) j:2Fj+1—5ajZ

_ z° -  Saiz
—m Z—j_z,zm(L )GJZ )
Ir;+nr2-o)

. Weh
I+1-0) e have

where m(j,8) =

0.< m(j,8) < m(2,8) = %.

In view of Theorem 2.1, we have

(47201 +B)— (a+B)(y+1)] iz
2

8

< Y I+ G=DA[j(+B) = (a+B)(vi—r+Dla;

~
Il
)

A

_a’

which gives

iajﬁ 1 —a .
=T () 2(1+B) — (o4 B) (v +1)]
Using (3.13) and (3.15), we have

2| ~°
r(2_9)

|2|7°

D2f(2)] < 2] +m(2,8)[z]* ) a;

=2
2(1—a)

< |lz] +

r(2—9)

(1+4)"(2=98)2(1+B) - (a+B)(v+1)

2
] k4

11

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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5 20 T 2(1—a)
DN 5y ' o A RO B) — @ B D1
Also, we get
Do = A i 21~ ) <
: TTR2-8) Q-8)(1+A)2(1+B)—(a+B)(y+1)] ]

Hence the proof is completed.

Corollary 3.6. For every f(z) € TSV} (a, B,7),
(1) When 6 = 1, from Definition 3.1 and Theorem 3.4, we obtain

2 [1_ 2(1—a) |z|}
2 3(1+24)"[2(1+B) — (o +B)(y+1)]

<| [ o

2 21— )
=7 [l T30 AR+ B) — (ot B)(r+ 1)) 'Z‘]

(2) When 6 = 0, from Definition 3.2 and Theorem 3.5, we obtain

-«
& {1 N (1+A) 2014+ B)— (x+B)(y+1)] |Z|} <|f(@)|
<lz] {1+ 1-a |Z|}
a (1+2A)"2(1+B) — (a+B)(y+1)]
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