Available online at http://scik.org
Eng. Math. Lett. 2015, 2015:4
ISSN: 2049-9337

CALDERON’S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

PANDEY, C. P.}, RAKESH MOHAN? AND BHAIRAW NATH TRIPATHI?
1Department of Mathematics, Ajay Kumar Garg Engineering College, Ghaziabad 201009, India
2Department of Mathematics, Dehradun Institute of Technology, Dehradun 248009, India
3Department of Mathematics, Uttarakhand Technical University, Dehradun 248007, India

Copyright © 2015 Pandey, Mohan and Tripathi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction
Calderon formula [8] involving convolution related to the Fourier transform is useful in
obtaining reconstruction formula for wavelet transform besides many other applications in

decomposition of certain function spaces. It is expressed as follows:
° dt
f00 =], @xdx DO (L.1)

where ¢:R" — C and ¢ (x) =t"¢(x/t), t > 0.For conditions of validity of identity (1.1), we
may refer to [8].

On the real line, the Dunkl operator are differential-difference operator introduced by Dunkl [1]
and are denoted by A_, where « is real parameter >—1/2.These operator associated with the
reflection group Z, onR. The Dunkl kernel E_ is used to define the Dunkl transform which was

introduced by Dunkl in [2]. Rosler in [3] show that the Dunkl kernels verify a product formula.

This allows to define the Dunkl translation. As a result, we have the Dunkl convolution.
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Dunkl Operator has a unique solution E, (Ax), called Dunkl kernel and given by

AX
2(a+1)

where j_ is the normalized Bessel function of the first kind and order « .

E, (Ax)=j, (iAx)+ jou(i1x), xeR, 1.2)

Let o >—1/2 be afixed number and g be the weighted Lebesgue measure on R, given by

du, (x):= (27T (a+2)) X" . (1.3)
We define L ,(0,0), 1< p<oo as the spaces of those real measurable function f on (0, o) for

which

o
1. (ﬂf )" da, (x J <w if pe[Lwo) (1.4)

and | f| =esssup|f(x) ifp=co.
xeR

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on R, which was
introduced and studied in [7].

The Dunkl transform F_ of a function f €L, ,(R), is given by

Ff(4)=f(4 IE (=iax) f (x)du, (x) ;2eR (1.5)

An inversion formula for this transform is given by
F2(F(0)=(F(2) =1( jE (iax) f (2)du, (2) (1.6)
An Parseval formula for this transform is given by
I: f (x)g(x)dx :J._O:O f(ﬂ)@ (1) .7
To define Dunkl convolution *_ , we define
W, (%, ¥, 2) = ["E,(A0E,(AY)E,(A2)d 1, (2) (18)
= (1—0x,y,z +0,,, +O—z,y,x)Aa(X' Y, 2)
X2 +y?+2°

where o, , = 2xy
0 otherwise

Jf X, yeR\O0
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and A, is the Bessel kernel. Clearly W, (x,y,z) is symmetric in x, y, z. Apply inversion

formula (1.6) to (1.8), we get

|, E.(ADW, (x, ¥, 2)dp,(2) = E,(A0E, (Ay). (19)
Now setting 2 =0, we obtain

j:wa (x,y,2)du,(z)=1. (1.10)
Let p,q,re[l,») and% Z%‘F%—l. Then Dunkl convolution of f el  ,(R)and gelL, ,(R)
is defined by [7]

(%, 900 =] f(2)g(y)W,(x y, 2)du,(y)dx,(2) (1.1)

R R

Let p,q,refl o and %:%+%—1 , felL,,(R) and gelL,,(R) . Then convolution

f > g(x) satisfies the following norm inequality

@ [, <4lf] . lal,. (1.12)

Moreover forall feL, ,(R) and geL,,(R),we have

) (f*,9)(2)="f(2)g(2) (1.13)

2. Calderon’s formula
In this section, we obtain Calderon’s reproducing identity using the properties of Dunkl
transform and Dunkl convolutions.

Theorem 2.1 Let g and y €L, [0,0) be such that following admissibility condition holds:

du, (&)

Jo #EWO=E =1 (2.1)
for all £ €[0,0). Then the following Calderon’s reproducing identity holds:
@ d
(=] (% a5 )02 vicir. @2
a

Proof: Taking Dunkl transform of the right hand side of (2.2), we get
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U (.4 awa)(X)d”“T@}

0 3k d
N S TIGTAGESS @)

v o d
= &) @(5)%(5)”“7@ (23)
> o d
- B[ (#aoyas) e @)
a
=)
Now, by putting a& =@
[ 320 ) - [* 0y o) e @) ““( ) (2.4)
=1.

Hence the result follows.

Theorem 2.2 Suppose ¢ e L, , [0,0) is real valued and satisfies

2d
NEI Rt (25)
Forf el,, [0,00)NL,, [0,%0), suppose that

du,(a)

Lo =] (F%, 4% 4)) (2.6)

Then Hf—f >0ase—>0&85 0.

9112, 4,

Proof: Taking Dunkl transform of both sides of (2.6) and using Fubini’s theorem, we get

fs&=1© jj[é(aé)]zd““T@ 2.7)
By [4], we have

I 8.%, tl,,, <lé.% &, 11,

S AW (2.8)

Now using above inequality and Minkowski’s inequality [6, page 41], we get
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2 o 5 d 2
I, =10 (0[] (8%, %, 100 el2)

S po 2 d
SL J.O ‘(¢a*a ¢a*a f)(X)‘ d/ua(x) ’uaa(a)

o), @) (29)
s dt
_||¢|1;1a |2’U”J.5T
2 o
16, 1., oo 2.
Hence by Parseval formula, we get
. 2 e o I?
it =l =t f =,
60— 50
du, (a))
el g 5[~ 2du,
lim [, f(f)[l— [ [dae)] == Jdﬂa(x) (2.10)
S—0

Since < f (&), therefore by the dominated convergence theorem,

=0.
15 [1— [[#a)] d“T@)j

the result follows.

The reproducing identity (2.2) holds in the point wise sense under different set of nice conditions.

Theorem 2.3 Suppose f, fe L, [0,). Letg el , [0,0) be real valued and satisfies

INEE é)Tdﬂ“( )y, £eR-{0}. 2.12)
Then

[ (1,0 0000 4@ r o (212)
Proof: Let

o0 =[ (F*, 4% 4)( dﬂT@) (2.13)

By [4, page 311], we have
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A AR T A A W

<[l 111, (2.14)
Now
(" S 4w du,(a)
ol = Iy d ([ (8% b 1) 00—
N dua(a)
<[" [l % ) 0], .
<[ M4 4% Do, ) (215)

s dt
= ||¢ ||1 M, || ||1 Hy

2 o
-1k, 1l Iog[;j -

Therefore, f, ;e L'(0,%0). Also using Fubini’s, we get theorem and taking Dunkl transform of

(2.13), we get

. o 5 d
@[ e0a [ 000 Jau o

— S peo * * dlua(a)

=[], EO@ S 4% NE0du, (0H22 216)
02 (&) F ()0

a RAGIAGK (g)”a_@)

= {1 Wy = ““() .

Therefore, by (2.11),

.| f©)] -
It follows that f, ; €L, , [0,0).By inversion, we have
F0)-f,,00 =) E,If(&) -1, ,(Odu, (¢) xe[0,%0) (2.17)

Putting
h, s =E, (&) (&) -f,:)]
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. 5~ d
= f(OE.(x) [1— [ Td@oF “T@} (2.18)
we get
f0-f,,00=] E,0| fO-,@]du(5) @19

= [ h.s(€0dp, (£).
Now using (2.11) in (2.18), we get
Iilgl h,;(§:x)=0, e R—{O}. (2.20)

o ee]

Since |h_(£:X)[< f(ff) , the Lebsegue dominated convergence theorem yields
£,0

!Lrp[f(x)— f,5(x)]=0, vx. (2.21)

d—>©
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