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1. Introduction

The generalized Bessel function of the first kind Wp,b,c defined for complex z∈C and b,c, p∈

C (Re(p)>−1) by

(1) Wp,b,c(z) =
∞

∑
k=0

(−1)kck

Γ(p+ b+1
2 + k)k!

( z
2

)2k+p
,

with p + (b+1)/2 6= 0,−1,−2,−3, · · · . More details related to the function Wp,b,c and its

particular cases can be found in [1, 7] and references therein. It is worth mentioning that,

Wp,1,1 = Jp is the Bessel function of order p and Wp,1,−1 = Ip is the modified Bessel function

∗Corresponding author

Received April 13, 2015
1



2 SAIFUL R. MONDAL

of order p. Also, Wp,2,1 = 2 jp/
√

π is the spherical Bessel function of order p and Wp,2,−1 =

2ip/
√

π is the modified spherical Bessel function of order p.

The generalized Struve function of the first kind Hp,b,c(z) defined for complex z ∈ C and

b,c, p ∈ C (Re(p)>−1) by

(2) Hp,b,c(z) :=
∞

∑
k=0

(−1)kck

Γ(p+1+ b
2 + k)Γ(k+3/2)

( z
2

)2k+p+1
.

Details related to the function Hp,b,c and its particular cases can be seen in [3] and the references

therein. Like Bessel function Hp,1,1 represent Struve function of order p and Hp,1,−1 is nothing

but modified Struve function of order p and the study of Hp,b,c will cover all possible known

cases.

Following integral formula [6, 2.47, p.22] is required in sequel:

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ dx = 2λa−λ

(a
2

)µ Γ(2µ)Γ(λ −µ)

Γ(1+λ +µ)
.(3)

The article emphasis on investigating compositions of integral (3) with generalized Bessel func-

tion(GBF) (1) and generalized Struve function (GSF) (2). Such compositions are expressed in

terms of the generalized Wright hypergeometric (GWHF) function pψq(z) is given by the series

(4) pψq(z) = pψq

 (ai,αi)1,p

(b j,β j)1,q

∣∣∣∣z
=

∞

∑
k=0

∏
p
i=1 Γ(ai +αik)

∏
q
j=1 Γ(b j +β jk)

zk

k!
,

where ai,b j ∈ C, and real αi,β j ∈ R (i = 1,2, . . . , p; j = 1,2, . . . ,q). Asymptotic behavior of

this function for large values of argument of z ∈ C were studied in [5] and under the condition

(5)
q

∑
j=1

β j−
p

∑
i=1

αi >−1

in [18, 19]. Properties of this GWHF were investigated in [8], (see also [10, 9]. In particular,

it was proved [8] that pψq(z), z ∈ C is an entire function under the condition (5). Compo-

sitions of GBF and GSF with the integral (3) can also be represented in terms of the gen-

eralized hypergeometric function(GHF) pFq(z) defined for complex ai,b j ∈ C, b j 6= 0,1, . . .

(i = 1,2, . . . , p; j = 1,2, . . . ,q) [11]. Certain interesting results on the fractional derivatives of

generalized hypergeometric functions for several variables can be found in [16].
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For purpose in sequel, we state and proof a generalization of the well-known Legendre du-

plication type formula for (a,α) = Γ(a+αk). Legendre duplication formula [4] is defined as

follwos:

Γ(2x) =
22x−1
√

π
Γ(x)Γ

(
x+

1
2

)
or (x)2k = 22k

(x
2

)
k

(
x+1

2

)
k
, (k ∈ N0).(6)

Now using the identity Γ(a+ k) = Γ(a)(a)k, following result can be obtained by method of

induction.

Lemma 1.1. For any n,k ∈ N0, the following identity holds:

(a,2n) = Γ(a)2n2nk
2n

∏
i=1

(
a+ i−1

2n

)
k
.(7)

Proof. We prove the identity (7) by using method of induction. For n = 0,

(a,1) = Γ(a)20
1

∏
i=1

(
a+ i−1

20

)
k
= Γ(a)(a)k,

is trivially true by definition of (a,α). Now assume that the identity (7) holds for n = m ∈ N,

i.e.

(a,2m) = Γ(a)2m2mk
2m

∏
i=1

(
a+ i−1

2m

)
k
.(8)

Then

(a,2m+1) = Γ(a)(a)2m+1k

= Γ(a)22m+1k
(a

2

)
2mk

(
a+1

2

)
2mk

=
Γ(a)

Γ
(a

2

)
Γ
(a+1

2

)22m+1k
(a

2
,2m
)(a+1

2
,2m
)

= Γ(a)22m+1k×2m2mk
2m

∏
i=1

(
a+2i−2

2m+1

)
k
×2m2mk

2m

∏
i=1

(
a+2i−1

2m+1

)
k

= Γ(a)2(m+1)2m+1k
2m+1

∏
i=1

(
a+ i−1

2m+1

)
k
.

This complete the proof of the result.

2. Integrals involving GBF
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This section consist of integral of generalized Bessel function(GBF) which are represented

in terms of GWHF or GHF.

Theorem 2.1. Let b∈R and λ , µ , c, p∈C with Re(p)>−(b+1)/2, Re(λ + p)> Re(µ)> 0

and x > 0. Then following integral identity holds:

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ Wp,b,c

(
y

a2 (x+a−
√

x2 +2ax)
)

dx(9)

= 21−µ−paµ−λ−pyp
Γ(2µ)

× 2ψ3

 (λ −µ + p,2),(1+λ + p,2);

(λ + p,2),(1+λ + p+µ,2),(p+ b+1
2 ,1)

∣∣∣∣− cy2

4a2

 .

Proof. Consider the series representation of Wp,b,c(y(x+ a−
√

x2 +2ax)/a2) and then by a

computation it can be shown that the involved series is uniformly convergent. Thus it is allow

to interchange the order of integration and summation, and that leads left side of (9) to the

expression

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ Wp,b,c

( y
a2 (x+a−

√
x2 +2ax)

)
dx(10)

=
∞

∑
k=0

(−c)k

Γ(κ + k)k!

(y
2

)2k+p ∫ ∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ−p−2k
dx.

The given condition Re(λ + p)> Re(µ)> 0, yields

Re(λ + p+2k)≥ Re(λ + p)> Re(µ)> 0, k ∈ N∪0.

Thus using (3), the integration in the right-hand side of (10) reduce to

∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ−p−2k
dx

= 2(λ + p+2k)a−(λ+p+2k)
(a

2

)µ Γ(2µ)Γ(λ + p+2k−µ)

Γ(1+λ + p+2k+µ)
.
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This along with (10) yields∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ Wp,b,c

(
y

x+a+
√

x2+2ax

)
dx

= 2a−λ
(a

2

)µ
Γ(2µ)

∞

∑
k=0

(−c)kΓ(1+λ+p+2k)Γ(λ+p+2k−µ)
Γ(κ+k)Γ(λ+p+2k)Γ(1+λ+p+2k+µ)k!

( y
2a

)2k+p

= 21−p−µaµ−λ−p
Γ(2µ)yp

× 2ψ3

 (λ −µ + p,2),(1+λ + p,2);

(λ + p,2),(1+λ + p+µ,2),(p+ b+1
2 ,1)

∣∣∣∣− cy2

4a2

 .
This complete the proof.

By adopting similar technique as in the proof of Theorem 2.1, a computation will give the

following result.

Theorem 2.2. Let b ∈ R and λ , µ , p ∈ C with Re(p) > −(b + 1)/2, Re(λ ) > Re(µ) ≥

(b+1)/2 and x > 0. Then the following identity holds:∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ

Wp,b,c

(
xy

x+a+
√

x2 +2ax

)
dx(11)

= 21−µaµ−λ

(y
4

)p
Γ(λ −µ)

× 2ψ3

 (2µ +2p,4),(1+λ + p,2);

(λ + p,2),(1+λ +2p+µ,4),(p+ b+1
2 ,1)

∣∣∣∣− cy2

16

 .
Next we establish some integral formula for Wp,b,c expressed in terms of generalized hyper-

geometric functions pFq. Considering n = 0,1 in the identity (7), Theorem 2.1 can be rewrite

as follows:

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied and µ,λ +µ,λ −µ + p ∈C\Z−0 .

Then the following integral formula holds:∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ Wp,b,c

(
y

x+a+
√

x2+2ax

)
dx

= 21−µ aµ−λ (λ+p)

Γ

(
p+b+1

2

)
(λ+µ+p)

( y
2a

)p
B(2µ,λ −µ + p)

× 3F4

 λ−µ+p
2 , λ−µ+p+1

2 , 2+λ+p
2 ;

λ+p
2 , 1+λ+p+µ

2 , 2+λ+p+µ

2 , p+ b+1
2

∣∣∣∣− cy2

4a2

 .
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Here B(a,b) = Γ(a)Γ(b)/Γ(a+b) is the well-known Beta functions.

The integration in Theorem 2.2 can also be expressed in terms of GHF using the identity (7)

for n = 0,1,2.

Corollary 2.2. Let the conditions of Theorem 2.2 be satisfied and µ + p,λ + µ + 2p,λ + p ∈

C\Z−0 . Then the following integral formula holds:

∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ

Wp,b,c

(
xy

x+a+
√

x2+2ax

)
dx

= 21−µ aµ−λ (λ+p)

Γ

(
p+b+1

2

)
(λ+µ+p)

( y
4

)p
B(λ −µ,2µ +2p)

× 5F6

 µ+p
2 , 2µ+2p+1

4 , µ+p+1
2 , 2µ+2p+3

4 , 2+λ+p
2

λ+p
2 , 1+λ+µ+2p

4 , 2+λ+µ+2p
4 , 3+λ+µ+2p

4 , 4+λ+µ+2p
4 , p+ b+1

2

∣∣∣∣− cy2

16

 .

Remark 2.1. For b = c = 1, the result obtain in this section has also been obtained in [3]. For

other special values of b,c, the results will be discussed in Section 4.

3. Integrals involving GSF

The unified integral, as in section 2, but with generalized Struve function are considered in

this section. The results are expressed in terms of GWHF and GHF.

Theorem 3.1. Let λ , µ , p ∈ C with Re(p)>−(2+b)/2, Re(λ + p)> Re(µ)> 0 and x > 0.

Then following integral identity holds:

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ Sp,b,c

(
y

a2 (x+a−
√

x2 +2ax)
)

dx

= 21−µaµ−λ
( y

2a

)p+1
Γ(2µ)

× 2ψ3

 (1,1),(λ −µ + p+1,2),(2+λ + p,2);

(3
2 ,1),(1+λ + p,2),(2+λ + p+µ,2),(p+1+ b

2 ,1)

∣∣∣∣− cy2

4a2

 .
Since (3/2,1) = Γ(3/2+ k) and (1,1) = Γ(1+ k) = k!, the above representation can be obtain

by proceeding as the proof of Theorem 2.1.
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Theorem 3.2. Let λ , µ , p ∈C with Re(p)>−(2+b)/2, Re(λ )> Re(µ)≥ 1 and x > 0. Then

following identity holds:∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ

Sp,b,c

(
xy
a2 (x+a−

√
x2 +2ax)

)
dx

= 21−µaµ−λ
( y

4

)p
Γ(λ −µ)

× 2ψ3

 (2µ +2p,4),(1+λ + p,2);

(λ + p,2),(1+λ +2p+µ,4),(p+ b+1
2 ,1)

∣∣∣∣− cy2

16

 .
Using the identity (7), the integral involving Sp,b,c similar to Theorem 3.1 and Theorem 3.2

can be expressed in terms of generalized hypergeometric functions pFq, and the representations

are given in following results. We omit the details proof due to similar computation as earlier

results.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied and µ,λ +µ,λ −µ + p ∈C\Z−0 .

Then the following integral formula holds:∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ

Sp,b,c

(
y

x+a+
√

x2+2ax

)
dx

= 21−µ aµ−λ (λ+p)

Γ

(
p+b+1

2

)
(λ+µ+p)

( y
2a

)p
B(2µ,λ −µ + p)

× 3F4

 λ−µ+p
2 , λ−µ+p+1

2 , 2+λ+p
2 ;

λ+p
2 , 1+λ+p+µ

2 , 2+λ+p+µ

2 , p+ b+1
2

∣∣∣∣− cy2

4a2

 .
Here B(a,b) = Γ(a)Γ(b)/Γ(a+b) is well-known Beta functions.

Corollary 3.2. Let the conditions of Theorem 3.2 be satisfied and µ + p,λ + µ + 2p,λ + p ∈

C\Z−0 . Then the following integral formula holds:∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)−λ

Sp,b,c

(
xy

x+a+
√

x2+2ax

)
dx

= 21−µ aµ−λ (λ+p)

Γ

(
p+b+1

2

)
(λ+µ+p)

( y
4

)p
B(λ −µ,2µ +2p)

× 5F6

 µ+p
2 , 2µ+2p+1

4 , µ+p+1
2 , 2µ+2p+3

4 , 2+λ+p
2

λ+p
2 , 1+λ+µ+2p

4 , 2+λ+µ+2p
4 , 3+λ+µ+2p

4 , 4+λ+µ+2p
4 , p+ b+1

2

∣∣∣∣− cy2

16

 .



8 SAIFUL R. MONDAL

4. Integrals involving trigonometric functions

For all b ∈ R, if p =−b/2, then the generalized Bessel function Wp,b,c(z) have the form

W
−b

2 ,b,c
2(z) =

(2
z

)b
2 coscz√

π
and W

−b
2 ,b,−c2(z) =

(2
z

)b
2 coshcz√

π
.(12)

Hence following results are consequence of Theorem 2.1 and Theorem 2.2 respectively.

Corollary 4.1. Let λ ,µ,c ∈ C such that Re(λ ) > Re(µ) > 0. For x > 0, following identity

holds:

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ cos

(
cy

x+a+
√

x2+2ax

)
dx

=
√

π 21−µaµ−λ
Γ(2µ)× 2ψ3

 (λ −µ,2),(1+λ ,2);

(λ ,2),(1+λ +µ,2),(1
2 ,1)

∣∣∣∣− c2y2

4a2

 .(13)

and

∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ cosh

(
cy

x+a+
√

x2+2ax

)
dx

=
√

π 21−µaµ−λ
Γ(2µ)× 2ψ3

 (λ −µ,2),(1+λ ,2);

(λ ,2),(1+λ +µ,2),(1
2 ,1)

∣∣∣∣c2y2

4a2

 .(14)

Proof. On setting p =−b/2 and replacing c by c2 in to (9) and using (12), we have

1√
π

∫
∞

0
xµ−1

(
x+a+

√
x2 +2ax

)b
2−λ (

2
y

)b
2 cos

(
cy

x+a+
√

x2+2ax

)
dx

= 21−µaµ−λ
( y

2a

)−b
2 Γ(2µ)× 2ψ3

 (λ −µ− b
2 ,2),(1+λ − b

2 ,2);

(λ − b
2 ,2),(1+λ − b

2 +µ,2),(1
2 ,1)

∣∣∣∣− c2y2

4a2

 .
After some computation and finally replacing (λ −b/2) by λ will gives the identity (13).

Similarly the identity (14) can be obtain from (9), with the aid of identity (12), taking p =

−b/2 and replacing c by −c2. �

Adopting similar method as in Corollary 4.1 following result can be obtained from Theorem

2.2, we omit the details.
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Corollary 4.2. Let b ∈ R and λ ,µ,c ∈ C such that Re(λ )> Re(µ)> 0. For x > 0, following

identity holds:

∫
∞

0
xµ−b

2−1
(

x+a+
√

x2 +2ax
)−λ+

b
2 cos

(
cxy

x+a+
√

x2+2ax

)
dx

=
√

π 21−µ+
b
2 aµ−λ

Γ(λ −µ)× 2ψ3

 (2µ−b,2),(1+λ − b
2 ,2);

(λ − b
2 ,2),(1+λ −b+µ,2),(1

2 ,1)

∣∣∣∣− c2y2

16

 .
and ∫

∞

0
xµ−b

2−1
(

x+a+
√

x2 +2ax
)−λ+

b
2 cosh

(
cxy

x+a+
√

x2+2ax

)
dx

=
√

π 21−µ+
b
2 aµ−λ

Γ(λ −µ)× 2ψ3

 (2µ−b,2),(1+λ − b
2 ,2);

(λ − b
2 ,2),(1+λ −b+µ,2),(1

2 ,1)

∣∣∣∣c2y2

16

 .
For all b ∈ R, if p = 1− b/2, then the generalized Bessel function Wp,b,c(z) is related with

sine and hyperbolic sine function as follows:

W
1−b

2 ,b,c
2(z) =

(2
z

)b
2 sincz

c
√

π
and W

1−b
2 ,b,−c2(z) =

(2
z

)b
2 sinhcz

c
√

π
.(15)

Next we represent integrals involving sine and hyperbolic sine functions in term of general-

ized (Wright) hypergeometric functions.

Corollary 4.3. Let λ ,µ,c ∈ C such that Re(λ ) > Re(µ) > 0. For x > 0, following identity

holds: ∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ sin

(
cy
a2 (x+a−

√
x2 +2ax)

)
dx

= c
√

π 21−µaµ−λ
Γ(2µ)× 2ψ3

 (λ −µ,2),(1+λ ,2);

(λ ,2),(1+λ +µ,2),(1
2 ,1)

∣∣∣∣− c2y2

4a2

 .(16)

and ∫
∞

0
xµ−1(x+a+

√
x2 +2ax)−λ sinh

(
cy

x+a+
√

x2+2ax

)
dx

= c
√

π 21−µaµ−λ
Γ(2µ)× 2ψ3

 (λ −µ,2),(1+λ ,2);

(λ ,2),(1+λ +µ,2),(1
2 ,1)

∣∣∣∣c2y2

4a2

 .(17)
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Remark 4.1. Using (7), integrals in Corollary 4.1 – Corollary 4.3 can also be represent in terms

of generalized hypergeometric functions.
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